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We consider stochastic optimization problems in which we aim to minimize the expected value of an objec-

tive function with respect to an unknown distribution of random parameters. We analyse the out-of-sample

performance of solutions obtained by solving a distributionally robust version of the sample average approx-

imation problem for unconstrained quadratic problems, and derive conditions under which these solutions

are improved in comparison with those of the sample average approximation. We compare different mecha-

nisms for constructing a robust solution: phi-divergence using both total variation and standard smooth φ

functions; a CVaR-based risk measure; and a Wasserstein metric.
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1. Introduction

In this paper we consider instances of stochastic programming problems of the following form:

SP: minx∈X EP[c(x, ξ)].

Here the decision variable x is constrained to lie in X ⊆Rn, and expectations are taken over the

random variable ξ (ω), defined on probability space (Ω,F ,P) and taking values in Rm. We denote

an optimal solution of SP by x∗ and its optimal value by C∗. Given a sample S = {ξ1, ξ2, ..., ξN},
the problem SP can be approximated by the sample average approximation problem

SAA: minx∈X
1
N

∑N

i=1 c(x, ξi), (1)

where we choose to suppress the dependence of ξ on ω when this is clear from the context. We

write EP0 [c(x,S)] to denote the objective of (1), where the expectation uses the finite probability

measure P0 that assigns mass 1
N

to each ξi ∈ S.
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Our focus in this paper is on distributionally robust optimization (Wiesemann et al. 2014), in

which the decision maker chooses x to solve

min
x∈X

sup
Q∈P

EQ [c(x, ξ)] ,

where P is a set of probability measures, from which a worst-case measure Q is chosen, and the

expectation is taken over the random variable ξ with distribution Q. In applications we seldom

have enough information to specify P, so the set P of distributions is chosen because we seek a

solution that performs well irrespective of the choice of distribution.

If one has a sample drawn from P then this can be used to construct a suitable set P. The

distributionally robust version of SAA is then

DRO: minx∈X supQ∈Pδ EQ [c(x, ξ)] , (2)

where the objective function depends on the sample S through the worst-case probability measure

chosen from a region Pδ containing the sample distribution P0 and parametrized by δ, so that it

increases in size with increasing δ. When δ = 0 we have Pδ = {P0} and DRO reverts to the SAA

problem of minimizing the expectation under P0 of c(x, ξ). When δ > 0, the worst-case measure

Q∈Pδ is chosen to evaluate the expectation.

There are many different parameterizations that we might use for Pδ, and thus a variety of

different versions of the distributionally robust optimization. Early versions of these models (Scarf

1958, Dupačová 1987) choose a worst case result from a set of distributions P that are subject

to constraints on their moments. The data-driven approach we have outlined in which P depends

on a sample has been the focus of more recent work. There are many alternative approaches, for

example, Delage and Ye (2010) construct a confidence set for the first and second moments of P

based on a sample, whereas Wang et al. (2016) construct P in terms of a likelihood function, and

Bertsimas et al. (2018) choose P to be the confidence region of a goodness-of-fit test.

A number of authors consider a DRO model where the set Pδ is obtained from looking at

distributions within a distance δ of the sample distribution under some metric on the space of

distributions. One choice is to use φ-divergence (such as the Kullback-Leibler divergence) to define

the distance. Note though that a φ-divergence is typically not symmetric and may not satisfy

the triangle inequality. So apart from some special cases such as total variation (which is an L1

distance) this is not a metric, or semi-metric. Bayraksan and Love (2015) give a tutorial discussion

of the use of φ-divergence in this setting, and Shapiro (2017) also discusses the different types

of φ-divergence and their links with coherent risk measures. Gotoh et al. (2018) show that using

φ-divergence leads to small changes in the mean compared with large changes in the variance
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when considering in-sample performance. Van Parys et al. (2017) show that the Kullback-Leibler

divergence (also called relative entropy) has optimal properties in terms of the asymptotic behavior

for out-of-sample disappointment.

An alternative approach used by many authors is to define distances using the Wasserstein

distance between probability measures. For example Pflug and Wozabal (2007) apply this approach,

where Pδ is the set of distributions with a Wasserstein distance of less than δ to the sample

distribution. The application here is to portfolio optimization, as is also the case for (Wozabal

2014). The paper by Gao and Kleywegt (2016) gives a comparison of the Wasserstein and φ-

divergence approaches arguing for the better performance of the former and including some detailed

comparisons on a newsvendor problem. An important consideration in the choice of approach is the

computational burden involved in carrying out the inner maximization of DRO. Esfahani and Kuhn

(2018) demonstrate how this can be done in the Wasserstein case for a wide variety of objective

function forms.

It is well-known that when a sample is used to determine a decision variable, the resulting decision

may perform relatively poorly on a new sample from the same distribution. The optimization can

exploit particular features of the sample and delivers a decision that happens to do well on this

set of values. This is related to overfitting, which has received a lot of attention in statistics and

machine learning (see e.g. Schaffer 1993, Lawrence et al. 1997, Hawkins 2004). Here the coefficients

of a model are estimated using a training set of data, and a model with many coefficients can choose

these to match the training set very well. When applied to out-of-sample test data the model often

performs worse than a simpler model with fewer coefficients. The solutions from sample average

approximations with small sample sizes can also perform poorly out of sample (see e.g. Chopra

and Ziemba 2013, Drela 1998,Wozabal 2014).

The most widely adopted machine-learning approach to overfitting is to add some form of reg-

ularization to the estimation problem. Examples are ridge regression (Hoerl and Kennard 1970)

and LASSO (Tibshirani 1996). The literature concerning improved estimation performance from

techniques related to regularization is very extensive and we will not attempt to review it here.

However it is well known (see e.g. Tibshirani 1996) that regularization (by shrinking the size of

parameters) results in parameter estimates with lower variance that often outweighs the modest

increase in bias. In our context, ridge regression and LASSO estimation problems have equivalent

formulations that can be interpreted as robust optimization problems that specify uncertainty sets

on the data values (see e.g. Xu et al. 2009). Regression regularization can also be formulated as a

distributionally robust optimization problem using a Wasserstein metric (Blanchet et al. 2016).

There is substantial evidence that distributionally robust optimization can improve expected

out-of-sample performance on a wider range of models than those for estimation. For example,
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as shown by Chopra and Ziemba (2013), solutions to financial optimization problems are very

sensitive to sampling errors in estimated returns. Out-of-sample performance of solutions to such

problems is often much better when a distributionally robust approach is used (Delage and Ye

2010, Wozabal 2014). However the nature of the improvement in out-of-sample performance varies.

A particular set of data (corresponding to a single sample) may or may not give an improvement

if a robust approach is used, but the variance of the out-of-sample outcomes when considered

over multiple sets of data will be reduced. One might expect that it will be necessary to accept

a higher average cost in order to achieve a reduction in variance. But in fact there are many

cases where both the mean and the variance of the out-of-sample results are improved by using

a DRO approach. For example Esfahani and Kuhn (2018) carry out numerical experiments for

a portfolio optimization problem (using synthetic data) and show that both mean and variance

improve for a Wasserstein robustification (provided δ is not too large). Very similar results are

found by Gotoh et al. (2017) when using Kullback-Leibler divergence in an inventory problem and a

logistic regression problem. Luo and Mehrotra (2017) report improvements in mean out-of-sample

behavior from using a Wasserstein approach for a logistic regression problem (with δ set by a

cross-validation method). Nevertheless there is no guarantee that an improvement in out of sample

mean is available: for example Gotoh et al. (2017) show that in their setup a portfolio optimization

problem never sees an improvement in mean.

The paper by Gotoh et al. (2017) is closest to our analysis and also considers the behaviour of

robust optimization for small values of δ. Their analysis is for a general convex cost function and

for smooth φ-divergence measures. They use the notation x∗(δ) for the limit of xδ(S) as S gets large

and discuss both the way that xδ(S) approaches x∗(δ) in distribution and also the relationship of

x∗(δ) to the true optimal solution x∗(0). Based on this asymptotic analysis for large sample sizes

they give an explicit expansion for the expected value of the out-of-sample objective function for

small δ. However the expressions involved become very complex (for example involving derivatives

with respect to δ of the expectation of the Jacobian of the convex conjugate of φ evaluated at the

objective c(x∗(δ), ξ)).

Our paper considers specific features of optimization models in order to demonstrate that, even

with the simplest problems, improvements in expected out-of-sample performance can depend

on the DRO method used and the underlying distributions. Large values of δ result in solutions

to DRO that are conservative, and as observed in the literature these will not perform well in

expectation when evaluated with P. On the other hand small values of δ > 0 can give improvements

in expected out-of-sample performance in comparison with SAA (δ = 0). We shall therefore focus

on the change in expected out-of-sample performance of the solution to DRO as δ increases from

0. We call this incremental improvement. The factors that affect incremental improvement are the
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form of robustification, the form of c(x, ξ) and X, and the true probability distribution of the

random variable ξ (ω). Since robustification can either increase or reduce bias in the solution to

SAA, we will restrict attention to problems in which the solution (i.e. the minimizing x) of SAA is

unbiased. This means robustification will always make a solution more biased, and any observed

improvements in out-of-sample performance can then be attributed to other factors. To ensure

that the solution to SAA is unbiased for all possible probability distributions on ξ we assume that

X = Rn, and take c(x, ξ) to be a positive definite quadratic function of x with a deterministic

Hessian matrix.

The main contributions of the paper are as follows.

1. We formally define the concept of incremental improvement for DRO;

2. We analyse incremental improvement for distributionally robust quadratic programs using Pδ
derived from phi-divergence, coherent risk measures and Wasserstein formulations;

3. We present a number of simple one-dimensional examples with univariate objective functions

for which analytical expressions defining incremental improvement can be derived. These examples

show that incremental improvement cannot be taken for granted. The outcome depends on the form

of robustification and the underlying probability distribution. For example, we provide some prob-

lem instances where incremental improvement will be obtained if we robustify with phi-divergence,

but will not be if we use a CVaR approach.

The paper is laid out as follows. The next section establishes our notation and terminology,

and formally defines the concept of incremental improvement. Section 3 then analyses quadratic

examples with Pδ derived from φ-divergence, both for a smooth φ function and also when total

variation is used. Section 4 and section 5 repeat this analysis for a CVaR-based coherent risk

measure, and Wasserstein distance respectively. In section 6 we conclude the paper with some

general observations. The proofs of all the propositions in the paper are deferred to two appendices.

2. Improving SAA

Our interest is in the solution of the stochastic optimization problem SP using sample average

approximation (1) and its distributionally robust version. We assume that c(x, ξ(ω)) satisfies the

following conditions:

Assumption 1. (a) EP[c(x, ξ(ω))] exists and has finite value for all x∈X;

(b) c(x, ξ(ω)) is differentiable in x∈X at almost every ω ∈Ω;

(c) There exists a positive valued random variable K(ω) such that EP[K(ω)]< ∞, and for all

x, y ∈X, |c(x, ξ (ω))− c(y, ξ(ω))|<K(ω)‖x− y‖.

The last condition is needed for the interchange of expectation and gradient operators in (3)

below.
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We denote an optimal solution to SAA by x0(S). In general this may not be unique, but in nearly

all our analysis in this paper we deal with SAA problems with a unique solution. For N large it

can be shown (see Shapiro et al. 2014) that x0(S) will approach the solution set of SP. When x0(S)

is unique we use C0(S) to denote the expected cost of x0(S) given the sample S. Thus

C0(S) =EP[c(x0(S), ξ)].

Taking expectations over P amounts to looking at the out-of-sample performance of the solution

x0(S) under the real distribution.

We write c̄(x) =EP[c(x, ξ)]. Given a sample S, we denote the gradient of c̄(x) evaluated at x0(S)

by ∇c̄(x0(S)). By Theorem 7.44 of (Shapiro et al. 2014) the above conditions on c(x, ξ) imply

∇c̄(x0(S)) = [∇xEP[c(x, ξ)]]x0(S) =EP[[∇xc(x, ξ)]x0(S)]. (3)

A distributionally robust version of SAA (DRO) generates a solution xδ(S), that depends both

on the sample S and a parameter δ > 0 that controls the amount of robustness added to the SAA

problem. A choice δ= 0 will give xδ(S) = x0(S). Fundamentally we are interested in the quality of

the solution as measured by

Cδ(S) =EP[c(xδ(S), ξ)]

in comparison with the SAA alternative C0(S). Like C0(S), Cδ(S) is well defined only when xδ(S)

is unique, so when working with Cδ(S) we will make this assumption. Thus we will assume the

existence of some tie breaking rule to determine a unique choice of xδ(S). As we will show, it turns

out that for many examples there is no need for a tie-breaking rule for xδ(S), provided x0(S) is

unique and δ is chosen sufficiently small. Since the solution quality depends on what sample is

chosen, we are interested in the expectations of C0(S) and Cδ(S) over different samples that may

occur, which we write using notation ES. This expectation can be derived using the underlying

probability measure P.

It is helpful to make the following definitions.

Definition The expected value of the robust solution (VRS(δ)) is

VRS(δ) =ES[C0(S)−Cδ(S)].

Observe that in VRS(δ) the expectation is taken over the sampling distribution, accounting for

the randomness driven by the choice of sample S as well as the random variable ξ. The value of

VRS(0) is zero, and we will focus on circumstances in which VRS(δ) is positive for small positive δ,

which means that xδ(S) performs better out of sample than x0(S). We give this a formal definition.



Anderson and Philpott: Improving sample average approximation
Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65 7

Definition A given form of robustification applied to a problem SP incrementally improves SAA

if VRS(δ)> 0 for all δ > 0 sufficiently small.

When considering robustification it is natural to seek a value of δ that yields the best possible

improvement in out-of-sample performance. In general this is challenging to study analytically. Our

approach is to quantify the improvement as δ increases incrementally from 0. As we show below this

approach provides some analytical traction that gives a deeper theoretical understanding of some

of the mechanisms that provide the improvement. In some examples we can provide conditions on

the problem data that will give sufficient conditions for incremental improvement.

When VRS(δ) is differentiable at δ = 0, we can quantify incremental improvement using its

derivative.

Definition The marginal value of the robust solution (MVRS) is

MVRS = lim
δ→0

V RS(δ)

δ

where this limit exists.

If MVRS is strictly positive then robustification incrementally improves SAA, but the size of

MVRS is determined by an arbitrary decision on the way that the set Pδ is parameterized. Moreover

switching between δ and δ2 can mean an MVRS that is zero, positive or undefined. Since MVRS is

derived from changes in ES[C0(S)−Cδ(S)], it is related to changes in the optimal solution xδ(S)

as δ increases from 0. We analyze these changes via the following definition.

Definition If for almost all samples S, DRO has a unique solution and there is some constant

vector ȳ(S) with

xδ(S) = x0(S) + ȳ(S)δ+O(δ2),

then we say that problem DRO exhibits linear variation with direction ȳ(S).

We now state a general result that will be used to establish both necessary and sufficient condi-

tions for incremental improvement of SAA using robustification.

Lemma 1. Suppose DRO exhibits linear variation with direction ȳ(S). Then for almost all sam-

ples S

Cδ(S) =C0(S) +∇c̄(x0(S))>ȳ(S)δ+O(δ2)

and MVRS =−ES[∇c̄(x0(S))>ȳ(S)]. If the robustification incrementally improves SAA then

ES[∇c̄(x0(S))>ȳ(S)]≤ 0.
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Conversely, if

ES[∇c̄(x0(S))>ȳ(S)]< 0, (4)

then the robustification incrementally improves SAA.

Lemma 1 is a simple consequence of the first-order variation in xδ(S) at δ = 0. To verify lin-

ear variation and evaluate ∇c̄(x0(S))>ȳ(S) for specific instances of c(x, ξ) and different forms of

robustification, we require some more assumptions on the form of c(x, ξ) and X. The following

assumptions will be assumed to hold throughout the rest of the paper.

Assumption 2. c(x, ξ) = 1
2
x>Hx+v(ξ)>x+u(ξ) for some deterministic positive definite matrix

H;

Assumption 3. X =Rn;

Under Assumptions 2 and 3, the “true” problem we seek to solve is

SQP: minx∈Rn EP[ 1
2
x>Hx+ v(ξ)>x+u(ξ)].

The objective function of SQP is c̄(x) = 1
2
x>Hx+ v̄>x+ ū, where v̄ = EP[v(ξ)] and ū= EP[u(ξ)].

The gradient ∇c̄(x) =Hx+ v̄, and the unique solution to SQP is x∗ =−H−1v̄.

Given a sample S = {ξ1, ξ2, . . . , ξN}, the sample average approximation of SQP is

SAA: minx∈Rn
(

1
2
x>Hx+ v̄0(S)>x+ ū0(S)

)
where v̄0(S) = EP0 [v(ξ)] and ū0(S) = EP0 [u(ξ)] are the sample averages of v(ξ) and u(ξ). The

unique solution to SAA is x0(S) =−H−1v̄0(S). Since ES[v̄0(S)] = v̄, it is easy to see that x0(S) is

unbiased for any probability distribution on ξ. On the other hand, if H depends on ξ then the

solution to SQP is x∗ =−H̄−1v̄ and that of SAA is x0(S) =−H̄(S)−1v̄0(S) where H̄ =EP[H(ξ)] and

H̄(S) =EP0 [H(ξ)]. In this case the estimator −H̄(S)−1v̄0(S) will in general be biased. Similarly, if

X is a proper subset of Rn then x0(S) is generally biased, even if Assumption 2 holds.

Given a sample S, the distributionally robust version of SAA is

DRQP: minx∈Rn
(

1
2
x>Hx+ supQ∈Pδ EQ [v(ξ)>x+u(ξ)]

)
,

where Pδ is a set of probability distributions that are close to P0. Recall that 1
2
x>Hx is strictly

convex and supQ∈Pδ EQ [v(ξ)>x+u(ξ)] is a convex function of x, so DRQP has a unique solution,

denoted xδ(S).
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Lemma 2. Suppose DRQP exhibits linear variation with direction ȳ(S). Then for almost all

samples S

Cδ(S) =C0(S)− (v̄0(S)− v̄)
>
ȳ(S)δ+O(δ2)

and MVRS =ES[(v̄0(S)− v̄)
>
ȳ(S)]. If the robustification incrementally improves SAA then

ES[(v̄0(S)− v̄)
>
ȳ(S)]≥ 0,

and if ES[(v̄0(S)− v̄)>ȳ(S)] = 0, then

lim
δ→0

ES[(v̄0(S)− v̄)>(xδ(S)−x0(S))]/δ2 ≥ 0.

Conversely, if

ES[(v̄0(S)− v̄)
>
ȳ(S)]> 0, (5)

then the robustification incrementally improves SAA.

It is interesting to observe that the formulae for incremental improvement do not explicitly

depend on the constant term u(ξ), its expectation ū or sample average ū0(S). Indeed the optimal

solutions of SQP and SAA are independent of the constant terms, and so we can assume that

u(ξ) = 0 when solving SQP and SAA. In what follows we will in general assume that u(ξ) = 0,

and construct distributionally robust versions of SAA that do not include this constant term. It is

important to realize however that the optimal solution xδ(S) to DRQP will depend on the constant

term, and so ȳ(S) will implicitly account for the constant term. We will illustrate the difference

this makes in the next section.

To apply the inequality (5) in Lemma 2 we require a formula for the vector ȳ(S) that defines

the direction of linear variation. This depends on the sample and the particular form of robustifi-

cation. In the following sections we will derive expressions for ȳ(S) using three different versions

of robustification. Observe that (5) will remain true for any positive scaling of ȳ(S).

In what follows, we apply Lemma 2 to models that robustify SAA using φ-divergence, conditional

value at risk, and a Wasserstein metric. In the first two cases (and for part of the Wasserstein discus-

sion) the distribution Q∈Pδ will be confined to be a finite distribution with weights q1, q2, . . . , qN

on the sample points in S. This gives

DRQP: minx∈X
1
2
x>Hx+Qmax(x),

where

Qmax(x) = max
(q1,q2,...,qN )∈Pδ

N∑
i=1

qiv(ξi)
>x.

To determine a direction of linear variation in these models it is convenient to make the following

assumption that we will require for all instances of DRQP that use such a set Pδ.
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Assumption 4. {v(ξ(ω)) : ω ∈Ω} has a density f with support having n dimensions.

Given a random sample S = {ξ1, ξ2, . . . , ξN} with each element drawn independently from P and

SAA solution x0(S), we can order the elements of S so that

v(ξ1)>x0(S)≤ v(ξ2)>x0(S) ≤ ...≤ v(ξN)>x0(S).

We say that S is strictly ordered by SAA if

v(ξ1)>x0(S)< v(ξ2)>x0(S)< ... < v(ξN)>x0(S).

Proposition 1. Under Assumption 4 the set of samples S = {ξ1, ξ2, . . . , ξN} that are strictly

ordered by SAA has probability measure 1.

3. Phi divergence

Distributionally robust optimization using φ-divergence works with finite distributions, say νq =

(q1, q2, ..., qN) and νp = (p1, p2, ..., pN), and defines

dφ(νq, νp) =
N∑
i=1

piφ

(
qi
pi

)
(6)

for φ a convex function defined on [0,∞) with φ(1) = 0 (and achieving its minimum there). Given

the sample distribution P0, we may define

Pδ = {Q : dφ(Q,P0)≤ δ}.

Note that because (6) is not symmetric we obtain a different set Pδ depending on whether P0 is

chosen to be νp or νq in (6). We first study an example (total variation) where φ(t) = |t− 1| is

non-smooth, and then consider general analytic functions φ.

3.1. Total variation

Given a sample S = {ξ1, ξ2, . . . , ξN}, and φ(t) = |t− 1|, we define Pδ ⊆ {Q : supp(Q) = S}, by

Pδ = {(q1, q2, . . . , qN) :
N∑
i=1

∣∣∣∣qi− 1

N

∣∣∣∣≤ δ}.
Recall x0(S) is the solution to SAA, and by Proposition 1 we have

v(ξ1)>x0(S)< v(ξ2)>x
0
(S) < ... < v(ξN)>x

0
(S),

for all samples S apart from a set with probability 0. For the samples S that are strictly ordered

by SAA we let R(S) = v(ξN)− v(ξ1).
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Lemma 3. DRQP exhibits linear variation with

ȳ(S) =−1

2
H−1R(S).

For δ > 0 sufficiently small

VRS(δ) =ES[
δ

2
(v̄− v̄0(S))>H−1R(S)− δ

2

8
R(S)>H−1R(S)],

and

MVRS =
1

2
ES[(v̄− v̄0(S))>H−1R(S)]. (7)

This robustification incrementally improves SAA if

ES[(v̄− v̄0(S))>H−1R(S)]> 0.

To illustrate the formulae in Lemma 3, consider a one-dimensional production optimization

problem with prices given by g(ξ) and costs 1
2
x2, so c(x, ξ) = 1

2
x2− g(ξ)x. We assume that g(ξ)> 0

almost surely. We may take S = {ξ1, ξ2, . . . , ξN} ordered so that

g(ξ1)≥ g(ξ2)≥ . . .≥ g(ξN).

Let ḡ0(S) = 1
N

∑N

i=1 g(ξi). We can take H = 1 and v(ξ) =−g(ξ) in our previous analysis and obtain

the following result.

Proposition 2. Suppose c(x, ξ) = 1
2
x2− g(ξ)x and g(ξ)> 0 almost surely, then total variation

robustification gives

VRS(δ) = (δ/2)cov(ḡ0(S),R(S))−
(
δ2/8

)
ES[R(S)2], (8)

where R(S) = g(ξ1)− g(ξN). If the distribution of prices g(ξ) is symmetric about its mean then

MVRS is zero and VRS(δ)< 0 for all δ. If cov(ḡ0(S),R(S))> 0 then there is incremental improve-

ment.

Proposition 2 shows that robustification using total variation always makes the solution worse

when the price distribution is symmetric. In contrast, when there is a skew in the distribution of

outcomes we can expect to see cov(ḡ0(S),R(S)) 6= 0. For small δ this is the dominant term and will

determine whether or not there is incremental improvement.

We can observe that if the distribution of g(ξ) has significant weight in the right tail, then

both the mean and the range are large when there is a sample point that happens to be far

out in the tail. This suggests that the range is positively correlated with the mean, and hence
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ES[(ḡ − ḡ0(S))R(S)]< 0. A robust solution takes weight from a high outlier and moves it to the

lowest value. On average these moves improve the solution.

To study the effect of skew in the distribution of g(ξ), we will work with the random variable

W = g(ξ)− ḡ which has mean 0. Let W have density f(w) and cumulative distribution function

F (w), and define Q(z) =
∫∞
z
wf(w)dw. The following result is established using order statistics to

determine an exact expression for MVRS.

Proposition 3. Suppose c(x, ξ) = 1
2
x2− g(ξ)x and g(ξ)> 0 almost surely, then total variation

robustification gives

MVRS =
1

2

∫ ∞
−∞

(
F (z)N−1− (1−F (z))N−1

)
Q(z)dz. (9)

It is possible to precisely identify a set of distributions where a right skew will guarantee a

positive value for MVRS independent of the size of the sample N . The condition we need compares

densities on either side of w0, which is defined as the median of W where F (w0) = 1/2. Specifically

we compare the density at w = w0 − γ for γ > 0 with the density at F−1(1− F (w)) where this

expression is simply w0 + γ in the case that W is symmetric.

Proposition 4. If f(w) ≥ f(F−1(1− F (w)) for all w < w0 with strict inequality for some w,

and g(ξ)> 0 almost surely, then total variation robustification incrementally improves SAA.

We finish this section by discussing an example to illustrate the effect of the constant term u(ξ)

on incremental improvement.

Example 1 (Estimation in one dimension): We consider the estimation problem we mentioned

earlier where the objective is EP[(x− ξ)2]. In one dimension we have

SP:min
x

EP[x2− 2ξx+ ξ2]

with optimal solution x∗ =EP[ξ]. The SAA problem is

SAA:min
x

(
x2− 2xξ̄0(S) +

1

N

N∑
i=1

ξ2
i

)
.

We can neglect the term u(ξ) = ξ2 in SP to give the problem

SP0:min
x

EP[x2− 2ξx]

which has the same optimal solution as SP. The corresponding sample average approximation is

SAA0:min
x

(
x2− 2xξ̄0(S)

)
.



Anderson and Philpott: Improving sample average approximation
Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65 13

If the distribution of ξ is symmetrical about its mean then Proposition 2 shows that robustification

of SAA0 with total variation makes the solution worse.

Now consider robustification of SAA (including the constant term) where Pδ is defined by total

variation. This gives

min
x

sup
(q1,...,qN )∈Pδ

(
x2− 2

N∑
i=1

qiξix+
N∑
i=1

qiξ
2
i

)
,

with solution xδ(S). The presence of the term qiξ
2
i affects the solution of this problem. Consider a

sample S = {ξ1, ξ2, . . . , ξN} where these are ordered. Given any x we denote imin = arg mini |ξi−x|,

and imax = arg maxi |ξi−x| (the points closest and furthest from x respectively) The inner problem

adds a weight of δ
2

to qimax and subtracts that weight from qimin
. Under Assumption 4 imin and imax

are uniquely determined at x= x0(S) = ξ̄0(S) for almost all samples S, and since they remain the

same for small δ, we have

xδ(S)−x0(S) =
δ

2
(ξimax − ξimin

).

Thus we have shown linear variation with ȳ(S) = (ξimax − ξimin
)/2. Suppose ξ has mean 0 then

we can deduce from Lemma 2 (noting v(ξ) = −2ξ here) that robustification of SAA with total

variation gives incremental improvement if

ES[(ξimax − ξimin
)ξ̄0(S)]< 0.

We can illustrate the differences between robustifying SAA and SAA0 with a simple example.

Suppose ξ has a uniform distribution on [− 1
2
, 1

2
] so F (ξ) = ξ+ 1

2
, and f(ξ) = 1. Consider a sample

size of N = 3, giving ξ1 < ξ2 < ξ3.

Here x0(S) = ξ̄0(S) = ξ1+ξ2+ξ3
3

. It is not hard to show that in this case ξimin
is simply the middle

point ξ2. This is because the order ξ1 < ξ2 < ξ3 implies both ξ̄0(S)−ξ2 < ξ̄0(S)−ξ1 and ξ̄0(S)−ξ2 <

ξ3− ξ̄0(S). Thus

ξimax − ξimin
=

{
ξ3− ξ2 if ξ2 <

ξ1+ξ3
2

ξ1− ξ2 if ξ2 >
ξ1+ξ3

2
.

The joint density of ξ1, ξ2, ξ3 is f(ξ1, ξ2, ξ3) = 6 over the region {(ξ1, ξ2, ξ3) | ξ1 < ξ2 < ξ3, ξi ∈ [− 1
2
, 1

2
]}.

This gives

ES[(ξimax − ξimin
)ξ̄0(S)] =

∫ 1
2

− 1
2

∫ 1
2

x

∫ 1
2

2y−x
6(z− y)(

x+ y+ z

3
)dzdydx

+

∫ 1
2

− 1
2

∫ 1
2

x

∫ 2y−x

y

6(x− y)(
x+ y+ z

3
)dzdydx

= −1

6
,

so robustification of SAA will give incremental improvement in this case (with a symmetric distri-

bution) �
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This example shows that it is possible to add a random term to SAA that has no effect on the

optimal solution x0(S) to SAA, but will affect xδ(S) when we robustify the problem with δ > 0. We

note that in this example of estimating E[ξ], robustification of SAA using total variation improves

out-of-sample performance even for large δ. If δ= 1− 2
N

, then the worst-case distribution sets qi = 0

except for the first and Nth order statistics (ξ1 and ξN) that have q1 = qN = 1
2
. When ξ has a

uniform distribution, the estimate ξ1+ξN
2

of the mean has a much lower variance than the sample

mean ξ̄0(S) (see (Lloyd 1952)).

3.2. Smooth phi-divergence

We now consider the case where φ is an analytic strictly convex function with φ(1) = φ′(1) = 0,

and φ′′(1)> 0. Given a sample S, we define Pδ ⊆ {Q : supp(Q)⊆ S}, by

Pδ = {(q1, q2, . . . , qN) :
N∑
i=1

φ (Nqi)≤Nδ2}.

Observe that we have chosen to parametrize Pδ using δ2 on the right-hand side of the inequality.

Let us denote

V (S) =
1

N

N∑
i=1

(v(ξi)− v̄0(S)) (v(ξi)− v̄0(S))
>
. (10)

We now have the following result.

Proposition 5. For any analytic strictly convex φ, DRQP with φ-divergence robustification

exhibits linear variation with

ȳ(S) =

(
2

φ′′(1)

)1/2
H−1V (S)H−1v̄0(S)

(v̄0(S)>H−1V (S)H−1v̄0(S))
1
2

.

Example 1 (Continued): We return to the problem

SP0:min
x
EP[x2− 2ξx]

with corresponding sample average approximation

SAA0:min
x

(
x2− 2xξ̄0(S)

)
given a sample S = {ξ1, ξ2, . . . , ξN}, and ξ̄0(S) = 1

N

∑N

i=1 ξi. Now consider a distributionally robust

version

DRO: min
x

sup
Q∈Pδ

EQ[x2− 2ξx],

where Pδ is defined by modified χ2 distance, with φ(t) = (t− 1)
2
, and dφ(Q,P0) =N

∑N

i=1

(
qi− 1

N

)2
.

Applying Proposition 5 with v(ξ) =−2ξ, gives

ȳ(S) =−V (S)
1
2 ,



Anderson and Philpott: Improving sample average approximation
Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65 15

where

V (S) =
1

N

N∑
i=1

(
ξi− ξ̄0(S)

)2
,

the standard deviation of the sample points. We can compare this with the solution to DRO for

small δ which can be computed analytically (using Lemma 4 in (Philpott et al. 2018) with r= δ√
N

):

xδ(S) = ξ̄0(S)−
∑
i

ξi(ξi− ξ̄0(S))√
NV (S)

δ√
N

= ξ̄0(S)−V (S)
1
2 δ,

so there are no O(δ2) terms in this case. �

Proposition 5 allows us to identify the condition for incremental improvement given in the

Proposition below. Note that the condition is the same for any choice of analytic φ function, so

that whether we use Kullback-Leibler or some other phi-divergence will not change the incremental

improvement property.

Proposition 6. Robustification with smooth phi-divergence gives incremental improvement in

SAA for any analytic strictly convex φ if

ES

[
(v̄0(S)− v̄)

>
H−1V (S)H−1v̄0(S)

(v̄0(S)>H−1V (S)H−1v̄0(S))
1
2

]
> 0.

We can apply this to the scalar case where c(x, ξ) = x2 − g(ξ)x. Let σ(S) =(
1
N

∑
i (g(ξi)− g0(S))

2
)1/2

be the standard deviation of the g(ξi) values in the sample. Then we

obtain incremental improvement if ES [σ(S)(g0(S)− g)]> 0. Notice that for any symmetric distri-

bution ES [σ(S)(g− g0(S))] = 0 and MVRS will be zero.

4. CVaR based robustness

Distributionally robust optimization can also be based on a coherent risk measure ρ where we solve

min
x∈X

ρ[c(x, ξ)]

which can be reformulated as

min
x∈X

sup
Q∈Pδ

EQ [c(x, ξ)]

for some convex set Pδ of probability measures on the discrete set {c(x, ξi) : ξi ∈ S}. We shall focus

on the particular risk measure

ρ[c(x, ξ)] = (1− δ)E[c(x,S)] + δCVaR1−α[c(x,S)].
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Here Pδ is a polyhedral set of probability measures that depend on δ. For example if α= 1
N

, then

Pδ is the convex hull of the N points ( 1−δ
N
, 1−δ
N
, . . . , 1−δ

N
) + δei, i= 1,2, . . . ,N , where ei is the i’th

unit vector.

As in the previous section our analysis will be applied to c(x, ξ) = 1
2
x>Hx+ v(ξ)>x, where H is

positive definite and we ignore the constant term that arises from u(ξ). Recall the formulation

DRQP: minx∈X
(

1
2
x>Hx+Qmax(x)

)
,

where

Qmax(x) = max
(q1,q2,...,qN )∈Pδ

N∑
i=1

qiv(ξi)
>x.

We obtain the following optimality conditions for this problem.

Lemma 4. The solution to DRQP with CVaR robustification satisfies

xδ(S)∈−H−1 ((1− δ)v̄0(S) + δGCVaR(xδ(S))) (11)

where GCVaR(x) is the subdifferential for CVaR1−α [{v(ξi)
>x}]. When

CVaR1−α [{v(ξi)
>x}] is differentiable at xδ(S) with derivative v̄CVaR(S) then

xδ(S) =−H−1 ((1− δ)v̄0(S) + δv̄CVaR(S)) . (12)

We can apply a similar analysis here to that used in the total variation phi-divergence section.

Recall that SAA has a unique solution x0(S) =−H−1v̄0, and if we order S = {ξ1, ξ2, . . . , ξN} so that

v(ξ1)>x0(S)≥ v(ξ2)>x0(S) ≥ ...≥ v(ξN)>x0(S),

then under Assumption 4 Proposition 1 gives

v(ξ1)>x0(S)> v(ξ2)>x0(S)> ... > v(ξN)>x0(S) (13)

except for a set of samples with probability 0. It is convenient in this section to arrange v(ξi)
>x0(S)

in decreasing order. For the samples satisfying (13), CVaR1−α [{v(ξi)
>x}] is differentiable at x0(S),

with derivative

v̄CVaR(S) =
1

αN

mα∑
i=1

v(ξi) + (1− mα

αN
)v(ξmα), (14)

where mα = dαNe− 1.

Proposition 7. Suppose c(x, ξ) = 1
2
x>Hx+v(ξ)>x. Then DRQP with CVaR robustification has

linear variation with

ȳ(S) =−H−1(v̄CVaR(S)− v̄0(S)),
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where v̄CVaR(S) is defined by (14). Also

VRS(δ) = ES[δ(v̄− v̄0(S))>H−1(v̄CVaR(S)− v̄0(S))

−δ
2

2
(v̄CVaR(S)− v̄0(S))>H−1(v̄CVaR(S)− v̄0(S))],

giving

MVRS =ES[(v̄− v̄0(S))>H−1(v̄CVaR(S)− v̄0(S))]

with incremental improvement if this is positive.

If we consider v(ξi) as the set of sample vectors, then this result expresses the MVRS value as

the expected value over samples of a product involving the vector difference between the real mean

and the sample mean, the inverse of H, and the difference between the high cost elements in the

sample (that are represented in CVaR) and the sample mean.

From this result we can derive the following result for the one-dimensional case.

Proposition 8. Suppose c(x, ξ) = 1
2
x2− g(ξ)x, where g(ξ) has a density with mean ḡ and vari-

ance σ2, and let ḡ0(S) = 1
N

∑N

i=1 g(ξi) and α∈ (0,1]. Then with CVaR robustification

MVRS =
σ2

N
+ES[(ḡ0(S)− ḡ)CVaR1−α[{−sgn(ḡ0(S))g(ξi)}]].

In this scalar case it is possible to derive a more explicit form of MVRS if we know the distribution

of g(ξ), and we can assume that ḡ0(S) is always positive. We define W = g(ξ)− ḡ, having a density

denoted f(w) and cumulative distribution function F (w). This gives the following result.

Proposition 9. Suppose c(x, ξ) = 1
2
x2−g(ξ)x where ḡ0(S)> 0, and we solve DRQP with CVaR

robustification where α∈ (0,1]. Then

MVRS =
σ2

N
−
∫ ∞
−∞

Q(z)(1−F (z))N−1Λα(z)dz,

where Q(z) =
∫∞
z
wf(w)dw, and

Λα(z) =
1

αN
+

1

αN
(N − 1)

F (z)

(1−F (z))

+
1

αN

(N − 1)(N − 2)

2

F (z)2

(1−F (z))2

+ . . .+ (1− mα

αN
)

(
N − 1
mα

)
F (z)mα

(1−F (z))mα
,

where mα = dαNe− 1.
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There are some observations we can make in relation to the condition ḡ0(S)> 0. This is included

in order to ensure that x0(S) > 0 and hence that it is the left rather than right tail of the g(ξ)

distribution that appears in the CVaR term. We can usually assume that ḡ0(S) is close to the mean

of the g(ξ) distribution for reasonable sample sizes. This is often enough to make the probability

of ḡ0(S) < 0 extremely small. In these cases we can take the expression for MVRS as a good

approximation for the exact value. There are other cases in which ḡ0(S)< 0 with probability close

to 1. When this happens there are alternative formulae (which we will not give here) obtained

through defining W = ḡ− g(ξ).

We now study some examples of MVRS for the one-dimensional problem with c(x, ξ) = 1
2
x2 −

g(ξ)x. The formula in Proposition 9 shows that MVRS will be positive if the second term is small.

There is a connection here to skew in the distribution of g(ξ). We consider an example with a large

right-hand skew and show that MVRS is positive.

Example 2 (exponential distribution):

Suppose g(ξ) is exponentially distributed on [0,∞), so ḡ = 1, σ2 = 1. Then f(w) = e−(w+1) over

the range (−1,∞). If we robustify with CVaR1− 1
N

(ξ) then α= 1
N

, Λα(z) = 1 and

MVRS =
1

N
−
∫ ∞
−1

(1−F (z))N−1Q(z)dz

=
1

N
−
∫ ∞
−1

(e−z−1)N (z+ 1)dz.

Now
∫∞
−1

(e−z−1)N (z+ 1)dz =
∫∞

0
e−Nwwdw and integrating by parts shows this has the value 1

N2 .

Thus MVRS = N−1
N2 > 0 and the CVaR robustification is incrementally improving. �

It is not necessary to consider examples with a skew to end up with MVRS positive, and we now

consider three symmetric examples to give a better understanding of the behavior of MVRS with

CVaR robustification.

Example 3 (uniform distribution):

We take g(ξ) to be uniform on [0,2a]. Then ḡ= a and we obtain F uniform on [−a,a] so σ2 = a2

3
,

f(w) = 1
2a

, F (w) = ξ+a
2a

, Q(z) = 1
4a

(a2− z2). Then

MVRS =
a2

3N
−
∫ a

−a
(1−F (z))N−1Q(z)dz

= 2a2

(
1

6N
− 1

(N + 1)(N + 2)

)
which is positive when N > 2 showing that the CVaR robustification is incrementally improving in

this case. �
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Example 4 (normal distribution):

Consider a univariate example with a normal distribution where g(ξ) is an N(µ,σ2) random

variable with µ large enough that we can ignore the possibility of negative sample values. Then F

is an N(0, σ2) random variable, with f(ξ) = 1
σ
√

2π
exp(−ξ

2

2σ2
). Now

Q(z) =

∫ ∞
z

u
1

σ
√

2π
exp(

−u2

2σ2
)du=

σ√
2π

exp(
−z2

2σ2
) = σ2f(z).

Thus we can approximate MVRS with

M̃VRS =
σ2

N
−σ2

∫ ∞
−∞

(1−F (z))N−1f(z)Λα(z)dz.

The approximation arises from taking the sgn(ḡ0(S)) term in Proposition 8 as always being 1. As

µ gets larger the probability that this fails becomes vanishingly small. In Appendix 2, we show

(Lemma 13) that ∫ ∞
−∞

(1−F (z))N−1f(z)Λα(z)dz =
1

N
,

which gives M̃VRS = 0. �

Example 5 (mixture of univariate normal distributions):

We consider a case where ξ is univariate and g(ξ) is formed as a mixture of two normal distribu-

tions having the same mean (large enough to ensure that ḡ0 > 0 with very high probability). Thus

W has density f(w) = (f1(w) + f2(w))/2 where fi(w) = 1
σi
√

2π
exp(−w

2

2σ2i
). Then σ2 =

(σ21+σ22)

2
,

F (z) =
1

2
√

2π

∫ z

−∞

1

σ1

exp(
−w2

2σ2
1

) +
1

σ2

exp(
−w2

2σ2
2

)dw

and

Q(z) = (1/2)

∫ ∞
z

w (f1(w) + f2(w))dw

= (1/2)(σ2
1f1(z) +σ2

2f2(z)).

Taking α= 1/N , we can approximate the value of MVRS (using the same argument as in Example

4) by

M̃VRS =
(σ2

1 +σ2
2)

2N
− 1

2

∫ ∞
−∞

(σ2
1f1(z) +σ2

2f2(z))(1− (F1(z) +F2(z))/2)N−1dz

=
(σ2

1 +σ2
2)

2N
− 1

2

∫ ∞
−∞

(
σ1√
2π

exp(
−z2

2σ2
1

) +
σ2√
2π

exp(
−z2

2σ2
2

)

)
×
(

1− 1

2
√

2π

∫ z

−∞

(
1

σ1

exp(
−u2

2σ2
1

) +
1

σ2

exp(
−u2

2σ2
2

)

)
du

)N−1

dz.

We can evaluate this numerically. For example, if σ1 = 1, σ2 = 2 and N = 3 we obtain M̃VRS

=−4.33× 10−2, and if N = 5, M̃VRS =−7.50× 10−2.
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We see that in comparison with a normal distribution, the heavy tails introduced by taking

a mixture of normal distributions makes M̃VRS negative and the overall performance of this

robustification worse. �

Comparison of the three cases we have considered, each symmetric about its mean, suggests that

for a univariate problem with CVaR robustification the normal distribution effectively acts as a

division point, with incremental improvement failing to hold if the distribution has heavier tails

than the normal.

5. Wasserstein metric

Distributionally robust optimization using a Wasserstein metric chooses

Pδ = {Q : dW (Q,P0)≤ δ},

where dW (Q,P0) is the cost of a minimum cost transportation plan from one probability distribution

to the other. Formally we have the Wasserstein distance from a distribution ν1 on the set M ⊂Rm

to a distribution ν2, also on the set M , defined as

dW (ν1, ν2) = min
γ∈Γ(ν1,ν2)

∫
M×M

‖z1− z2‖ dγ(z1, z2) (15)

where Γ(ν1, ν2) is the set of all measures on the product space M ×M with marginals ν1 and

ν2. Γ(ν1, ν2) can be thought of as a transportation plan with a density at (z1, z2) in M ×M that

represents the probability mass moved from point z1 to point z2. We will apply this robustification

to DRQP assuming a Euclidean metric, and consider problems where the underlying set M is a

closed and bounded convex set in Rm (so that when m= 1, M is an interval.)

In distributionally robust optimization the inner problem is to choose a distribution on M maxi-

mizing the expected cost subject to a bound on the Wasserstein distance to the sample distribution

P0 (which has equal probabilities at each of the sample points ξ1, ξ2, ..., ξN). This gives the following

inner problem:
P: maxQ EQ[c(x, ξ)]
subject to dW (Q,P0)≤ δ

in which the expectation is taken over the random variable ξ in Rm with distribution Q.

The simplest version of DRQP in the Wasserstein setting requires Q to have the same support

as P0. As this bears a close relation to the previous two sections we will discuss this first. We

write {q1, q2, . . . , qN} for the probability assigned by Q to points in S which gives a transportation

problem that has optimal value

dW (Q,P0) =


minwij

∑N

i=1

∑N

j=1wij ‖ξi− ξj‖
subject to

∑N

j=1wij = 1
N
, i= 1,2, . . . ,N,∑N

i=1wij = qj, j = 1,2, . . . ,N,
wij ≥ 0.
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In DRQP, recall

Qmax(x) =

{
max

∑N

i=1 qiv (ξi)
>
x

subject to dW (Q,P0)≤ δ

which is equivalent to setting qj =
∑N

i=1wij, j = 1,2, . . . ,N, where wij is the mass transferred

from point ξi to point ξj and solves

WP:max
∑N

i=1

∑N

j=1wijv (ξj)
>
x

subject to
∑N

i=1

∑N

j=1wij ‖ξi− ξj‖ ≤ δ,∑N

j=1wij = 1
N
, i= 1, . . . ,N

wij ≥ 0.

Since WP is a linear program, it has an optimal basic solution with N + 1 basic variables.

For small δ the optimal solution will thus have wii basic for each i, and choose a single i 6= j

and wij = δ/‖ξi− ξj‖ so that wij shifts probability from point ξi to point ξj so as to maximize
v(ξj)

>
x−v(ξi)

>x

‖ξi−ξj‖ giving indices i= k, j = l. The optimal solution to WP is then to set

wij =


δ/‖ξi− ξj‖ , i= k, j = l,
1
N
− δ/‖ξi− ξj‖ , i= k, j = k,

1
N
, k 6= i= j,

0, otherwise

.

Observe that the choice of indices k and l is dependent on x, but for small δ we expect under

Assumption 4 that for almost every sample S,
v(ξj)

>
xδ(S)−v(ξi)

>xδ(S)

‖ξi−ξj‖ will give the same indices as

v(ξj)
>
x0(S)−v(ξi)

>x0(S)

‖ξi−ξj‖ . The net effect of robustification applied to almost every sample is to increase

ql to 1
N

+ δ/‖ξl− ξk‖ and decrease qk to 1
N
− δ/‖ξl− ξk‖. This means that

xδ(S)−x0(S) = −H−1
∑
i

qiv (ξi) +H−1
∑
i

1

N
v (ξi)

= δH−1 v (ξk)− v (ξl)

‖ξl− ξk‖
,

so ȳ(S) =H−1 v(ξk)−v(ξl)

‖ξl−ξk‖
, where k and l are indices giving the highest value of v(ξl)

>x0(S)−v(ξk)>x0(S)

‖ξi−ξj‖ ,

and Lemma 2 yields

MVRS =ES[(v0(S)− v̄)
>
H−1 v (ξk)− v (ξl)

‖ξl− ξk‖
].

In the previous two sections the structure of the cost function with respect to the random

variable ξ has not been critical to incremental improvement; everything has been determined by

the set of cost functions c(x, ξi) evaluated at the sample points. For Wasserstein robustification

we need to pay attention to the behavior of c(x, ξ) with respect to changes in ξ. For example if

c(x, ξ) = 1
2
x2− g(ξ)x where g is a strictly convex and non-negative function of ξ then for positive

values of x Wasserstein robustification moves weight from ξk with a high value of g to some ξl with

a lower value that is not too far away. In this case

MVRS =ES[(g0(S)− ḡ)
|g (ξl)− g (ξk)|
|ξl− ξk|

].
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We now move to the general case where the support of Q is not constrained, so robustification

will allow movements in the sample points ξi. As observed above, the behavior of c(x, ξ) with

respect to changes in ξ affects the out-of-sample performance of Wasserstein robustification. Often

we will take x fixed and it is convenient to write cx(z) for c(x, z), where we use z to denote an

element of the set M that contains ξi. We assume throughout that cx(z) is differentiable at all

z ∈Rm.

Using (15), the inner maximization problem P is equivalent to solving

maxQ,γ EQ[cx(z)]
subject to

∫
M×M ‖z− ξ‖ dγ(z, ξ)≤ δ,
γ ∈ Γ(Q,P0).

Since γ ∈ Γ(Q,P0), the set of all measures on the product space M ×M with marginals Q and P0,

it has a discrete distribution as one of the marginals, and we may specify it through specifying the

distribution that each of the sample points ξi matches to under γ. More precisely we can rewrite

γ ∈ Γ(Q,P0) in terms of components γi that are measures on M with γi = γ(·, ξi). Since P0 has

mass 1/N at ξi we have γi(M) = 1/N , and the probability measure Q is obtained from adding

together the components from each sample point, Q=
∑N

i=1 γi.

It is convenient to scale the individual components γi so that they are probability measures:

Qi =Nγi (with the scaling of N applied so that total mass of Qi is 1). We can then write P as

P̄: maxQi
1
N

∑N

i=1 EQi [cx(zi)]

subject to 1
N

∑N

i=1 EQi [‖zi− ξi‖]≤ δ,

where zi is a random variable with distribution Qi.

We make use of a result of Gao and Kleywegt (2016, Corollary 2, part iii).

Proposition 10. (Gao and Kleywegt) If there is an optimal solution to P̄, then there is an

optimal solution with an index i0 such that for every i 6= i0, Qi has weight 1 on a point z∗i ∈

arg maxz∈M{cx(z)− λ∗ ‖z− ξi‖} where λ∗ ≥ 0 is the Lagrange multiplier for the constraint in P̄,

and Qi0 has weight on at most two points in arg maxz∈M{cx(z)−λ∗ ‖z− ξi0‖}.

In the case where cx is strictly concave in z we can be more explicit about the solution of P̄. In

this case we can think about contour surfaces of ‖∇cx(zj)‖ in M for varying values of δ. In the

solution to P̄ all the points outside such a surface are moved inwards to lie on that surface and

points inside the surface are not moved.

Proposition 11. When cx(z) is strictly concave then P̄ has a solution in which each Qi has

support at a single point zi ∈M . If we write J̄ = {i : zi 6= ξi} for the points that move, then (a)

∇cx(zi) = αi(zi− ξi) for some scalar αi for i ∈ J̄ ; (b) ‖∇cx(zi)‖= ‖∇cx(zj)‖ for i ∈ J̄ and j ∈ J̄ ;

and (c) ‖∇cx(zi)‖ ≥ ‖∇cx(ξk)‖ for i∈ J̄ and k /∈ J̄ .
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When we do not have a strictly concave cost function cx then the types of move that occur are

in general more complex. For example in the case where cx is convex the inner maximization sends

weight at zi to a point on the boundary of the region M . For small δ we will find that just one

point is changed, with some weight left at its original position and a small part of the total weight

moved to a point on the boundary of M . In general we will not want to have such a dependence on

the boundary of M , since in many problems the choice of boundary will be somewhat arbitrary.

Our next result shows linear variation for the Wasserstein form of DRQP given that c(x, z) =

1
2
x>Hx+v(z)>x. Note that ∇cx(z) =

∑
j xj∇vj(z) and cx(z) is strictly concave if each component

of v is strictly concave and each xj ≥ 0. We write Jv(z) for the Jacobian matrix for the vector

function v : Rm→Rn so the ij th element of Jv(z) is ∂vi
dzj

. Thus the elements of the vector ∇vi are

on the i’th row of Jv(z) which is an n×m matrix.

Proposition 12. With the Wasserstein distance metric if every component of v(z) is strictly

concave then for x∈Rn
+, DRQP exhibits linear variation with

ȳ(S) =
H−1Jv(ξ

∗(S))Jv(ξ
∗(S))>H−1v̄0(S)

‖Jv(ξ∗(S))>H−1v̄0(S)‖

where ξ∗(S) = ξi0 is a sample point with the largest gradient norm for the cost function evaluated

at the SAA solution x0(S) (i.e. i0 = arg maxi
∥∥∇z(v(ξi)

>H−1v̄0(S))
∥∥ ).

Proposition 12 simplifies when x is a scalar, where we have c(x, ξ) = 1
2
x2 − g(ξ)x. Then H = 1,

and, writing ḡ0(S) = (1/N)
∑N

i=1 g(ξi),

ȳ(S) =−∇g(ξ∗(S))>∇g(ξ∗(S))ḡ0(S)

‖ḡ0(S)∇g(ξ∗(S))‖
=−‖∇g(ξ∗(S))‖

provided we have ḡ0(S)> 0.

Proposition 13. (a) When c(x, ξ) = 1
2
x2 − g(ξ)x and g is a strictly convex and non-negative

function of ξ then

MVRS =ES[ (ḡ0(S)− ḡ)‖∇g(ξ∗(S))‖]

where ξ∗(S) = arg maxξi∈S{‖∇g(ξi)‖}.

(b) In the case that c(x, ξ) = 1
2
x2− ξ2x and the ξ values are realizations of a random variable which

is non-negative and has density and cdf given by f and F , then

MVRS = 2(N − 1)

∫ ∞
0

(∫ ∞
z

uF (u)N−2f(u)du

)
z2f(z)dz

+ 2

∫ ∞
0

z3F (z)N−1f(z)dz− 2N

(∫ ∞
0

u2f(u)du

)∫ ∞
0

zF (z)N−1f(z)dz.
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Note that part (a) of this result is similar to the formula in the total variation case, but we

have the sample range R(S) replaced by the maximum of ‖∇g(ξi)‖, ξi ∈ S. There is very similar

behavior here to that we have seen in other cases. If there is a skew in the underlying distribution

of ξ towards values with high values for g(ξ), then we can expect to see samples where there is an

outlier producing both a high value for ḡ0(S)− ḡ and also a high value for ‖∇g(ξ∗S)‖. This will give

a positive correlation between the two and hence a positive value for MVRS. This is illustrated in

the example below.

Example 6

We suppose that c(x, ξ) = 1
2
x2− ξ2x and the underlying distribution of the random variable ξ is

exponential with mean 1, so f(ξ) = e−ξ, F (ξ) = 1− e−ξ. Thus

MVRS = 2(N − 1)

∫ ∞
0

(∫ ∞
z

u(1− e−u)N−2e−udu

)
z2e−zdz

+ 2

∫ ∞
0

z3(1− e−z)N−1e−zdz− 4N

∫ ∞
0

z(1− e−z)N−1e−zdz

since
∫∞

0
u2e−udu= 2. When N = 5 we can numerically evaluate the integrals and obtain MVRS

= 2.497. �

6. Conclusions and discussion

The application of robustification to stochastic optimization problems to improve mean out-of-

sample performance has been widely reported in the literature. Robustification has value from a

risk reduction point of view, but it may also have value for a risk neutral decision maker. This

paper contributes to our understanding of why this is the case.

Empirical evidence from many different studies has shown that a small amount of robustifica-

tion can improve out-of-sample performance, so our analysis focuses on what we call incremental

improvement, that is improvement in performance as the size of the distributional uncertainty

set increases from zero. Incremental improvement arises from changes in the minimizing point.

In many cases, namely those with linear variation, we can define a directional derivative of the

minimizer that can be used to quantify incremental improvement, and evaluate the improvement

in out-of-sample cost to first-order, expressed as the marginal value of robust solution (MVRS).

To illustrate the concepts, we quantify incremental improvement and MVRS for several exam-

ples, all with convex quadratic objective functions. MVRS depends on the form of the linear

term in this objective function, the version of robustification applied, and the underlying “ground-

truth”probability distribution. Our analysis shows that incremental improvement cannot be taken
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for granted and different robustification approaches applied to the same problem can give MVRS

values having opposite signs. We also show by example how adding a random constant to the objec-

tive function of an optimization will change the optimal solution of the robustified problem while

leaving the optimizers of the “true” problem and its sample-average approximation unchanged.

To understand the impact of small amounts of robustification, we can summarize the changes

made on the SAA problem as follows.

1. For φ-divergence, weight is moved from points with low cost to points with high cost with

the change in weight depending linearly on the cost values. For total variation, weight is removed

from the point in the sample that gives the lowest cost and moved to the point in the sample that

has the highest cost.

2. For CVaR robustification, weight is removed from all points in the sample and added to a

small number of points in the sample that correspond to high costs.

3. For Wasserstein robustification, provided c(x, ξ) is strictly concave in ξ, the sample point with

the largest value for the norm of the gradient with respect to ξ is moved incrementally to a higher

cost position (the exact move depends on the function c).

These effects have a simple form in a univariate framework, when we have c(x, ξ) = 1
2
x2− g(ξ)x.

With sample S, the sample average approximation solution x0(S) is equal to ḡ0(S). Since each

of the different robustification approaches move weight to lower values of g(ξi) (corresponding to

higher costs) we have xδ(S)< x0(S). Though this introduces a bias in the value of ES[xδ(S)] we

can obtain improvement through shrinkage when there are larger moves to the left for samples with

high values of ḡ0(S) (and hence high values for x0(S)) than there are for samples with low values

of ḡ0(S) (and hence low values for x0(S)). Hence we get an advantage when the sample mean is

positively correlated with the size of the change in optimal solution induced by the robustification.

When we consider the total variation form of the robustification it is only the tails that influence

the change that is made, and (x0(S)− xδ(S))/δ is simply half the range of values in the sample.

Here any skew to the right in the distribution of g(ξ) will induce a correlation that yields a positive

value for MVRS. For more general φ-divergence we have similar behavior with skew to the right

in g(ξ) leading to incremental improvement from robustification. We note that MVRS is zero for

symmetric distributions under φ-divergence robustification, which does not hold for the other two

types of robustification.

For CVaR robustification the change in optimal solution, x0(S)− xδ(S), depends on the entire

sample average since weight is removed from all the points in the sample, except those at the left

hand end of g(ξi). This produces the term σ2/N that does not appear in the other robustifications

that involve changes only to the points at the two extremes of the sample. The value of MVRS for

CVaR robustification also depends on the left hand tail of the g(ξ). Where that tail is long, the
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existence of a point in the sample that is far out in the left tail means that there will be a small

sample average and also the CVaR robustification adds weight to a point far to the left. We end up

with a negative correlation between ḡ0(S)− ḡ and x0(S)−xδ(S). This effect works in the opposite

direction to the σ2/N term.

Examples for CVaR robustification show that when the distribution is uniform over an interval,

the σ2/N term dominates and MVRS is positive; when the distribution is normal the effect from

the left hand tail balances the positive term and MVRS is approximately zero; and when the

distribution is a mixture of normals having a heavier left hand tail than the normal, then the tail

behavior dominates and MVRS is negative. In loose terms we may think of the normal distribution

as a kind of boundary between cases where MVRS for CVaR is positive or negative.

For the Wasserstein robustification and convex g(ξ) the point where g has the highest gradient

is moved. This will be a point towards the extremities of the ξi values (that in general occur in

a multivariate space) - and hence is likely to be where g(ξi) is large and so costs are low. In the

special case of ξ scalar and g(ξ) = ξ2 then it is the lowest cost point in the sample that is moved.

Consistent with our discussion so far we have a positive value for MVRS when the distribution of

ξ2 has a positive skew.

We have shown how to quantify incremental improvement from robustification in univariate

examples using the “ground-truth” probability distribution. We may ask whether these results

give some guidance to a risk-neutral decision maker facing a stochastic optimization problem. In

practice, the true probability distribution of uncertain parameters will hardly ever be known, so

MVRS cannot be computed as we have done in this paper. However, there are often circumstances

when a decision maker has some knowledge of the underlying distribution that can be helpful in

predicting how robustification will perform. When analytical techniques are not applicable (and

assuming the DRO problem has linear variation), it may be possible to use statistical estimation

of MVRS from the data available. An alternative may be to carry out tests on synthetic data. The

key observation from our work is that different robustification techniques have different behaviors

that can depend on characteristics of the distribution. So it will be important to check whether

the underlying distribution is symmetric or skewed, and whether it has heavy tails. Then any tests

should be carried out using different robustifications on synthetic data that share the appropriate

characteristics.

A significant restriction in our analysis is the specific form of the objective function studied. First,

we have assumed a strictly convex quadratic function. This ensures uniqueness of the true solution

and that of the sample average approximation, which enables a simpler analysis of linear variation

and incremental improvement. If the optimal solution is not unique then a more complicated set-

valued variational analysis is required.
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We have also assumed that the objective function has no stochastic constant term and the

quadratic term in the objective function x>Hx is not stochastic. As remarked above the stochastic

constant term can alter the solution to the robustified problem. We have chosen to set this term

to be zero for simplicity, but for any form of this term one could carry out a similar analysis to

study the effect of robustification.

On the other hand if H is stochastic then the SAA solution will in general be biased. The

advantage of our treatment (with deterministic H) is that it avoids confusion between bias and

shrinkage. When there is a bias in the SAA solution it will be affected by the robustification, being

either increased or decreased depending on circumstances.

Acknowledgments

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and

hospitality during the programme Mathematics of Energy Systems when work on this paper was undertaken.

This work was supported by EPSRC Grant Number EP/R014604/1, and the New Zealand Marsden Fund

under contract UOA1520. The authors also acknowledge the contributions of discussions with Karen Willcox

and Harrison Nguyen to this research.

References

Bayraksan G, Love D (2015) Data-driven stochastic programming using phi-divergences. The Operations

Research Revolution, 1–19 (INFORMS).

Bertsimas D, Gupta V, Kallus N (2018) Robust sample average approximation. Mathematical Programming

171(1-2):217–282.

Blanchet J, Kang Y, Murthy K (2016) Robust Wasserstein profile inference and applications to machine

learning. arXiv preprint arXiv:1610.05627 .

Chopra VK, Ziemba WT (2013) The effect of errors in means, variances, and covariances on optimal portfolio

choice. Handbook of the Fundamentals of Financial Decision Making: Part I, 365–373 (World Scientific).

Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to

data-driven problems. Operations Research 58(3):595–612.

Drela M (1998) Pros & cons of airfoil optimization. Frontiers of Computational Fluid Dynamics 1998, 363–

381 (World Scientific).
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Appendix 1: Proofs of propositions

Proof of Lemma 1

For the first part, for almost all S, we have

Cδ(S)−C0(S) = EP[c(xδ(S), ξ)− c(x0(S), ξ)]

= EP[[∇xc(x, ξ)]x0(S)]
>(xδ(S)−x0(S)) +O((xδ(S)−x0(S))2)

= ∇c̄(x0(S))>ȳ(S)δ+O(δ2)

by definition of ∇c̄(x0(S)) and ȳ(S), and since linear variation implies that xδ(S)−x0(S) is O(δ).

It follows that

MVRS =−ES[∇c̄(x0(S))>ȳ(S)].

If ES[Cδ(S)−C0(S)]< 0 for δ > 0 sufficiently small then we must have ES[∇c̄(x0(S))>ȳ(S)]≤ 0.

Conversely if ES[∇c̄(x0(S))>ȳ(S)]< 0 then ES[Cδ(S)−C0(S)]< 0 for sufficiently small δ, so we get

incremental improvement. �

Proof of Lemma 2

Linear variation with direction ȳ(S) and Lemma 1 gives

Cδ(S) =C0(S) +∇c̄(x0(S))>ȳ(S)δ+O(δ2)

for almost every sample S. Substituting ∇c̄(x0(S)) = v̄− v̄0(S) gives

Cδ(S) =C0(S)− (v̄0(S)− v̄)
>
ȳ(S)δ+O(δ2),

and

MVRS =ES[(v̄0(S)− v̄)
>
ȳ(S)].

We have

Cδ(S) =
1

2
xδ(S)>Hxδ(S) + v̄>xδ(S) + ū.

so

Cδ(S)−C0(S) =
1

2
xδ(S)>Hxδ(S)− 1

2
x0(S)>Hx0(S) + v̄>(xδ(S)−x0(S))

=
1

2
xδ(S)>Hxδ(S)− 1

2
x0(S)>Hx0(S)−x∗>H(xδ(S)−x0(S))

= (x∗−x0(S))>H(x0(S)−xδ(S)) +
1

2
(xδ(S)−x0(S))>H(xδ(S)−x0(S)).
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Substituting v̄ for −Hx∗ and v̄0(S) for −Hx0(S) yields

ES[Cδ(S)−C0(S)] = ES[(v̄0(S)− v̄)>(x0(S)−xδ(S)) (16)

+
1

2
(xδ(S)−x0(S))>H(xδ(S)−x0(S))].

The substitution xδ(S)−x0(S) = ȳ(S)δ+O(δ2) gives

ES[Cδ(S)−C0(S)] =−ES[(v̄0(S)− v̄)>ȳ(S)]δ+
δ2

2
ȳ(S)>Hȳ(S) +O(δ2).

In the limit of small δ the first term dominates and if ES[(v̄0(S)− v̄)>ȳ(S)]> 0 then the overall

expression is negative for small δ and we obtain incremental improvement. Conversely if there is

incremental improvement, we need ES[(v̄0(S)− v̄)>ȳ(S)]≥ 0.

If ES[(v̄0(S)− v̄)>ȳ(S)] = 0 then we need the second order terms in the right hand side of (16)

to be at most zero. Since 1
2
(xδ(S)−x0(S))>H(xδ(S)−x0(S))≥ 0, we need the second order terms

in ES[(v̄0(S)− v̄)>(x0(S)−xδ(S))] to be at most zero. It follows that

lim
δ→0

ES[(v̄0(S)− v̄)>(xδ(S)−x0(S))]/δ2 ≥ 0

as required. �

Proof of Proposition 1

Consider S = {ξ1, ξ2, . . . , ξN} with

v(ξ1)>x0(S)≤ v(ξ2)>x0(S) ≤ ...≤ v(ξN)>x0(S).

A sample S where there is equality v(ξi)
>x0(S) = v(ξi+1)>x0(S) for some i, will have

{v(ξ1), v(ξ2), ..., v(ξN)} satisfying

(v(ξi+1)− v(ξi))
>
H−1

N∑
j=1

v(ξj) = 0. (17)

The equation (17) defines a manifold in RnN of dimension strictly less than nN . Since

v(ξ) has an n-dimensional density from which we sample independently, the joint density on

(v(ξ1), v(ξ2), . . . , v(ξN)) has dimension nN . Thus the probability measure of the set of samples

satisfying (17) is zero. It follows that an ordered sample S satisfies

v(ξ1)>x0(S)< v(ξ2)>x0(S)< ... < v(ξN)>x0(S)

with probability 1. �

Proof of Lemma 3
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For an arbitrary x suppose we order the elements of a sample S = {ξ1, ξ2, . . . , ξN} so that

v(ξ1)>x= . . .= v(ξk)
>x< v(ξk+1)>x≤ ...≤ v(ξl−1)>x< v(ξl)

>x= . . .= v(ξN)>x.

It is easy to see that

Qmax(x) = v̄0(S)>x+ (δ/2)(max
ξi

v(ξi)
>x−min

ξi
v(ξi)

>x).

This is a convex function of x with subdifferential

∂Qmax(x) = v̄0(S) + (δ/2)G(x)

where

G(x) = conv({v(ξl), ..., v(ξN)}) + conv({−v(ξ1), ...,−v(ξk)}).

So an optimal solution xδ(S) to DRQP satisfies

0∈Hxδ(S) + v̄0(S) + (δ/2)G(xδ(S)). (18)

Since G(x) is bounded, for any optimal solution xδ(S) we have limδ→0 xδ(S) = x0(S). Now under

Assumption 4, Proposition 1 implies that all samples S apart from a set with probability 0 are

strictly ordered by SAA, so

v(ξ1)>x0(S)< v(ξ2)>x
0
(S) < ... < v(ξN)>x

0
(S), (19)

and so for the samples that are strictly ordered by SAA, and for δ small enough we have (19) with

xδ(S) replacing x0(S). It follows that for all samples S strictly ordered by SAA, the relationship

(18) becomes

Hxδ(S) + v̄0(S) + (δ/2)(v(ξN)− v(ξ1)) = 0,

so

xδ(S) =−H−1(v̄0(S) + δR(S)/2),

where R(S) = v(ξN)− v(ξ1). Thus for δ small enough xδ(S) is unique and

xδ(S)−x0(S) =−1

2
H−1R(S)δ,

so DRQP exhibits linear variation with ȳ(S) =− 1
2
H−1R(S). Furthermore

Cδ(S) =
1

2

(
x0(S)− 1

2
δH−1R(S)

)>
H

(
x0(S)− 1

2
δH−1R(S)

)
+ v̄>

(
x0(S)− 1

2
δH−1R(S)

)
= C0(S)− δ

2
x0(S)>R(S) +

δ2

8
R(S)>H−1R(S)− δ

2
v̄>H−1R(S)

= C0(S)− δ
2

(v̄− v̄0(S))>H−1R(S) +
δ2

8
R(S)>H−1R(S).
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Thus we obtain

VRS(δ) =ES[
δ

2
(v̄− v̄0(S))>H−1R(S)− δ

2

8
R(S)>H−1R(S)].

So

MVRS =ES[(1/2)(v̄− v̄0(S))>H−1R(S)]

with the remark on incremental improvement being immediate. �

Proof of Proposition 2

Since H = 1, Lemma 3 gives for sufficiently small δ > 0,

VRS(δ) =ES[
δ

2
(v̄− v̄0(S))R(S)− δ

2

8
R(S)2].

Since g(ξ) > 0 almost surely, we have x̄0(S) > 0 for almost all samples S, and so for sufficiently

small δ

R(S) = v(ξN)− v(ξ1) = g(ξ1)− g(ξN).

Now defining R̄=ES[R(S)], we get

ES[(v̄− v̄0(S))R(S) = ES[(ḡ0(S)− ḡ)(R(S)− R̄)]

= cov(ḡ0(S),R(S))

so

VRS(δ) =
δ

2
cov(ḡ0(S),R(S))− δ

2

8
ES[R(S)2]

and MVRS =cov(ḡ0(S),R(S)).

In the case that the distribution of prices g(ξ) is symmetric about its mean then we can condition

on RS and observe that for any sample with outcomes {g(ξ1), g(ξ2), ..., g(ξN)} there is another

sample with outcomes {2ḡ− g(ξ1),2ḡ− g(ξ2), ...,2ḡ− g(ξN)} which is equally likely, in which each

outcome is replaced by an outcome at the same distance but on the opposite side of ḡ. This

mirror sample has the same range but (ḡ − ḡ0(S)) is reversed in sign since ḡ − g(ξi) is replaced

by ḡ − (2ḡ − g(ξi)) = g(ξi)− ḡ. From this we deduce that MVRS is zero, and thus ES[Cδ(S)] =

ES[C0(S)] + (δ2/8)ES[R(S)2], giving VRS(δ)< 0 for all δ > 0. �

Proof of Proposition 3

We have

MVRS =
1

2
E[(ḡ0(S)− ḡ)RS]

=
1

2
E [(zN − z1)z̄] .
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where zi is the i’th order statistic of {g(ξi)− ḡ : i= 1, ....N}. By Lemma 12 in Appendix 2,

E[zN z̄] =

∫ ∞
−∞

Q(z)F (z)N−1dz

and

E[z1z̄] =

∫ ∞
−∞

Q(z)(1−F (z))N−1dz

which yields the result. �

Proof of Proposition 4

Let f̃ be the density for F̃ , the symmetric distribution matching f(w) for w<w0. Thus f̃(w0 +

γ) = f(w0 − γ) and F̃ (w0 + γ) = 1− F (w0 − γ), for γ > 0. Define τ(z) = F−1(1− F (2w0 − z)) for

z >w0 and τ(z) = z for z ≤w0. Hence F (z) = F̃ (τ−1(z)), and so f(z) = f̃(τ−1(z))/τ ′(τ−1(z)).

We know that F has mean 0 and hence

0 =

∫ ∞
−∞

zf(z)dz =

∫ ∞
−∞

z

τ ′(τ−1(z))
f̃(τ−1(z))dz =

∫ ∞
−∞

τ(w)f̃(w)dw (20)

using a change of variable w= τ−1(z) so τ ′(w)dw= dz. We may write∫ ∞
−∞

τ(w)f̃(w)dw =

∫ w0

−∞
wf̃(w)dw+

∫ ∞
w0

τ(w)f̃(w)dw

=

∫ ∞
w0

(2w0− z)f̃(z)dw+

∫ ∞
w0

τ(w)f̃(w)dw

using symmetry for f̃ . So ∫ ∞
w0

(τ(z) + 2w0− z) f̃(z)dz = 0. (21)

We will use Proposition 3 and we begin by rewriting the required expression in terms of F̃ . From

(9) we have

MVRS =
1

2

∫ ∞
−∞

(
F̃ (τ−1(z))N−1− (1− F̃ (τ−1(z)))N−1

)
×

(∫ ∞
z

u
f̃(τ−1(u))

τ ′(τ−1(u))
du

)
dz

=
1

2

∫ ∞
−∞

(
F̃ (w)N−1− (1− F̃ (w))N−1

)
×
(∫ ∞

w

τ(z)f̃(z)dz

)
τ ′(w)dw

using a change of variable w = τ−1(z) and z = τ−1(u). Since τ(w) =w for w ≤w0, this expression

can be written

MVRS =
1

2

∫ w0

−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫ w0

z

uf̃(u)dz+

∫ ∞
w0

τ(u)f̃(u)du

)
dz

+
1

2

∫ ∞
w0

(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫ ∞
z

τ(u)f̃(u)du

)
τ ′(z)dz.



Anderson and Philpott: Improving sample average approximation
34 Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65

Let T (z) =
∫∞
z
τ(u)f̃(u)du≥ 0 for z ≥w0. From (21)

T (w0) =

∫ ∞
w0

τ(z)f̃(z)dz =

∫ ∞
w0

(z− 2w0) f̃(z)dz > 0

since the skew in the distribution ensures that w0 < 0 and hence z − 2w0 > 0 for z >

w0. Now observe that T (z) begins by increasing in z while τ(z) < 0 and then decreases.

It approaches the value zero, for z large, and hence T (z) > 0 for z ≥ w0. And thus(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫∞
z
τ(u)f̃(u)du

)
> 0 for z >w0.

Now from our assumption f(w)≥ f(F−1(1−F (w)) and the definition of τ we obtain f(2w0−z)≥

f(τ(z)). But as F (τ(z)) = 1−F (2w0− z) we know that f(τ(z))τ ′(z) = f(2w0− z). And hence our

assumption implies τ ′(z)≥ 1 with strict inequality for some range of values. Thus we have

MVRS >
1

2

∫ w0

−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫ w0

z

uf̃(u)dz+

∫ ∞
w0

τ(u)f̃(u)du

)
dz

+
1

2

∫ ∞
w0

(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫ ∞
z

τ(u)f̃(u)du

)
dz.

Now F̃ (w)N−1−(1−F̃ (w))N−1 is symmetric with a change of sign around z0. We can use the same

argument that established MVRS is zero for symmetric f to show the corresponding expression

for F̃ is zero after shifting to allow for the non zero mean:∫ ∞
−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫ ∞
z

(u−w0)f̃(u)du

)
dw= 0.

We can subtract half this integral from the right hand side of the inequality to obtain

MVRS >
1

2

∫ w0

−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)(∫ w0

z

w0f̃(u)du+A

)
dz

+
1

2

∫ ∞
w0

(
F̃ (w)N−1− (1− F̃ (w))N−1

)(∫ ∞
z

(τ(u)−u+w0)f̃(u)du

)
dz

where A =
∫∞
w0

(τ(u)− u+w0)f̃(u)du. We can use (21) to show that A = −w0
2

, but we don’t use

this fact. We want to split the second term in these integrals into a symmetric and non-symmetric

part. We can write

MVRS>
1

2

∫ ∞
−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)
(U(z) +V (z))dz

where U(z) =
∫ w0

z
w0f̃(u)du+A for z ≤w0 and U(z) =

∫ z
w0
w0f̃(u)du+A for z > w0. Note that U

is symmetric around w0 and is maximized at w0 since w0 < 0. Hence(
F̃ (w0− k)N−1− (1− F̃ (w0− k))N−1

)
U(w0− k)

= −
(
F̃ (w0 + k)N−1− (1− F̃ (w0 + k))N−1

)
U(w0 + k),
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and so
∫∞
−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)
U(z)dz = 0.

Also V (z) = 0 for z ≤w0 and for z >w0 we have

V (z) =

∫ ∞
z

(τ(z)−u+w0)f̃(u)du−
(∫ z

w0

w0f̃(u)du+A

)
=

∫ z

w0

(−2w0− τ(u) +u)f̃(u)du.

So, from (21), V (∞) = 0. Now τ(u) + 2z0−u has derivative τ ′(u)− 1≥ 0 and because the integral

in (21) is zero, we can deduce that τ(u) + 2w0−u starts negative and becomes positive. Since

d

dz
V (z) = (−2w0− τ(z) + z)f̃(z),

we know that V starts by increasing and then decreases to zero. Moreover V (w0) = 0. Hence it is

always non-negative. Since V (z) is zero for z ≤w0 when F̃ (z)N−1− (1− F̃ (z))N−1 < 0, then∫ ∞
−∞

(
F̃ (z)N−1− (1− F̃ (z))N−1

)
V (z)dz ≥ 0,

and so we have established that MVRS > 0, as required. �

Proof of Proposition 5

We are interested in the solution xδ(S) to DRQP where we solve the inner maximization:

IP:maxq
∑N

i=1 qiv(ξi)
>x

s.t.
∑N

i=1
1
N
φ (Nqi)≤ δ2, [λ]∑N

i=1 qi = 1, [µ]
qi ≥ 0.

The problem IP has Lagrangian

L=−
N∑
i=1

qiv(ξi)
>x+λ(δ,x)(

N∑
i=1

1

N
φ (Nqi)− δ2) +µ(

N∑
i=1

qi− 1)

which has first derivative
∂L
∂qi

=−v(ξi)
>x+λ(δ,x)φ′ (Nqi) +µ.

Let qi(δ,x) denote the optimal solution for a given δ and x. We translate this into ri(δ,x) by

qi(δ,x) =
1

N
(1 + ri(δ,x)),

where
∑N

i=1 qi(δ,x) = 1 implies ∑
i

ri(δ,x) = 0.

Then minimization of the Lagrangian implies

−v(ξi)
>x+λ(δ,x)φ′ (1 + ri(δ,x)) +µ= 0, i= 1,2, . . . ,N. (22)
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We write

φ(1 +w) =
w2

2
φ′′(1) +

w2

2
g(w)

with g(w)→ 0 as w→ 0, and so φ′(1 +w) =wφ′′(1) +wg(w) + w2

2
g′(w) and since φ is analytic we

have g and g′(w) well defined. We let g0(w) = g(w) + w
2
g′(w), and g0(w)→ 0 as w→ 0. Then

φ′(1 +w) =w(φ′′(1) + g0(w))

and (22) becomes

−v(ξi)
>x+λ(δ,x)ri(δ,x) (φ′′(1) + g0(ri(δ,x))) +µ= 0.

Then
∑

i ri(δ,x) = 0 implies

µ= v̄0(S)>x− 1

N

∑
i

λ(δ,x)ri(δ,x)g0(ri(δ,x))

so for each i= 1,2, . . . ,N ,

−v(ξi)
>x+λ(δ,x)ri(δ,x) (φ′′(1) + g0(ri(δ,x)))

+v̄0(S)>x− 1
N

∑
j λ(δ,x)rj(δ,x)g0(rj(δ,x)) = 0.

(23)

Moreover from the constraint
1

N

N∑
i=1

φ (1 + ri(δ,x)) = δ2

we get

1

N

N∑
i=1

(
ri(δ,x)2

2
(φ′′(1) + g(ri(δ,x)))

)
= δ2. (24)

We will establish the proposition via several lemmas.

Lemma 5. The solution λ(δ,x), ri(δ,x), i= 1,2, . . . ,N to (23) and (24) has components that are

analytic functions of x and δ for all (x, δ) in a neighbourhood (x0(S),0).

Proof We establish the result using the implicit function theorem. We can rewrite (23) and (24)

in the form G(r1, r2, ..., rN , λ, x, δ) = 0, where G :RN+2+n→RN+1 has components

Gi(r1, r2, ..., rN , λ,x, δ) = (φ′′(1) + g0(ri))λri− 1
N
λ
∑

j rjg0(rj)
− (v(ξi)

>x− v̄0(S)>x) , i= 1,2, ...,N,

GN+1(r1, r2...rN , λ,x, δ) = 1
N

∑N

i=1

(
ri

2

2
(φ′′(1) + g(ri))

)
− δ2

We will apply the implicit function theorem to express (r1, r2...rN , λ) as functions of (x, δ). We

require G to be continuously differentiable around the point (x, δ,λ, r) = (x0(S),0, λ(0, x0(S)),0),

and the (N + 1)× (N + 1) Jacobian matrix with elements Jij = ∂Gi/drj, j = 1,2, ...N and Ji,N+1 =

∂Gi/dλ to be non-singular at this point.
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We have for i= 1,2, . . . ,N,

∂Gi/drj =

{
− 1
N
λ(g0(rj) + rjg

′
0(rj)), j 6= i

− 1
N
λ(g0(ri) + rig

′
0(ri)) +λ (φ′′(1) + g0(ri)) +λrig

′
0(ri), otherwise,

and

∂Gi/dλ=
(
v(ξi)− v̄0(S))>x

)
/λ,

using the fact that Gi = 0, i= 1,2, ...,N .

Suppose that J does not have full rank so there is w 6= 0, with Jw= 0. Then Jw can be written

(Jw)i =− λ
N

N∑
j=1

wj(rjg
′
0(rj) + g0(rj))

+λwi(φ
′′(1) + g0(ri) + rig

′
0(ri))

+
wN+1

λ

(
v(ξi)− v̄0(S))>x

)
(Jw)N+1 =

N∑
j=1

wjrj (φ′′(1) + g0(rj)) .

We may sum the first N equations to obtain (from the definition of v̄0(S))

−λ
N∑
j=1

wj(rjg
′
0(rj) + g0(rj)) +λ

N∑
i=1

wi(φ
′′(1) + g0(ri) + rig

′
0(ri)) = 0

which simplifies to
N∑
i=1

wi = 0. (25)

Now consider the behavior of g0(ri) + rig
′
0(ri). As δ→ 0 this also approaches zero. We can write

(Jw)i = 0 as

wi(φ
′′(1) + g0(ri) + rig

′
0(ri)) =K0−

wN+1

λ2
(v(ξi)− v̄0(S))>x

where K0 = 1
N

∑N

j=1wj(rjg
′
0(rj) + g0(rj)). And hence for δ small enough we have wi approximately

equal to K0
φ′′(1)

− wN+1

λ2φ′′(1)
(v(ξi)− v̄0(S))>x.

We start by considering the case where wN+1 6= 0. By considering −w if necessary we can assume

that wN+1 < 0. Then for small δ, wi is approximately proportional to (v(ξi)− v̄0(S))>x, so we have

established that for small δ, v(ξi)
>x< v(ξj)

>x will imply wi <wj.

From equations (23)

ri(δ,x) (φ′′(1) + g0(ri(δ,x)))− 1

N

∑
j

rj(δ,x)g0(rj(δ,x))

=
1

λ(δ,x)
(v(ξi)− v̄0(S))>x. (26)
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From (25) and (26) we deduce∑
i

wiri(δ,x) (φ′′(1) + g0(ri(δ,x)))−
∑
i

wi
N

∑
j

rj(δ,x)g0(rj(δ,x))

=
∑
i

wi
λ(δ,x)

(v(ξi)− v̄0(S))>x,

whence ∑
wiri (φ

′′(1) + g0(ri)) =
∑ wi

λ(δ,x)
v(ξi)

>x.

Now (Jw)N+1 = 0 implies
∑

iwiv(ξi)
>x= 0. Since

∑
wi = 0 some of the wi values are negative, and

we may choose v̂ so that wi ≤ 0 for v(ξi)
>x≤ v̂ and wi > 0 for v(ξi)

>x > v̂. Then since
∑
v̂wj = 0

we have a contradiction

0 =
∑
i

wiv(ξi)
>x=

∑
i

wi(v(ξi)
>x− v̂)> 0.

where the inequality arises because each term in the sum is non-negative and they cannot all be

zero unless v(ξi) are all the same or wi = 0.

Next we consider the case where wN+1 = 0. Then (Jw)i = 0 implies

wi(φ
′′(1) + g0(ri) + rig

′
0(ri)) =

1

N

N∑
j=1

wj(rjg
′
0(rj) + g0(rj)).

Unless w = 0, we may scale the wj values so that the right hand side is 1. But then wi =

1
φ′′(1)+g0(ri)+rig

′
0(ri)

> 0 for δ chosen small enough, which contradicts (25).

Hence we have established that J has full rank for δ chosen small enough. Hence the analytic

implicit function theorem implies that λ(δ,x), ri(δ,x) exist as analytic functions of x and δ in a

neighbourhood of (x0(S),0). �

Lemma 6. Suppose k=
√

2
φ′′(1)

. Then

ri(δ,x) = δk
(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

+ δ2hi(δ,x) (27)

where hi(δ,x) is bounded.

Proof Rearranging (23) gives

ri(δ,x) =
1

λ(δ,x)

v(ξi)
>x− v̄0(S)>x

φ′′(1) + g0(ri(δ,x))
+

∑
j rj(δ,x)g0(rj(δ,x))

N(φ′′(1) + g0(ri(δ,x))))
. (28)

Let σ(δ,x) = r(δ,x)λ(δ,x), ηi(δ,x) = v(ξi)
>x−v̄0(S)>x

φ′′(1)+g0(ri(δ,x))
, and Gij(δ,x) =

g0(rj(δ,x))

N(φ′′(1)+g0(ri(δ,x)))
. Then

σi(δ,x) = ηi(δ,x) +
∑
j

Gij(δ,x)σj(δ,x),
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and limδ→0Gij(δ,x) = 0. In matrix form we obtain

σ(δ,x) = (I −G(δ,x))−1η(δ,x),

whence taking limits as δ→ 0 yields

lim
δ→0

ri(δ,x)λ(δ,x) = lim
δ→0

ηi(δ,x) =
(v(ξi)

>x− v̄0(S)>x)

φ′′(1)
. (29)

Multiplying (24) by λ(δ,x)2 gives

1

2N

N∑
i=1

(λ(δ,x)ri(δ,x))
2
(φ′′(1) + g(ri(δ,x))) = δ2λ(δ,x)2

which gives

lim
δ→0

δ2λ(δ,x)2 =
φ′′(1)

2N

N∑
i=1

(
v(ξi)

>x− v̄0(S)>x

φ′′(1)

)2

=
x>V (S)x

2φ′′(1)
,

where

V (S) =
1

N

N∑
i=1

(v(ξi)− v̄0(S)) (v(ξi)− v̄0(S))
>
.

Thus

lim
δ→0

δλ(δ,x) =

(
x>V (S)x

2φ′′(1)

)1/2

. (30)

Since for almost all S we will have x>V (S)x

2φ′′(1)
> 0, (29) and (30) give

lim
δ→0

ri(δ,x)

δ
=

(v(ξi)
>x− v̄0(S)>x)

φ′′(1)

(
x>V (S)x

2φ′′(1)

)−1/2

whereby applying Lemma 5 gives

ri(δ,x) = δk
(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

+ δ2hi(δ,x)

for some bounded hi(δ,x) as required. �

We now proceed to prove Proposition 5 The objective of the robust optimization DRQP is

1

2
x>Hx+

1

N

N∑
i=1

(1 + ri(δ,x))v(ξi)
>x

=
1

2
x>Hx+ v̄0(S)>x+

1

N

N∑
i=1

ri(δ,x)v(ξi)
>x.
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The first order conditions determining xδ(S) are

Hxδ(S) + v̄0(S) +∇x

(
1

N

N∑
i=1

ri(δ,x)v(ξi)
>x

)
= 0.

Taking derivatives with respect to δ we obtain

H
d

dδ
xδ(S) +

d

dδ
∇x

(
1

N

N∑
i=1

ri(δ,x)v(ξi)
>x

)
= 0.

Now Lemma 6 gives

∂

∂xj

(
1

N

N∑
i=1

ri(δ,x)v(ξi)
>x

)

=
δ

N

(
N∑
i=1

k
∂

∂xj

(
(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

)
+ δ

∂

∂xj
hi(δ,x)

)
v(ξi)

>x

+
δ

N

N∑
i=1

(
k

(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

+ δhi(δ,x)

)
vj(ξi),

and by Lemma 5 hi(δ,x) and ∂
∂xj

hi(δ,x) are bounded as δ→ 0, so it follows that

lim
δ→0

d

dδ

∂

∂xj

(
1

N

N∑
i=1

ri(δ,x)v(ξi)
>x

)

=
1

N

N∑
i=1

k
∂

∂xj

(
(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

)
v(ξi)

>x

+
1

N

N∑
i=1

(
k

(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

)
vj(ξi)

giving [
d

dδ
xδ(S)

]
δ=0

=H−1ζ(x0(S)),

where

ζj(x) =
k

N

N∑
i=1

∂

∂xj

(
(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

)
v(ξi)

>x

+
k

N

N∑
i=1

(
(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

)
vj(ξi).

We can simplify ζj(x) by noting

∇(v(ξi)− v̄0(S))>x

(x>V (S)x)
1/2

=
(v(ξi)− v̄0(S))

(x>V (S)x)
1/2
− (v(ξi)− v̄0(S))>x

(x>V (S)x)
3/2

V (S)x.
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So at δ= 0 we have

ζ(x) =
k

N

1

(x>V (S)x)
1/2

N∑
i=1

((
v(ξi)

>x
)

(v(ξi)− v̄0(S))
)

− k

N

1

(x>V (S)x)
1/2

N∑
i=1

(
v(ξi)

>x
(v(ξi)− v̄0(S))>x

x>V (S)x
V (S)x

)

+
k

N

1

(x>V (S)x)
1/2

N∑
i=1

v(ξi)(v(ξi)− v̄0(S))>x.

However from the definition of V (S) we have

1

N

N∑
i=1

(v(ξi)
>x)(v(ξi)− v̄0(S))>x

= x>V (S)x+
1

N

N∑
i=1

x>v̄0(S) (v(ξi)− v̄0(S))
>
x= x>V (S)x.

So the term in the sum involving x>V (S)x simplifies and we get

ζ(x) =
k

(x>V (S)x)
1/2

(
1

N

N∑
i=1

((
v(ξi)

>x
)

(v(ξi)− v̄0(S)) + v(ξi)(v(ξi)− v̄0(S))>x
))

−V (S)x

=
k

(x>V (S)x)
1/2

1

N

N∑
i=1

v(ξi)(v(ξi)− v̄0(S))>x,

where we have used the fact that 1
N

∑N

i=1 (v(ξi)− v̄0(S)) (v̄0(S)>x) = 0 and hence

V (S)x=
1

N

N∑
i=1

(v(ξi)− v̄0(S))v(ξi)
>x.

Thus

d

dδ
xδ(S) =−H−1 k

(x>V (S)x)
1/2

1

N

N∑
i=1

v(ξi)(v(ξi)− v̄0(S))>x.

=−H−1 k

(x>V (S)x)
1/2
V (S)x

as V (S) is symmetric. Thus in the limit as δ→ 0, we get xδ(S)→−H−1v̄0(S), and we obtain

ȳ(S) = k
H−1V (S)H−1v̄0(S)

(v̄0(S)>H−1V (S)H−1v̄0(S))
1
2

as required. �
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Proof of Proposition 6

Immediately from the improvement lemma and Proposition 5 we know that robustification with

smooth φ divergence incrementally improves SAA if

ES

[
(v̄0(S)− v̄)

>
H−1 kV (S)H−1v̄0(S)

(v̄>0 (S)H−1V (S)H−1v̄0(S))
1
2

]
> 0.

Since k is a positive constant the result follows immediately. �

Proof of Lemma 4

The translation equivariance of ρ yields

ρ[c(x,S)]=
1

2
x>Hx+ (1− δ) 1

N

N∑
i=1

(
v(ξi)

>x
)

+ δCVaR1−α[{v(ξi)
>x}].

The first order conditions for RSAA(δ) become

0∈ ∂ρ(c(x,S)) =Hx+ (1− δ)v̄0 + δGCVaR (31)

which gives (11) and (12) when the subgradient at the optimal solution is unique. �

Proof of Proposition 7

Consider all samples S satisfying (13). Suppose that α∈ (m
N
, m+1

N
] for some integer m. For a given

x, we suppose that

v(ξ1)>x≥ v(ξ2)>x≥ ..v(ξk)
>x= v(ξk+1)>x= ...= v(ξ`)

>x

with v(ξ`)
>x > v(ξj)

>x, for all j > `, and k ≤m+ 1≤ `. When k 6= ` we have non-differentiability

of CVaR at x and the subdifferential ∂CVaR1−α [{v(ξi)
>x}] is the set

GCVaR(x) =
1

αN

k−1∑
i=1

v(ξi) + (1− k− 1

αN
)conv{v(ξk), v(ξk+1), ..., v(ξ`)}.

By Lemma 4

xδ(S)∈−H−1 ((1− δ)v̄0(S) + δGCVaR(xδ(S)))

and since GCVaR(xδ(S) is a bounded set, we have xδ(S)→ x0(S) as δ→ 0. Thus for all δ sufficiently

small we must have

v(ξ1)>xδ(S)> v(ξ2)>xδ(S)> ... > v(ξN)>xδ(S)

so CVaR1−α [{v(ξi)
>x}] is differentiable at xδ(S), with derivative

v̄CVaR(S) =
1

αN

m∑
i=1

v(ξi) + (1− m

αN
)v(ξm).
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Lemma 4 then gives

xδ(S) =−H−1 ((1− δ)v̄0(S) + δv̄CVaR(S))

and

xδ(S)−x0(S) =−H−1(v̄CVaR(S)− v̄0(S))δ,

whence DRQP has linear variation with

ȳ(S) =−H−1(v̄CVaR(S)− v̄0(S)).

If we write R for (v̄CVaR(S)− v̄0(S)), then

Cδ(S) = EP[c(xδ(S), ξ)]

=
1

2

(
x0(S)− δH−1R

)>
H
(
x0(S)− δH−1R

)
+ v̄>

(
x0(S)− δH−1R

)
= C0(S)− δx0(S)>R+

δ2

2
R>H−1R− δv̄>H−1R

= C0(S)− δ(v̄− v̄0(S))>H−1R+
δ2

2
R>H−1R.

Thus we obtain

VRS(δ) = ES[δ(v̄− v̄0(S))>H−1(v̄CVaR(S)− v̄0(S))

−δ
2

2
(v̄CVaR(S)− v̄0(S))>H−1(v̄CVaR(S)− v̄0(S))],

and

MVRS =ES[(v̄− v̄0)>H−1(v̄CVaR(S)− v̄0(S))]

as required. �

Proof of Proposition 8

We apply Proposition 7 with H = 1 and v(ξ) =−g(ξ), so v̄0(S) =−ḡ0(S). Now v̄CVaR(S) is the

derivative of CVaR1−α[{v(ξi)
>x}] evaluated at x0(S) = ḡ0(S). Thus

v̄CVaR(S) = CVaR1−α[{−sgn(ḡ0(S))g(ξi)}].

As in Proposition 7 there is a need for care when x0(S) = 0 since at that point we have

CVaR1−α[{v(ξi)
>x}] non differentiable. The formulation here makes v̄CVaR(S) = 0 in this case. But

since the proposition statement involves an expectation over a continuous distribution we can see

that x0(S) = 0 with probability zero and our definition at this point will have no impact.
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We obtain for all δ > 0 sufficiently small

xδ(S) = x0(S)− δH−1(v̄CVaR(S)− v̄0)

= x0(S)− (δ/2)(CVaR1−α[{−sgn(ḡ0(S))g(ξi)}] + ḡ0(S))

= x0(S)− δ
2

(ḡ0(S) + CVaR1−α[{−sgn(ḡ0(S))g(ξi)}])

and

MVRS = ES[(v̄− v̄0(S))>H−1(v̄CVaR(S)− v̄0(S))]

= ES[(−ḡ+ ḡ0(S))(CVaR1−α[{−sgn(ḡ0(S))g(ξi)}] + ḡ0(S))]

= ES[(ḡ0(S)− ḡ)(ḡ0(S) + CVaR1−α[{−sgn(ḡ0(S))g(ξi)}])]

=
σ2

N
+ES[(ḡ0(S)− ḡ)CVaR1−α[{−sgn(ḡ0(S))g(ξi)}],

as required. �

Proof of Proposition 9

We will use Proposition 8 and show that

−ES[(ḡ0(S)− ḡ)CVaR1−α[{−g(ξi)}]] =

∫ ∞
−∞

Q(z)(1−F (z))N−1Λα(z)dz. (32)

First observe that

ES[(ḡ0(S)− ḡ)ḡ] = 0,

so

−ES[(ḡ0(S)− ḡ)CVaR1−α[{−g(ξi)}]] = −ES[(ḡ0(S)− ḡ)(CVaR1−α[{−g(ξi)}] + ḡ)]]

= −ES[w̄CVaR1−α[{−wi}]].

where wi is the sample from W . We have that −CVaR1−α[{−wi}] assigns probability 1 to the

lowest 100α% outcomes of wi, and takes the expectation. Thus, if α ∈ (mα
N
, mα+1

N
] then

−CVaR1−α[{−wi}] =
1

αN
z1 +

1

αN
z2 + . . .+ (1− mα

αN
)zm,

where zi are the order statistics. So

−ES [w̄CVaR1−α[{−wi}]] =
1

αN
ES[w̄z1] +

1

αN
ES[w̄z2] + . . .+ (1− mα

αN
)ES[w̄zm].

Since Lemma 12 gives

E[w̄zj] =
(N − 1)!

(N − j)!(j− 1)!

∫ ∞
−∞

Q(z)(1−F (z))N−jF (z)j−1dz
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and

Λα(z) =
1

αN
+

1

αN
(N − 1)

F (z)

(1−F (z))

+
1

αN

(N − 1)(N − 2)

2

F (z)2

(1−F (z))2

+ . . .+ (1− mα

αN
)

(
N − 1
mα

)
F (z)mα

(1−F (z))mα
,

where mα = dαNe− 1, the identity (32) now follows. �

Proof of Proposition 11

We suppose that c(x, ξ) is strictly concave in ξ. We first observe by Proposition 10 that this is

enough to show that the solution to P̄ has each vi supported on a single point (if vi has weight p

on zi1 and (1−p) on zi2 then setting vi to have weight 1 on pzi1 + (1−p)zi2 increases the objective

of P̄ and still satisfies the constraint). Thus P̄ becomes

P1:maxzi
∑N

i=1 cx(zi)

subject to 1
N

∑N

i=1 ‖zi− ξi‖ ≤ δ.

The Lagrangian of P1 is

L=
N∑
i=1

(cx(zi)−λ‖zi− ξi‖) +λδ

which is maximized at zi. So

∇cx(zi)−λ
zi− ξi
‖zi− ξi‖

= 0

if zi 6= ξi. This establishes (a) where αi = λ
‖zi−ξi‖

. To establish (b), notice that ‖∇cx(zi)‖= λ and

so has the same value for each i where zi 6= ξi.

In the case that zk = ξk we must have L is not increased when zk = ξk +ε∇cx(ξk) for small ε > 0.

Thus

ε‖∇cx(ξk)‖2−λε‖∇cx(ξk)‖ ≤ 0,

giving ‖∇cx(ξk)‖ ≤ λ. And hence for any choice of zi with zi 6= ξi, ‖∇cx(ξk)‖ ≤ ‖∇cx(zi)‖, as

required. �

Lemma 7. Let Jv be the n×m Jacobian matrix for v(z) evaluated at some sample point z∗, and

α a scalar constant. Then

∂

∂xj

(
v(z∗+α

J>v x

‖J>v x‖
)>x

)
= vj(z

∗+α
J>v x

‖J>v x‖
).
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Proof of Lemma 7

∂

dxj
vi(z

∗+α
J>v x

‖J>v x‖
) =

m∑
k=1

∂vi
dzk

∂

dxj
(z∗+α

J>v x

‖J>v x‖
)k

= α
m∑
k=1

(Jv)ik
∂

dxj

(J>v x)k
‖J>v x‖

.

Now

∂

dxj

(J>v x)k
‖J>v x‖

=
∂

dxj

(J>v x)k
(x>JvJ>v x)1/2

=
∂

dxj

∑
i xi(Jv)ik

(x>JvJ>v x)1/2

=
1

‖J>v x‖
∂

dxj

∑
i

xi(Jv)ik +
∑
i

xi(Jv)ik
∂

dxj

1

(x>JvJ>v x)1/2

=
1

‖J>v x‖

(
(Jv)jk−

∑
i

xi(Jv)ik
(JvJ

>
v x)j

(x>JvJ>v x)

)

=
1

‖J>v x‖

(
(Jv)jk− (J>v x)k

(JvJ
>
v x)j

(x>JvJ>v x)

)
.

So

∂

dxj
vi(z

∗+α
J>v x

‖J>v x‖
) =

α

‖J>v x‖

m∑
k=1

(Jv)ik

(
(Jv)jk− (J>v x)k

(JvJ
>
v x)j

(x>JvJ>v x)

)

=
α

‖J>v x‖

((
JvJ

>
v

)
ij
− (JvJ

>
v x)i

(JvJ
>
v x)j

(x>JvJ>v x)

)
.

Hence ∑
j

xj
∂

dxj
vi(z

∗+α
J>v x

‖J>v x‖
) =

∑
j

xj
α

‖J>v x‖

((
JvJ

>
v

)
ij
− (JvJ

>
v x)j

(JvJ
>
v x)i

(x>JvJ>v x)

)
=

α

‖J>v x‖

((
JvJ

>
v x
)
i
− (x>JvJ

>
v x)

(JvJ
>
v x)i

(x>JvJ>v x)

)
= 0,

which yields the result. �

Proof of Proposition 12

Recall

DRQP: minx∈X
(

1
2
x>Hx+ supQ∈Pδ EQ [v>x]

)
so

∇cx(zi) =
∑
j

xj∇vj(zi).

We require the linear variation property for almost all samples S. Since we assume strict concavity

for vj we know that∇vj takes a range of values and almost everywhere the sample S = {ξ1, ξ2, ..., ξN)
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has each point with a different value for
∥∥∥∑j xj∇vj(ξi)

∥∥∥, so we can make this assumption. Then for

small δ we will move just one point. We deduce this from Proposition 11 part (b), since for small δ

it is impossible for two different points to end up with the same value for ‖∇cx(zi)‖ without moving

a combined distance more than δ. Moreover part (c) of Proposition 11 shows that the point that

is moved is ξ∗(S) = ξi0 , the sample point with the highest gradient norm for the cost function, so

i0 = arg maxi

∥∥∥∑j xj∇vj(ξi)
∥∥∥ (which is well-defined under our assumption). For brevity we write

ξ∗ for ξ∗(S). The solution we obtain after robustification, given a distance limit δ, moves ξ∗ to the

point ξ∗+Nδ
∑
j xj∇vj(ξ

∗)

‖∑j xj∇vj(ξ∗)‖ , where the term Nδ arises from the way that we define the Wasserstein

distance, and the fact that we move in the z-gradient direction of the cost function cx(z) follows

from part (a) of Proposition 11.

After the robustifying move, and substituting Jv(ξ
∗)>x for

∑
j xj∇vj(ξ∗), the term vk(ξ

∗) is

replaced by

vk

(
ξ∗+Nδ

Jv(ξ
∗)>x

‖Jv(ξ∗)>x‖

)
.

The objective function of DRQP is therefore

1

2
x>Hx+

1

N
v

(
ξ∗+Nδ

Jv(ξ
∗)>x

‖Jv(ξ∗)>x‖

)>
x+

1

N

∑
j 6=i0

v(ξj)
>x.

The first order conditions determining xδ(S) are hence

Hx+
1

N
∇x
(
v(ξ∗+Nδ

Jv(ξ
∗)>x

‖Jv(ξ∗)>x‖
)>x

)
+

1

N

∑
j 6=i0

v(ξj) = 0.

Now applying Lemma 7 with α=Nδ, we get that xδ(S) satisfies

Hx+
1

N
v(ξ∗+Nδ

Jv(ξ
∗)>x

‖Jv(ξ∗)>x‖
) +

1

N

∑
j 6=i0

v(ξj) = 0,

where

1

N
vk(ξ

∗+Nδ
Jv(ξ

∗)>x

‖Jv(ξ∗)>x‖
) =

1

N
vk(ξ

∗) +
δ

‖Jv(ξ∗)>x‖
∇vk(ξ∗)>Jv(ξ∗)>x+O(δ2).

So we have first order conditions

Hx+ δ
Jv(ξ

∗)Jv(ξ
∗)>x

‖Jv(ξ∗)>x‖
+ v̄0(S) =O(δ2).

We have x0(S) =−H−1v̄0(S), so

H(x−x0(S)) =−δJv(ξ
∗)Jv(ξ

∗)>x

‖Jv(ξ∗)>x‖
+O(δ2),

giving x= x0(S) +O(δ), whence

Jv(ξ
∗)Jv(ξ

∗)>x

‖Jv(ξ∗)>x‖
=
Jv(ξ

∗)Jv(ξ
∗)>x0(S)

‖Jv(ξ∗)>x0(S)‖
+O(δ)
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and

H(x−x0(S)) =−δJv(ξ
∗)Jv(ξ

∗)>x0(S)

‖Jv(ξ∗)>x0(S)‖
+O(δ2). (33)

From (33) and its definition it follows that

ȳ(S) =−H−1Jv(ξ
∗)Jv(ξ

∗)>x0(S)

‖Jv(ξ∗)>x0(S)‖
.

Substituting for x0(S) gives the expression we require. �

Proof of Proposition 13

(a) In the univariate example Jv(ξ
∗) =−∇g(ξ∗(S)) so from Proposition 12 we have

ȳ(S) =−‖∇g(ξ∗(s))‖

and v(ξ) =−g(ξ), so Lemma 2 gives

MVRS =ES [(ḡ0(S)− ḡ)‖∇g(ξ∗(s))‖] .

(b) In the case that g(ξ) = ξ2 and ξ is non-negative then ξ∗(S) is the largest ξi in S, which we

write as the order statistic ξN . Then since ∇g(ξ) = 2ξ we have

MVRS = ES

[
2((1/N)

N∑
i=1

ξ2
i −E[ξ2])ξN

]

= 2ES[
ξN
N

N∑
i=1

ξ2
i ]− 2E[ξ2]E[ξN ].

Writing ξi for the order statistics we have, for i < N , (essentially this is the result of Lemma 9

with j =N)

ES
(
ξNξ

2
i

)
=

N !

(i− 1)!(N − i− 1)!

∫ ∞
0

∫ ∞
xa

x2
axbF (xa)

i−1f(xa)f(xb) (F (xb)−F (xa))
N−i−1

dxbdxa.

But
N−1∑
i=1

N !

(i− 1)!(N − i− 1)!
F (xa)

i−1 (F (xb)−F (xa))
N−i−1

=N (N − 1)FN−2
b ,

so
N−1∑
i=1

ES
(
ξNξ

2
i

)
=N(N − 1)

∫ ∞
0

∫ ∞
xa

x2
axbF (xb)

N−2f(xa)f(xb)dxbdxa.

Now ξN has distribution F (z)N so has density NF (z)N−1f(z). Thus

ES (ξN) =N

∫ ∞
0

zF (z)N−1f(z)dz,
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ES
(
ξ3
N

)
=N

∫ ∞
0

z3F (z)N−1f(z)dz.

We have

MVRS =
2

N

N−1∑
i=1

ES[ξNξ
2
i ] +

2

N
ES
(
ξ3
N

)
− 2ES[ξ2]ES[ξN ]

= 2(N − 1)

∫ ∞
0

(∫ ∞
z

uF (u)N−2f(u)du

)
z2f(z)dz

+2

∫ ∞
0

z3F (z)N−1f(z)dz

−2N

(∫ ∞
0

u2f(u)du

)∫ ∞
0

zF (z)N−1f(z)dz

as required. �

Appendix 2: Identities for order statistics

In this appendix we derive some identities for order statistics from samples of a random variable

W with mean 0 and cumulative distribution function F and density f . We let

PW (z) =

∫ z

−∞
uf(u)du, QW (z) =

∫ ∞
z

uf(u)du,

where we usually drop the explicit dependence on the distribution W . Thus P (z) +Q(z) = 0, and

P (∞) = Q(−∞) = 0. Suppose {w1,w2, . . . ,wN} is a random sample of W , with order statistics

z1 ≤ z2 ≤ . . .≤ zN . The sample mean is z̄ = 1
N

N∑
i=1

zi.

Lemma 8. E[z2
i ] = N !

(N−i)!(i−1)!

∫∞
−∞ z

2F (z)i−1f(z)(1−F (z))N−idz.

Proof Consider the event Ai = {zi ∈ (xa, xa + ε)}. Then

P(Ai) = P(zi ∈ (xa, xa + ε))

= P
(

i− 1 of the wi in (−∞, xa),
one wi in (xa, xa + ε), N − i of wi >xa + ε.

)
=
N(N − 1)(N − 2) . . . (N − i+ 1)

(i− 1)!

×F (xa)
i−1 (F (xa + ε)−F (xa)) (1−F (xa + ε))N−i

=
N !

(N − i)!(i− 1)!
f(xa)F (xa)

i−1(1−F (xa))
N−iε+ o(ε).

Thus

E[z2
i ] =

N !

(N − i)!i!

∫ ∞
−∞

z2F (z)i−1f(z)(1−F (z))N−idz,

as required. �
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Lemma 9. If i < j then

E[zizj] =
N(N − 1) . . . (N − j+ 1)

(i− 1)!(j− i− 1)!

∫ ∞
−∞

∫ ∞
xa

xaxbB(xa, xb)dxbdxa (34)

where

B(xa, xb) = F (xa)
i−1f(xa)f(xb) (F (xb)−F (xa))

j−i−1
(1−F (xb))

N−j.

Proof The joint distribution of zi and zj can be expressed in terms of the event Aij = {zi ∈

(xa, xa + ε) and zj ∈ (xb, xb + ε′)}.

P(Aij) = P(zi ∈ (xa, xa + ε) and zi ∈ (xb, xb + ε′))

= P

 (i− 1) wi in (−∞, xa), one wi in (xa, xa + ε),
j− i− 1 of the wi in (xa + ε,xb),

one wi in (xb, xb + ε′), rest of the wi >xb + ε′.


=

(
N
i− 1

)
(N − i+ 1)

(
N − i
j− i− 1

)
(N − j+ 1)

×F (xa)
i−1 (F (xa + ε)−F (xa)) (F (xb)−F (xa + ε))

j−i−1

× (F (xb + ε′)−F (xb)) (1−F (xb + ε′))N−j.

But (
N
i− 1

)
(N − i+ 1)

(
N − i
j− i− 1

)
(N − j+ 1)

=
N(N − 1) . . . (N − j+ 1)

(i− 1)!(j− i− 1)!
,

and

F (xa)
i−1 (F (xa + ε)−F (xa)) (F (xb)−F (xa + ε))

j−i−1

× (F (xb + ε′)−F (xb)) (1−F (xb + ε′))N−j

= B(xa, xb)εε
′+ o(εε′).

Thus

E[zizj] =
N(N − 1) . . . (N − j+ 1)

(i− 1)!(j− i− 1)!

∫ ∞
−∞

∫ ∞
xa

xaxbB(xa, xb)dxbdxa

as required. �

Lemma 10.

N∑
j=i+1

E[zizj] =
N !

(i− 1)!(N − i− 1)!

∫ ∞
−∞

zF (z)i−1(1−F (z))N−i−1f(z)Q(z)dz. (35)
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Proof
N∑

j=i+1

N(N − 1) . . . (N − j+ 1)

(i− 1)!(j− i− 1)!
(F (xb)−F (xa))

j−i−1
(1−F (xb))

N−j

=
N(N − 1) . . . (N − i+ 1) (N − i)

(i− 1)!

×
N−i−1∑
k=0

(N − i− 1) . . . (N − i− k)

k!
(F (xb)−F (xa))

k
(1−F (xb))

N−1−i−k

=
N !

(i− 1)!(N − i− 1)!
(1−F (xa))

N−i−1.

Substituting in (34) and substituting for Q(z) yields (35). �

Lemma 11.
j−1∑
i=1

E[zizj] =
N !

(j− 2)!(N − j)!

∫ ∞
−∞

P (z)zf(z)(1−F (z))N−jF (z)j−2dz.

Proof Observe that
∑j−1

i=1 E[zizj] is the same as
∑N

i=N−j+2 E[wiwN−j+1] when w=−z. Now using

Lemma 10 we have
N∑

i=N−j+2

E[wN−j+1wi] =
N !

(N − j)!(j− 2)!

∫ ∞
−∞

zFW (z)N−j(1−FW (z))j−2fW (z)QW (z)dz

where we use a subscript W to show that the relevant quantity is with regard to w not z. Since

FW (z) = 1−F (−z) and QW (z) =
∫∞
z
uf(−u)du we can change variables v=−z and obtain

N∑
i=N−j+2

E[wN−j+1wi] =
N !

(N − j)!(j− 2)!

∫ ∞
−∞
−v(1−F (v))N−jF (v)j−2f(v)

∫ ∞
−v

uf(−u)dudv.

Finally changing variables t=−u gives
∫∞
−v uf(−u)du=

∫ −∞
v

tf(t)dt=−P (v) and we recover the

expression we require. �

Lemma 12.

E[zj z̄] =
(N − 1)!

(N − j)!(j− 1)!

∫ ∞
−∞

Q(z)(1−F (z))N−jF (z)j−1dz. (36)

Proof Applying Lemmas 8, 10, and 11, we obtain

E[zj z̄] =
1

N

(
j−1∑
i=1

E[zizj] +E[z2
j ] +

N∑
i=j+1

E[zjzi]

)

=
(N − 1)!

(j− 2)!(N − j)!

∫ ∞
−∞

P (z)zf(z)(1−F (z))N−jF (z)j−2dz

+
(N − 1)!

(N − j)!(j− 1)!

∫ ∞
−∞

z2F (z)j−1f(z)(1−F (z))N−jdz

+
(N − 1)!

(j− 1)!(N − j− 1)!

∫ ∞
−∞

zF (z)j−1(1−F (z))N−j−1f(z)Q(z)dz

=
(N − 1)!

(N − j)!(j− 1)!
A
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where

A =

∫ ∞
−∞

(j− 1)P (z)zf(z)(1−F (z))N−jF (z)j−2dz

+

∫ ∞
−∞

z2F (z)j−1f(z)(1−F (z))N−jdz

+

∫ ∞
−∞

(N − j)zF (z)j−1(1−F (z))N−j−1f(z)Q(z)dz.

Integrating the third term of A by parts gives[
−(1−F (z))N−jQ(z)zF (z)j−1

]∞
−∞

+

∫ ∞
−∞

(1−F (z))N−j
d

dz

(
Q(z)zF (z)j−1

)
dz

=

∫ ∞
−∞

(1−F (z))N−jQ(z)F (z)j−1dz

−
∫ ∞
−∞

(1−F (z))N−j
[
z2f(z)F (z)j−1

]
dz

+

∫ ∞
−∞

(1−F (z))N−j
[
Q(z)z(j− 1)F (z)j−2f(z)

]
dz

which cancels with the first two terms of A (using the fact that P (z) +Q(z) = 0) to yield

A=

∫ ∞
−∞

(1−F (z))N−jQ(z)F (z)j−1dz,

which demonstrates (36) as required. �

Lemma 13. Suppose z has density f and cumulative distribution function F . For all α∈ (0,1],∫ ∞
−∞

f(z)(1−F (z))N−1Λα(z)dz =
1

N
. (37)

Proof First observe that if α< 1
N

, then Λα(z) = 1 and∫ ∞
−∞

f(z)(1−F (z))N−1dz =

[
− 1

N
(1−F (z))N

]∞
−∞

=
1

N
.

We next show (37) for every α= m
N

, m= 1,2, . . . ,N . In this case

Λα(z) =
1

m

(
1 + (N − 1)

F (z)

(1−F (z))
+ . . .+

(
N − 1
m− 1

)
F (z)m−1

(1−F (z))m−1

)
.

Now ∫ ∞
−∞

f(z)(1−F (z))N−1

(
N − 1
m− 1

)
F (z)m−1

(1−F (z))m−1
dz

=
(N − 1)!

(N −m)!(m− 1)!

∫ ∞
−∞

(1−F (z))N−mF (z)m−1f(z)dz

=
1

N

(∫ 1

0

N !

(N −m)!(m− 1)!
um−1(1−u)N−mdu

)
=

1

N



Anderson and Philpott: Improving sample average approximation
Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65 53

where the final equality follows from observing that the integrand is the density of a beta distri-

bution and hence integrates to 1.

So ∫ ∞
−∞

f(z)(1−F (z))N−1Λα(z)dz =
1

m
(

1

N
+

1

N
+ . . .+

1

N
)

where the sum is over m terms. This yields the result for α= m
N
, m= 1,2, . . . ,N .

Now suppose α∈ (m
N
, m+1

N
], m= 1,2, . . . ,N − 1. Then

Λα(z) = Λm
N

(z) + (1− m

αN
)

(
N − 1
m

)
F (z)m

(1−F (z))m

which is linear in 1
α
∈ [ N

m+1
, N
m

), so
∫∞
−∞ f(z)(1−F (z))N−1Λα(z)dz is also linear in 1

α
in this range.

Since we have established that∫ ∞
−∞

f(z)(1−F (z))N−1Λα(z)dz =
1

N

for α = m
N

and α = m+1
N

, and for each z, Λα(z) is continuous at α = m
N

, the identity must hold

throughout this range which gives the result. �


