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Abstract

We consider solving stochastic optimization problems in which we
seek to minimize the expected value of an objective function with
respect to an unknown distribution of random parameters. Our focus
is on models that use sample average approximation (SAA) with small
sample sizes. We analyse the out-of-sample performance of solutions
obtained by solving a robust version of the SAA problem, and derive
conditions under which these solutions are improved in comparison
with SAA. We analyse three different mechanisms for constructing
a robust solution: a CVaR-based risk measure, phi-divergence using
total variation, and a Wasserstein metric.

1 Introduction

An important class of stochastic programming problems involves the opti-
mization of the expectation of some objective function such as cost or profit,
where the outcome depends both on a decision variable and some random
variable, Y. Formally this can be written as

P: min,ex E[e(z,Y)]
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where the decision variable z is constrained to lie in X C R", and expec-
tations are taken over the random variable Y, with instance y € R™. We
denote an optimal solution of P by z* and its optimal value by C*. A key
assumption for the problem class of interest to us is that the probability
distribution P of Y is independent of the choice of x. In the simplest case
Y has a known distribution PP and the expectation can be evaluated through
integration to give an explicit expression for the expected value in terms of
the decision variable, x, and then the stochastic programming problem can
be solved analytically.

In many cases the distribution of the random variable is unknown and
the decision maker must make her choice on the basis of a sample of data
points drawn from Y, but without access to an explicit description of the
distribution P. We will suppose that we have a sample, S, of N points from
Y where S = {y1, 9, ..., yn } but we do not know the distribution of Y. The
problem P can then be approximated by the sample average approximation
problem

SAA: mingex & SOV el m). (1)

Given a sample S we will write E[c(z, S)] as a shorthand for the objective
function of SAA, where the expectation assigns equal probability to sample
points. We denote an optimal solution to SAA by zg44(5).

A common environment leading to problems of the form SAA has a his-
torical record of outcomes that can be assumed to be drawn from a fixed
distribution, and where the performance of a decision made now depends
on the uncertain outcome that occurs in the future. For example we may
be looking at financial data and assume that the underlying distribution of
prices for the last three months is a good guide to the distribution of the un-
certain prices that will occur next week; or we may have a historical record
of annual demand for a set of products and need to make some capacity
decisions; or we may be considering optimizing the performance of a hydro-
electric system where the record of annual rainfall over a period of fifty years
can be taken as indicative of the distribution of rainfall for next year.

A related problem occurs when the distribution of Y is known but is not
available in a form that allows the calculation of the value of E[c(z, Y")], most
frequently because the dimension, m, of the random variable is too high to
allow the calculation of the required integral for the expectation. In these
circumstances we may wish to approximate the expectation by averaging
over a sample of points drawn from Y. This arrangement matches our set up
and our results will apply. However, typically such problems are solved by
taking samples with a size measured in thousands or tens of thousands and
it is the asymptotic results that are critical. Our focus is on problems with



relatively small samples (tens or hundreds), and we wish to look at behaviors
that occur well before the asymptotic limit.

A third type of problem sometimes occurs when the cost function c is
very expensive to evaluate requiring some kind of simulation. For such prob-
lems we are forced to use the sample average approximation to estimate the
expectation. However for these problems the decision maker has an oppor-
tunity to choose the set of points y1, 9o, ..., yn at which the cost is calculated.
In our model the sample is drawn randomly from the distribution P.

It is well-known that when a sample is used to determine a decision
variable, the resulting decision may perform relatively poorly on a new sample
from the same distribution. The optimization can exploit particular features
of the sample and delivers a decision that happens to do well on this set of
values. This is related to overfitting, which has received a lot of attention in
statistics and machine learning (see e.g. [19], [14], [13]). Here the coefficients
of a model are estimated using a training set of data, and a model with many
coefficients can choose these to match the training set very well. When
applied to out-of-sample test data the model often performs worse than a
simpler model with fewer coefficients. The solutions from sample average
approximations with small sample sizes can also perform poorly out of sample
(see e.g. [4],]7],[25]).

We will explore the circumstances in which a robust approach may end
up doing better when applied to out-of-sample test data. To motivate this
we consider a simple example, where

c(x,y) = 2° + 40z — zy + 80,

and y has a lognormal density with mean 60 and standard deviation 27. The
expected cost of any candidate solution x is

2% 4+ 40z — Blylz + 80 = (z — 10)* — 20

and the optimal solution to P with these data is z* = 10.
A sample S = {y1,9s,...,yn} of y yields the problem (1), which in this
example has optimal solution

20.

1 N
N i= Yi
Tgaua(S) = NZTI _

Suppose a decision maker instead solves a robust version of (1)
min {(1 — 0)E[c(z, S)] + 6CVaR,_,[c(x, )]} (2)

minimizing a convex combination of expectation and conditional value at
risk. Here we write CVaR,_,[c(z, S)] for the conditional value at risk of the
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discrete distribution {c(z,y;) : y; € S}, where each sample point has equal
probability (see [17]). If for example N = 10 and a = 0.1 then

CVaRg[c(z, S)] = 2% + 402 — Ymin + 80,

where Yy is the minimum element of the sample S. The solution to (2) is

then N
1((1-9)
rR(S) = 3 ( N Z;y + OYmmin — 40) :

Suppose we construct 20000 samples each of 10 observations of y. Each
sample S yields an SAA solution xg44(S) and a robust solution zg(S5), each
of which has an expected cost with respect to the underlying lognormal dis-
tribution. These expected costs depend on the sample S. Averaging over
possible samples, the expected cost of z544(S) (taken with respect to the
sampling distribution for S) is -1.90697, and the expected cost of xg(5) is
shown in Table 1 for increasing values of §. The expected cost of the candi-
date solution z(S) improves as ¢ increases up to an optimal value (around
0.05) after which it starts getting worse.

0| Bsle(zr(S),Y)]
0.00 -1.90697
0.01 -2.11933
0.02 -2.28048
0.03 -2.39041
0.04 -2.44914
0.05 -2.45665
0.06 -2.41296

Table 1. Comparison of expected cost of zg(S) as J increases.

Observe that 544 (.5) is an unbiased estimator of x*, but zx(S) is biased
below z*. At first sight we might think that since xg44(S5) is an unbiased
estimator of the correct minimum z*, and xzz(S) is not, then xg(.S) will on
average be a worse solution. But the opportunity for improvement occurs
through shrinkage [5]. Different samples S give rise to different values z(.5),
which in this example has a variance 16.573 for 6 = 0.06, that is lower than
the variance of xga4(S) (17.938). The samples that lead to poor choices
of x544(S) and higher costs are adjusted through robustification in a way
that gives values xx(S) that are moved towards the centre and closer to the
correct value. The improvements from reducing the spread of the distribution
of zr(S) can over-ride the additional cost from shifting the average value of
zr(S) away from the correct value.



As a contrast, let us consider the problem in which
c(z,y) = 2* — 80z + zy + 80

where y has the same lognormal density with mean 60 and standard deviation
27. As before the optimal solution to P with these data is z* = 10 with
objective value —20.

Given a sample S of 10 points of y, we have

-+ 40.

Ly
i=1 Yi
z5aa(S) = — & 5 :

We continue to assume o = 0.1 so it is just the highest cost sample element
that contributes to CVaR;_,[c(z, S)]. However here the highest cost occurs
for the largest y; value rather than the smallest and so

where zr(S) solves

min(1 — &)E[c(z, S)] + 6(z® — 807 + ZYmax + 80).

xT

The expected cost of the solution zz(S) depends on 4. Using the same 20000
samples of N = 10 observations, we obtain the figures in Table 2.

0| Bsle(zr(S),Y)]
0.00 -1.90697
0.01 -1.33165
0.02 -0.60401
0.03 0.27593
0.04 1.30818
0.05 2.49274
0.06 3.82961

Table 2. The expected cost of the candidate solution xp gets worse as d increases.

The variance of zz(S) (21.425 for § = 0.06) is larger than that of xg44(5)
(17.938) so this example shows that robustification and bias combine to yield
a solution that is worse when tested out of sample. It is easy to confirm by
repeating the above experiment that a negative d, if chosen small enough,
will improve out-of-sample performance. This means that a decision maker
who pursues a mildly risk-seeking objective in this example will do better on
average than one who acts as if neutral to risk.
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The example is instructive for decision makers who are always risk averse
in the hope of reducing variation in costs. In both examples the risk-averse
action xg(S) has a lower variance than xgs4(S) when evaluated using the
sample S, but might have a higher variance when evaluated using the true
distribution, and this translates into higher out-of-sample expected costs.
So applying a risk-averse model to sample data might give an action that
increases risk out of sample. Whether this happens depends on the form of
c(x,y) and the characteristics of the underlying true distribution; one goal
of this paper is to seek to understand this relationship.

The risk measure in the example is a coherent risk measure as defined
by [1]. Optimizing with a coherent risk measure is a special case of distrib-
utionally robust optimization [24], in which the decision maker chooses x to
solve

DRO:  mingex supgep Eg [c(, Z)], (3)

where P is a set of probability measures, from which a worst-case measure
@ is chosen, and the expectation is taken over the random variable Z with
distribution Q.

In the setting of sample average approximation, we write vg for the sample
distribution which has probability 1/ of being at each of the sample points
in 5, i.e. the uniform distribution on the finite set S = {y1,99,...,yn}.
Now P is defined to be a region Pjs containing the sample distribution and
parametrized by d, so that it increases in size for larger 0 and when § = 0 we
have Ps = {vs} and the distributionally robust optimization collapses back
to the SAA problem of minimizing the expectation under vg of ¢(x,y). When
0 > 0 the distributionally robust approach assumes that Nature plays against
the decision maker selecting a distribution close to the sample distribution
but designed so that the decision = gives a bad result in expectation.

There are many different parameterizations that we might use for Ps, and
thus a variety of different versions of the distributionally robust optimization.
Early versions of these models ([18], [8]) choose a worst case result from a
set of distributions P that are subject to constraints on their moments. The
data-driven approach we have outlined in which P depends on a sample has
been the focus of more recent work. There are many alternative approaches,
for example, [6] constructs a confidence set for the first and second moments
of P based on a sample, whereas [23]| constructs P in terms of a likelihood
function, and [3] chooses P to be the confidence region of a goodness-of-fit
test.

A number of authors consider a DRO model where the set Pjs is obtained
from looking at distributions within a distance ¢ of the sample distribution
under some metric on the space of distributions. One choice is to use ¢-



divergence (such as the Kullback-Leibler divergence) to define the distance,
and we give more details in the following section. Note though that a ¢-
divergence is typically not symmetric and may not satisfy the triangle in-
equality. So apart from some special cases such as total variation (which is
an L, distance) this is not a metric, or semi-metric. Bayraksan and Love
[2] give a tutorial discussion of the use of ¢-divergence in this setting, and
Shapiro [20] also discusses the different types of ¢-divergence and their links
with coherent risk measures. Gotoh, Kim and Lim 2018 [12] show that using
¢-divergence leads to small changes in the mean compared with large changes
in the variance when considering in-sample performance. Van Parys et al.
[22] show that the Kullback-Leibler divergence (also called relative entropy)
has optimal properties in terms of the asymptotic behavior for out-of-sample
disappointment.

An alternative approach used by many authors is to define distances using
the Wasserstein distance between probability measures. For example Pflug
and Wozabal [16] apply this approach, where Pj is the set of distributions
with a Wasserstein distance of less than 0 to the sample distribution. The
application here is to portfolio optimization, as is also the case for Wozabal
[25]. The paper by Gao and Kleywegt [10] gives a comparison of the Wasser-
stein and ¢-divergence approaches arguing for the better performance of the
former and including some detailed comparisons on a newsvendor problem.
An important consideration in the choice of approach is the computational
burden involved in carrying out the inner maximization of DRO. The work by
Esfahani and Kuhn [9] demonstrates how this can be done in the Wasserstein
case for a wide variety of objective function forms.

Much of this work has been motivated by the search for policies that
do well when applied to out-of-sample data. For example, as shown in [4],
solutions to financial optimization problems are very sensitive to sampling
errors in estimated returns. Out-of-sample performance of solutions to such
problems is often much better when a distributionally robust approach is
used [6],[25]. However the nature of the improvement in out-of-sample per-
formance varies. A particular set of data (corresponding to a single sample)
may or may not give an improvement if a robust approach is used, but the
variance of the out-of-sample outcomes when considered over multiple sets
of data will be reduced. One might expect that a penalty will be paid for
the reduction in variance making the average cost higher. But in fact there
are many cases where both the mean and the variance of the out-of-sample
results are improved by using a DRO approach. For example Esfahani and
Kuhn [9] carry out numerical experiments for a portfolio optimization prob-
lem (using synthetic data) and show that both mean and variance improve
for a Wasserstein robustification (provided § is not too large). Very similar
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results are found by Gotoh et al. [11] when using Kullback-Leibler divergence
in an inventory problem and a logistic regression problem. Luo and Mehro-
tra [15] report improvements in mean out-of-sample behavior from using a
Wasserstein approach for a logistic regression problem (with ¢ set by a cross-
validation method). Nevertheless there is no guarantee that an improvement
in out of sample mean is available: for example Gotoh et al. [11] show that
in their setup a portfolio optimization problem never sees an improvement
in mean.

The paper is laid out as follows. The next section establishes our nota-
tion and terminology, formally defines the marginal value of robust solution,
and defines the three classes of robustification that we will study. Section
3 gives some results for sample average approximation. Section 4 studies
robustification using a CVaR-based coherent risk measure (as in the example
discussed above). In section 5 we revisit the results of the previous section
when total variation is used to robustify P. Section 6 repeats this analysis
for robustification using the Wasserstein distance. In section 7 we conclude
the paper with some general observations. The proofs of all the propositions
in the paper are deferred to an appendix.

2 Preliminaries

Our interest is in the solution of the stochastic optimization problem P us-
ing sample average approximation (1) and its distributionally robust version.
Note x544(S) (the SAA solution) depends on the sample S. For N large it
can be shown (see [21]) that xg44(S) will approach the solution set of P. We
use Csaa(S) = Eplc(rsa4(S5),Y)], to denote the expected cost of xg44(S)
given the sample S. Taking expectations over P amounts to looking at the
out-of-sample performance of the solution zg44(S) under the real distribu-
tion.

A robust version of this problem generates a solution zg(S), that de-
pends both on the sample S and a parameter 6 > 0 that controls the
amount of robustness added to the SAA problem. A choice § = 0 will
give xg(S) = x544(S). Fundamentally we are interested in the quality of
the solution as measured by Cr(S) = Ep[c(xr(S),Y)] in comparison with
the SAA alternative Cs44(S) as 0 varies. Since the solution quality depends
on what sample is chosen, we are interested in the expectations of Cg44(5)
and Cg(S) over different samples that may occur, which we write using no-
tation Eg. This expectation can be derived using the underlying probability
measure P.

It is helpful to make the following definitions.



Definition The ezpected value of the robust solution (VRS(0)) is
VRS(6) = Es[Cs44(S) — Cr(9)],
and the marginal value of the robust solution (MVRS) is

VRS(5)

MV RS = lim
6—0 (S

where this limit exists.

The value of VRS(0) is zero, and we are interested in circumstances
in which VRS(0) is positive for small positive §, which means that zz(5)
performs better out of sample than xg44(S). Observe that in VRS(d) the
expectation is taken over the sampling distribution, accounting for the ran-
domness driven by the choice of sample S as well as the random variable Y.
Thus, given a fixed distribution for the random variable Y, we begin by tak-
ing a sample of size N, construct our choice of decision variable zz(S) and
then evaluate c(xg(S),Y) out of sample. We are interested in the distribu-
tion under P of the resulting costs ¢(xg(S5),Y). In some circumstances this
distribution will have reduced variance in comparison with the equivalent
distribution that arises from the SAA solution zg44(.5).

It is important to be specific here about how we construct a robust version
of the SAA problem. Suppose c¢(z,y) can be separated into ¢(z,y) + d(y)
where ¢(z,y) contains terms that depend on x and d(y) does not. Then z*
solves P if and only if 2* solves

P:  mingex E[d(z,Y)]

and the optimal values differ by E[d(y)]. Without loss of generality then
we can assume that c(x,y) contains no terms of the form d(y). This will
mean that SAA and the robust versions of SAA that we formulate can also
be assumed to contain no such terms. Observe that this makes a difference
when robustifying as robust versions of P and P will in general have different
solutions.

As we have observed, the robust problem is determined in terms of a set Pj
of possible probability distributions for Y that are close to the nominal distri-
bution v¢ having probability 1/N on each of the pointsin S = {y1, ys, ..., yn }-
There are various approaches to robustification depending on the form taken
by Ps. We consider three of these:

1. Robustification based on a coherent risk measure p solves

min ple(z, 5]
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which can be reformulated as

min sup Eq [{c(z,v:) : yi € S}

zeX QeP
for some convex set P of probability measures on the discrete set
{c(z,y;) : yi € S}. We shall focus on the particular risk measure

ple(x, S)] = (1 — 0)E[c(x, )] + 6CVaR;_4[c(x, 5)],

which corresponds to P being a polyhedral set of probability measures
Ps that depends on §. For example when a = %, Ps is the convex hull
of the N points (%, %, e %)—l—éei, i=1,2,..., N, where ¢; is the
7’th unit vector.

. Distributionally robust optimization using ¢-divergence works with fi-
nite distributions, say v, = (q1, ¢, ..., qy) and v, = (p1, pa, ..., pn ), and

defines N
do(ve,vp) = Y pidh <;—> (4)
i=1 ¢

for ¢ a convex function defined on [0, co) with ¢(1) = 0 (and achieving
its minimum there). Given the sample distribution vg, we may define
either

Ps={v:dy(v,vs) < d}
or

Ps ={v:dy(vs,v) <0}

Note that in general this is not symmetric, so different sets Ps; are
obtained depending on whether vg is chosen to be v, or v, in (4). In
this paper we consider a symmetric instance ¢(t) = |t — 1| which gives
ds(vg, vp) = SN |gi — pi (called total variation).

. Distributionally robust optimization using a Wasserstein metric chooses
Ps = {I/ : dW<V7V5> < 5}7

where dy (v,vs) is the cost of a minimum cost transportation plan
from one probability distribution to the other. Formally we have the
Wasserstein distance from a distribution 7 on the set M C R™ to a
distribution vy, also on the set M, defined as

du(v1.v2) = min / 21— 2| dy(z1, 2) (5)
MxM

~vel'(v1,v2)
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where I'(v1, v3) is the set of all measures on the product space M x M
with marginals v; and v,. T'(v1,v5) can be thought of as a trans-
portation plan with a density at (z1, 29) in M x M that represents the
probability mass moved from point z; to point z,. We can use this def-
inition with different metrics corresponding to different transportation
costs, but in our discussion we will use a Euclidean metric.

3 Sample average approximation

Suppose we seek to improve SAA using robustification. As we have seen in the
introduction, the success of this will depend on the form of the cost function
c(x,y). We will assume throughout this paper that c(x,y) is smooth and
strictly convex in z for every realization y. Thus Ep [c¢(x,Y")] is also strictly
convex in z. For any y we can approximate c(x,y) using a Taylor series
expansion in z around xy = arg min, Ep [¢(z, Y)], so

1
e, y) = eo(y) + hy) " (v = o) + 5 (& = x0) " H(y)(w — o) + ol - zoll*),
where constants co(y) € R, h(y) € R™ and H(y) is a positive definite n x n
matrix. The objective function we wish to minimize is then

Eplco(Y) + (V)" (& — o) + %(9«“ —20) TH(Y)(z — o) + (|| — o||*)]

which (neglecting higher order terms) is of the form
1+ T
Ep 57 HY)z+vY) z+uY) (6)

where we have written v(Y) = h(Y)—H (Y)zo and u(Y) = co(Y)+5z5 H(Y)o.

The Taylor series expansion is around xy, which will not be available to us.
But this discussion shows that close to the optimal x there is a quadratic ap-
proximation of the cost function in the form appearing in (6). This motivates
us to consider cost functions of the form c(z,y) = s2" H(y)z+v(y) "z +u(y).
As mentioned above we will ignore the term u(y) as it makes no difference
to the optimization. In what follows, for different forms of robustification we
study conditions on P, H and v that guarantee positive MVRS for objective
functions of this form.

For simplicity, we will take X = R" in problem P. Then an optimal x*
that minimizes (6), will solve the first order conditions
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——1

r*=—-H v
where H = Ep[H(Y)] and 7 = Ep[v(Y)].
~ Given asample S = {y1, 92, ..,yn} drawn from Y we have sample means
Hs = (1/N) X0, H(y:), vs = (1/N) 0L, v(ys) and g = (1/N) 3505, u(ys).

Thus we can calculate the SAA solution zg4.4(S) which minimizes (1/N) SN, ¢(x, ).

Taking derivatives we get
ﬁS:L'SAA(S) +ﬂs = 0,

so that zga4(S) = —F;lﬁs. The fact that both Hg and Tg depend on the
sample will imply that this is typically a biased estimate.

Example 1 (SAA with bias):
Suppose that c(z,y) = (1 + y)(2? — 20zy), and Y is uniform on [0, 1].
We have

Elc(z,Y)] = /0 (14 y)(2* — 20ay)dy
3, 50
51’ — Eﬂf

which is minimized at x* = %0 = 5.556. To consider an extreme case suppose
that there is a sample size of N = 1. So the optimal solution varies according
to a single sample point y; and is given by xga4({y1}). By taking derivatives
we have

rsaa({yn}) = 10

and the expected value of this is given by

1
0

Hence there is a negative bias. This is reduced as the sample size increases
(for example the expected value of xg44(S) when N = 10 is 5.5038). We
have seen in the introduction how solving a CVaR-based robust version of
the problem will lead to solutions with a lower value, i.e. 2r(S) < z544(S).
Though we will not discuss the details here, it turns out that the same is
true in this case and a robust solution will tend to increase the negative
bias of z544(S5) and make the solution worse. Numerically, we can check
the case with sample size N = 10, and o« = 0.1 to show that the expected
value of z(S) becomes smaller as ¢ increases from 0, and VRS(§) < 0 for
all § € (0,1]. O
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Henceforth in the paper we will restrict attention to the case where H
does not depend on y, (and u(y) does not appear) so

clw,y) = 5o Ho +o(y) e (7)

with v(y) € R" and H a symmetric positive definite matrix. The analysis
above gives ¥ = —H 7 and zg44(S) = —H '0Ug, which is unbiased since
Es[vs] = . We can easily quantify the expected additional cost introduced
by using the sample average approximation.

Lemma 1 Ifc(z,y) = tz" Hr+v(y) ' then C* = =30  H~'0, and Csaa(S) =
C*+ v —nvg)TH (v —15).

Lemma 1 simplifies in the scalar case, where we assume c(x,y) = 2% —
g(y)x, and denote Ep(g(Y)) by g. Then we have H = 2, 4 = 0, and v =
—g, so ¥ = g/2, and by Lemma 1, C* = —3?/4. Given a sample S =

{y1,y2,.-.,yn} let gg = (1/N) Zi]\ilg(yi), and Tg = —gg. Lemma 1 then
gives

1
Csaa(S) = C*+§(v—@S)TH*1(v—@S)
1
= "+ 7(9-75)"

Hence the expected additional cost from using the sample average approx-
imation is (1/4)Eg[(gg — g))?] where the expectation is taken over samples
S.

In the following sections we will explore what happens when we compute
robust solutions to P using the three different approaches outlined in the
introduction.

4 CVaR based robustness

Given the sample .S, we consider a risk-averse version of SAA

RSAA()) : min p[e(x, S)]

x

in which E[c(z, S)] is replaced by evaluation with the coherent risk measure

ple(x, S)]|=(1 — 0)E[c(x, S)] + 6CVaR;_,[c(x, S)],
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where § € [0,1] and for a € (0, 1], CVaR;_,[c(z,5)] is the conditional value
at risk at level 1 — « of the discrete distribution {c(z,y;) : y; € S}.

We will make use of the first order condition for the robust solution zz(.S)
to RSAA(), which is unique in the case that § < 1 from our assumptions on
strict convexity of c. The following result captures these conditions for the
quadratic case.

Lemma 2 Suppose c(z,y) = 32" Hx + v(y)"a. The solution to RSAA(S)
satisfies

2r(S) € —H 1 ((1 = 8)Ts + 6G evar(zr(S))) (8)

where Geovar(z) is the subdifferential for CVaR;_, [{v(yl)Tm}} When
CVaR_, [{v(y;)"x}] is differentiable at x5(S) with derivative Toyar then

.I'R(S) = —Hil ((1 — (S)US + (SECVGR) . (9)

In the lemma below we are concerned with the gradient of CVaR at
the point zg44(S) = —H '0s. In the case that CVaRi_, [{v(y:) z}] is
differentiable at zg44(S) then we write Toyar for this vector. In the case
that CVaR,_, [{v(yZ)sz}] is not differentiable at zg44(.5) then we can define
Ucvar as an element of the subdifferential at z544(S) (we give details in the
proof). In our examples we will consider continuous distributions for P and
hence when taking expectations over samples S, the outcomes with CVaR
not differentiable at xg44(S) will have zero measure and the choice of Toyar
at these points will not have an impact on MVRS.

Lemma 3 Suppose c(z,y) = sz" Hx +v(y) '=. Then MVRS is well defined
and
MVRS € Es[(ﬂ — Es)TH71<@CVaR — fs)].

Corollary 4 Suppose c(z,y) = x* — g(y)z, where g(Y) has a continuous
distribution with mean g and variance o2, and let Gg = % Zi]ilg(yi) and

€ (0,1). Then

0.2

MVRS = 7+ (Bs[(3s — 9) OVaRy_ol{~s9n(@5)au)}]

The expression for MVRS in the Corollary includes a CVaR term which
takes the value zero in the event that go = 0 and so sgn(gg)g(y;) = 0, for
each sample point. Since g(Y') has a continuous distribution we can deduce
that there is zero probability of the sample mean g¢ being exactly zero. Thus
this event will not affect the expectation Eg.
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In the scalar case where c(x,y) = 22 — g(y)z, it is possible to derive a
more explicit form of MVRS if we know the distribution of g(y), and we can
assume that gg is always positive. Suppose W = ¢(Y') — g has a density f(w)
and cumulative distribution function F(w). We define Q(z) = [° wf(w)dw
and for any a € (0, 1] we define the function

1 1 F(2)
A, = —4+ —(N-1)——F"—
(2) aN * aN< )(1 — F(z2))
MERLEILEL O
aN 2 — F(z)
m —
- 1-—
+ + ( aN ( ) Z m 17’
where m is the unique integer for which a € (mT %]. This gives the following

result.

Proposition 5 Suppose c(z,y) = 2% — g(y)z where gg > 0, and we solve
RSAA(0) where a € (0, 1]. Then

MVRS— — — —/ Q(2)(1 — F(2))N Ay (2)dz.

There are some observations we can make in relation to the condition
g > 0. This is included in order to ensure that z544(S5) > 0 and hence that
it is the left rather than right tail of the g(Y") distribution that appears in
the CVaR term. We can usually assume that gg is close to the mean of the
g(Y") distribution for reasonable sample sizes. This is often enough to make
the probability of g¢ < 0 extremely small. In these cases we can take the
expression for MVRS as a good approximation for the exact value. There are
other cases in which g¢ < 0 with probability close to 1. When this happens
there are alternative formulae (which we will not give here) obtained through
defining W = g — g(Y).

We now study some examples of MVRS. The formula in Proposition 5
shows that MVRS will be positive if the second term is small. There is a
connection here to the skew in the distribution of g(Y'). We consider an
example with a large right-hand skew and show that MVRS is positive.

Example 2 (exponential distribution):

Suppose ¢(Y) is exponentially distributed on [0, 00), 80 § = 1,02 = 1, and
f(z) = e, If we robustify with CVaR,_.1(Z) then a = §, Au(z) = 1
and

L
N

MVRS — % - %/ju ~P()YLQ(2)d
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When N = 10, this gives a value of MVRS equal to 5= 200 OJ

It is not necessary to consider examples with a skew to end up with
MVRS positive, and we now consider three symmetric examples to give a
better understanding of the behavior of MVRS.

Example 3 (uniform distribution):
We take g(Y) to be umform on [0, a]. Then g = a and we obtain F'

uniform on [—a,a] so 0% = &, f(2) = 5, F(z) = &2, Q(z) = 4 (a® — 22).
Then
VRS = - [ B
= v 2/, z 2)dz

= (6LN TN+ 1)1(N+2))

which is zero When N =2, and positive when N > 2. When N = 10, this

a2 a

gives a value of & — &5 = {55- O

Example 4 (normal distribution):

Consider univariate and multivariate examples with a normal distribu-
tion. In the univariate case suppose that ¢g(Y') is an N(u,o?) random vari-
able with p large enough that we can ignore the possibility of negative sample

. . . 2
values. Then F is an N(0,0?) random variable, with f(2) = —— exp(5Z).
Now

Q) = [ i el = —=en(g) = ()
Thus ) s oo
MVRS = 7o~ T /_ (1= FE) A ()

In the Appendix, Lemma 18, we show that

OO N—-1 _ 1
| G- Fo  ne: - 1

(o)

which gives MVRS = 0.

The same result can be obtained in the multivariate case when there is
rotational symmetry for the distribution, and H is the identity matrix. Thus
we consider the case where v(y) is a vector where each component is drawn

16



from an independent N (0,0?) distribution all with the same variance o2.

Thus 7 = 0 and

MVRS = Eg[(7—0s)" (Tevar — Us)]

= Bs[(—7s)" (Tmax — Ts)]

where Uy, is the v value from the sample with the highest value for v'z.
Because of rotational symmetry this expectation is independent of the choice
of (non-zero) vector x. Hence we consider z = e; and we can set Uy, to be
the v value from the sample with the highest value for v;. Writing vg; and
Umax,i for the i’th components, we have

MVRS = ES[—ﬁs,l(fyﬂgg{vl(y)} ~Ts1)] = > BT, (Tmaxj — Us,)].

Jj=2

The first term here matches the univariate analysis and is zero. We may
reorder the sample elements so that Uy, = v(y;). Then

N N

Es[Us(Tmaxj — s3)] = Bs[ Y (1/N)v; () (0(31) = Y (1/N)v;(9:))]-

i=1 i=1
Using independence between v;(y;) and v;(yx) for ¢ # k we have

Es[Us,j (maxs — Us.3)] = Bs[(1/N)v;(1)°] = Bs[D_ (1/N?)v;(y,)°] = 0.

i=1

Hence MVRS = 0 in this case too. O

The analysis here is specific to the multivariate normal where rotational
symmetry is achieved at the same time as independence between different
components.

Example 5 (mixture of univariate normal distributions):

We consider a case where Y is univariate and ¢(Y") is formed as a mixture
of two normal distributions having the same mean (large enough to ensure
that gg > 0). Thus W has density f(w) = (fi(w) + f2(w))/2 where fi(w) =

ai\l/% exp(gTw;). Then o2 = ffooo w? f(w)dw = @,

Fe) = [ fw

1 =1 —w? 1 —w?
= / — exp( ) + —exp(5—)dw
—00 01 2

AVEL e 20% 09 20
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and

1/2 ! 2)+Q2( )
(1/2)(01f1(2) + 05 f2(2)).

Taking a = 1/N, we obtain

Q) = /°° ) + folw)) du
(
(?

(o1 +03)
MVRS = N

(o403 1 /°° o1 —2? oo —22

X ( 2\/% <— exp( _—“2) + 012 exp(_“2)> du)N_ldz.

We can evaluate MVRS numerically. For example if 07 =1, 05 =2 and N =
3 we obtain MVRS = —2.166 3 x 1072, and if N = 5, MVRS = —3.7480 x
1072,

We see that in comparison with a normal distribution, the heavy tails in-
troduced by taking a mixture of normal distributions makes MVRS negative
and the overall performance of this robustification worse. O

] =
Q
o
=
+
Q
[N )
e
o
—
|
e
—~
+
e
—~
S—
S—
~
o)
=
—_
<
N

W

5 Total variation

As before we consider the problem P with

1
c(z,y) = Ea:THx +o(y) Tz
In this section we consider evaluating MVRS when robustifying the SAA
solution using a ¢-divergence approach with L; norm, often called total vari-
ation. Thus the inner optimization solves

N
max E[Z piv(y;) " x
i=1

PEPs

where
N

={p:> |

=1

NS

l‘ < 5.

18



In the case where each of the N observations yi, 9, ..., yny has a different
value for v(y;) "z, and § < 2/N it is easy to see that the inner maximization
will involve taking probability §/2 from the y; with the lowest c(z,y;) value
in the sample, ymiy, = argminy, v(y;) =, and moving it to the y; with the
highest c(z, y;) value, ymax = arg max,, v(y;) ' .

This robustification is similar to the CVaR approach of the previous sec-
tion in the special case @« = 1/N, but instead of moving weight from all the
points in the sample to the worst point, we move weight from the best point
in the sample to the worst point. The solution we obtain, z(S), satisfies
first order conditions

N

Hx+ (1/N) Z(U(yz')) +(6/2)(0(Ynmas) = 0(Ymin)) = 0,

=1

SO
JZ'R(S) = —Hil(ﬁg + 5R5/2),

where Rg = U(ymax) - U<ymin)'

In the same way that we allowed for points where CVaR was non-differentiable,
we can drop our assumption on different values for each v(y;) "z and consider
the possibility that argmin,, v(y;) "z or arg max,, v(y;) "= might have more
than one element. Then the (unique) optimum zg(S) is a solution of

Hz + (1/N) Z(U(yi)) +(0/2)(Vmax(#) — Vmin(2)) = 0,
where Uy (7) €conv({v(y;) : i € argmax;{v(y;) ' 2}}), Umin(x) Econv({v(y;) :
i € argmin{v(y;)"z}}). Now zx(S) depends on § and we set

RY = —(2/8)(Hzr(S) + Ts)

and observe that R(;) = Umax(TR(S)) = Umin(zr(S)). We let Rg = lims_o Rg)
(with a similar argument to that in the proof of Lemma 3 to show that this
limit exists). Note that z(S) — 2544(S) and Rg = Umax — Umin for some
Umax €conv({v(y;) : i € argmax;{v(y;) ' £544(5)}}); Umin €conv({v(y;) : i €
arg min{v(y;) " z544(S)}}).

Lemma 6 Suppose c(z,y) = 32" Hx +v(y) "=. Then MVRS is well defined
and

MVRS = Eg[(1/2)(T — 0s) " H ' Rg]. (10)
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From the Lemma
MVRS = Es[(7 — Ts) " H " (Tmax — Umin)]

for some Doy €conv({v(y;) : i € argmax{v(y;) x544(S)}}), and Vi €conv({v(y;) :
i € argmin{v(y;) " 2544(5)}}). With continuous distributions except on a set
of measure zero these sets are singletons and we have Upax = arg max;, ) {v(vi) 'zsa4(5)}),
Upin = arg min,y,){v(y;) "2544(5)}). Thus the more complex definitions will
not have an impact in evaluating MVRS as an expectation over samples.
In the scalar case where c(x,y) = 2% — g(y)x, we have H = 2 and v(y) =
—g(y), and we may take S = {y1,y2,...,yn} ordered so that

g(n) < g(y) < ... < g(yn)-

From (10) with H = 2 we get

1
MVRS = ~Bs[(7s — 9)Rs].

Hence, writing R = Eg[Rg]

ES[CR(S)] = ES[CSAAS
= Eg[Csaa(S

+ (6/4)E[(g — g5)Rs] + (6°/16) Es[RE]
+ (0/9)Es[(7 — 75)(Rs — R)]

= Eg[Csan

In the case that the distribution of prices ¢(y) is symmetric about its mean
then we can condition on Rg and observe that for any sample with prices
{9(v1),9(y2), ..., g(yn)} there is another sample with prices {2 — g(y1), 29 —
9(y2), ..., 29 — g(yn)} which is equally likely, in which each price is replaced
by a price at the same distance but on the opposite side of g. This mirror
sample has the same range but (g — gg) is reversed in sign since g — g(y;) is
replaced by §— (29 — g(v;)) = g(y;) — g. From this we deduce that MVRS is
zero, and thus Eg[Cr(S)] = Es[Csaa(S)] + (6%/16) Eg[R%]. So, in this case,
robustification always makes things worse. However when there is a skew in
the distribution of prices we can expect to see cov(gg, Rs) # 0. For small §
this is the dominant term and will determine whether MVRS is positive or
negative.

A key observation is that when there is a right skew in the distribution
of g(y) then both the mean and the range are large when there is a sample
point that happens to be far out in the tail. This implies that the range is

20



positively correlated with the mean, and hence Eg[(g—7¢)Rs| < 0. A robust
solution takes weight from a high outlier and moves it to the lowest value.
On average these moves improve the solution.

As in the previous section, we will work with the random variable W =
g(Y) — g which has mean 0. Let W have density f(w) and cumulative
distribution function F(w), and recall Q(z) = [~ w f(w)dw.

Lemma 7 Suppose c(x,y) = x* — g(y)x where gg > 0, then total variation
robustification gives

MVRS = i/_oo (F(z)N' = (1= F(z)" ) Q(2)d=. (11)

[e.o]

We already gave an argument to show that Eg[(gg — g)Rs] = 0 when W
has a symmetric distribution. Now consider a distribution F' for W with a
right skew. It is possible to precisely identify a set of distributions where the
right skew will guarantee a positive value for MVRS. Note that the condition
that we derive for MVRS > 0 in this total variation case has no equivalent
for the CVaR form of robustification.

We take the point zy where F(zp) = 1/2 and construct a symmetric
distribution F where F(zo +y) = 1 — F(29 — y). Let f be the density for
F. Then we write 7(z) for the translation in z that moves F onto F, so that
F(z) = F(7(2)). Thus our construction ensures that 7(z) > z with equality
when z < zp. As usual we will assume that gg > 0.

Proposition 8 If 7 is differentiable with 7'(2) > 1 for z in the support of F
then MVRS > 0 with strict inequality if F' is not identical to F'.

6 Wasserstein metric

We turn now to the third robustness approach that is commonly used, where
the uncertainty sets are 0 balls in a Wasserstein metric as defined by (5).
We are interested in the case where the underlying set M is a closed and
bounded convex set in R™ (so that when m = 1, M is an interval.)

In distributionally robust optimization the inner problem is to choose a
distribution on M maximizing the expected cost subject to a bound on the
Wasserstein distance to the sample distribution vg (which has equal proba-
bilities at each of the sample points 1, ys, ..., yn). This gives the following
inner problem:

Pinner : max, B, [c(z, Z)]
subject to dw(v,vs) <o
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in which the expectation is taken over the random variable Z with distribu-
tion v.

In the previous two sections the structure of the cost function with respect
to the random variable Y has not been critical; everything has been deter-
mined by the set of cost functions c(x,y;) evaluated at the sample points.
With Wasserstein we will consider moves in the sample points y; and we need
to pay much more attention to the behavior of ¢(x, y) with respect to changes
iny. Often we will take x fixed and it is convenient to write ¢, (y) for ¢(z, y).
Using (5), the inner maximization problem is equivalent to solving

P:max,, Blc.(Z)]

subject to [, 1 1z =yl dy(z,y) <9,
v €T (v,vg).

Since v € I'(v, vg) it has a discrete distribution as one of the marginals, and
we may specify it through specifying the distribution that each of the sample
points y; is moved to under 7. More precisely we can rewrite v € I'(v, vg)
in terms of components v, that are measures on M with v; = (-, v;). Since
vg has mass 1/N at y; we have v,(M) = 1/N, and the measure v is simply
formed by adding together the components from each sample point, so that
v= Z'fi]_ Vi
By writing v; = N+, for the probability distribution on M (with the

scaling of N applied so that total mass of v; is 1) we can write this problem
as

P: max,, % Zz]il EVi [Cw(ZZ)]

subject to  + 21111 E,, |1 Z; — vill] <6,

where Z; is a random variable with distribution v;.
We make use of a result of Gao and Kleywegt [10, Corollary 2, part iii].

Proposition 9 (Gao and Kleywegt) If there is an optimal solution to P then
there is an optimal solution where some particular index ig has the property
that for every i # ig, v; has weight 1 on a point z} € argmax,ep{c.(z) —
Nz — yil|} where X* > 0 is the Lagrange multiplier for the constraint in P,
and v;, has weight on at most two points in arg max,ep{c.(2)—A" ||z — v, || }-

There are two cases (¢, is concave in y and ¢, is convex in y) where we
can be more explicit about the solution of P. In the concave case we can
think about contour surfaces in M which have the same gradient modulus.
The solution to P has such a surface where all the points outside the surface
are moved inwards to lie on that surface and points inside the surface are not
moved.
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Proposition 10 When c,(y) is concave then P has a solution in which each
v; has support at a single point z; € M. If we write J = {i © zi # yi}
for the points that move, then (a) Vecg(z) = (2 — y;) for some scalar
a; fori € J ; (b) |[Veo(2)| = [|Vea(z))|| fori € J and j € J; and (c)
IVeo(2)|| > [|[Vea(yr)|| fori € J and k ¢ J.

When we do not have a concave cost function ¢, then the types of move
that occur are in general more complex. The resulting behavior will be less
appropriate for the underlying problem and robustification using a Wasser-
stein metric may behave poorly. In order to give insight into the type of
behavior that may occur we analyze the extreme case when c, is convex.

It is helpful to consider the slope (in terms of costs) of the line from y; to
z € M, i.e. the slope of the line from (y;, c.(1:)) to (2, cx(2)). We write ¢;(2)
for this so ¢,(2) = (cz(2) — ¢x(v:))/ ||z — yi||. The result below shows that
when ¢, (y) is convex then the inner maximization sends weight at y; to a
point z; on the boundary of the region M starting with the point y; with the
highest value of max.cps(p;(2)) (over i), and moving on at each step making
changes to the points where this maximum slope is greatest and continuing
until the distance limit is reached. This is achieved by showing that the
points y; can be ordered by max,cys(¢;(2)) with only the points with higher
values being moved. Note that we may have one v; having support on two
different points, and these may both be at the boundary of M.

Proposition 11 When c,(y) is convex then the optimal solution to P has
each v; with mass either at y; or at the boundary of M (or both). If v; has
mass at y; and for some other j we have v; # y; then max.cr 0;(2) < @;(v;).

We observe that using a robust approach with the Wasserstein metric is
unlikely to do well when c¢,(y) is convex. The result of adding weight to
points at the boundary of M will often depend on some arbitrary choices on
how the set M of all possible y values is defined. Moreover even when the
bound on the Wasserstein distance is small the points introduced into the
sample may be far from the existing points. Finally we note that for small
bounds on the Wasserstein distance the first point to be changed is defined
by the slope maximum, which depends on the way that M is chosen, rather
than being closely related to the characteristics of the point itself. So we will
look at the case where ¢(z,y) is concave in y.

Now we wish to calculate the value of MVRS for the Wasserstein met-

ric. As before we assume that c(z,y) = iz"Hz + v(y)'z. Note that
Ve (y) = >2;%;Vu;(y) and c,(y) is concave if each component of v is
concave. We will assume that the sample S = {y;,ys,...yn) has each
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point with a different value for HZJ a:vaj(yi)H and ||Vv,|| is continuous.

Then for small 6 we will move just one point, we deduce this from Propo-
sition 10 part (b), since for small § it is impossible for two different points
to end up with the same value for ||Ve,(y;)|| without moving a combined
distance more than 0. Moreover part (c) of the Proposition shows that
the point that is moved is y*, the sample point with the highest gradi-

;T VUi (y*) {1225 2 Vui(wi)|-
tain after robustification, given a distance limit ¢, moves y* to a point

y*+ N6 Hgm%’ where the term N¢ arises from the way that we define
jTiVUj

the Wasserstein distance. So the optimal solution, x, for DRO satisfies
Z Vi (y*)
DAL H

It is simpler to deal with the scalar case where we have c(x,y) = 22 —g(y)z
and this becomes

The solution we ob-

ent norm,

Hz+(1/N) Z —(1/N)v(y)+(1/N)w | y* + No

2 — (1/N) Zgyz (1/N)g(y") - <1/N>g(y* Hgggy*gn) 0.

But for small ¢

e ons VIWT) N N
o (i = NOHI) < glar) = ~NB V()] + 000,

so to first order we have
1 & 5
wr(S) = o ;g(yz-) — 5 VoIl

Proposition 12 (a) When c(x,y) = 2* — g(y)x and g is a convex function
of y then
MVRS = Es[(gs —9) [[Va(ys)l]/2

where y = arg max,es{||Vo(y:)|[} and g5 = (1/N) 321, 9(ys)-
(b) In the case that c(x,y) = x*> — y*x and the y values are realizations of a

random variable Y which is non-negative and has density and cdf given by f
and F', then

MVRS = (N—1) /O h ( / " WE ()N f(u)du> 2f(2)dz
+ /0 T AR f(2)de — N ( /0 T f(u)du) /0 T ()N f(2)de.
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Note that part (a) of this result is similar to the formula in the total
variation case, but we have the sample range Rg replaced by the size of the
largest g absolute derivative. There is very similar behavior here to that we
have seen in other cases. If there is a skew in the underlying distribution of y
towards values with high values for g(y), then we can expect to see samples
where there is an outlier producing both a high value for g4 — g and also a
high value for ||Vg(y%)||. This will give a positive correlation between the
two and hence a positive value for MVRS. This is illustrated in the example
below.

Example 6
We suppose that c(z,y) = 22 —y?z and the underlying distribution of the
random variable Y is exponential with mean 1, so f(u) = e, F(u) = 1—e ™.

Thus
MVRS = (N — 1)/ (/ u(l — e_“)N_Qe_“du> e dx
0 T
—I—/ (1 —e )N e "dy — 2N/ r(1—e )N te "dy
0 0

since fooo u?e “du = 2. When N = 5 we can numerically evaluate the inte-
grals and obtain MVRS = 1.2488. [

7 Conclusions and discussion

The application of robustification to stochastic optimization problems to im-
prove out-of-sample performance has been widely reported in the literature.
This paper contributes to our understanding of why this is the case. It also
identifies circumstances in which robustification will make average out-of-
sample performance deteriorate. We have defined the MVRS parameter as a
first order measure of this improvement, and calculated this for a number of
univariate examples. MVRS depends on the form of the objective function,
the version of robustification applied, and the underlying “ground-truth”
probability distribution.

The comparisons we make are with sample average approximation which
makes no assumptions on the underlying probability distribution. In the con-
text of improving out-of-sample performance SAA already does well in com-
parison with parametric methods which are more likely to overfit. Though
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robustification may be valuable from a risk reduction point of view, our work
demonstrates that it may also have value for a risk neutral decision maker.

There are often circumstances when a decision maker has some knowledge
of the underlying distribution that can be helpful in predicting how robusti-
fication will perform. Two characteristics of the distribution are particularly
relevant: Is the distribution symmetric or skewed? And does the distribution
have heavy tails?

To understand the impact of small amounts of robustification of different
forms we can summarize the changes made on the SAA problem as follows:

1. For the CVaR robustification, weight is removed from all points in
the sample and added to a small number of points in the sample that
correspond to high costs.

2. For total variation, weight is removed from the point in the sample that
gives the lowest cost and moved to the point in the sample that has
the highest cost.

3. For Wasserstein robustification, provided c¢(z,y) is concave in y, the
sample point with the largest value for the norm of the gradient with
respect to y is moved incrementally to a higher cost position (the exact
move depends on the function c).

It is simplest to interpret our results in a univariate framework, when
we have c(z,y) = 2? — g(y)z. The value of x544(S) is gg/2. Since each
of the different robustification approaches move weight to lower values of
g(y;) (corresponding to higher costs) we have zg(S) < xgaa(S). Though
this introduces a bias in the value of Eg[xg(S)] we can obtain improvement
through shrinkage when there are larger moves to the left for samples with
high values of §g (and hence high values for z544(5)) than there are for
samples with low values of gg (and hence low values for zg44(5)). Hence
we get an advantage when the sample mean is positively correlated with the
size of the change in optimal solution induced by the robustification. This
observation provides some intuition explaining why we end up with MVRS
having the form Eg[(gg — 7)(xs44(S) — zr(S5))/d].

For CVaR robustification the change in optimal solution, zga4(S) —
zr(S), depends on the entire sample average since weight is removed from
all the points in the sample, except those at the left hand end of g(y;). This
produces the term 02 /(2N) that does not appear in the other robustifications
that involve changes only to the points at the two extremes of the sample.

The value of MVRS for CVaR robustification also depends on the left
hand tail of the g(Y). Where that tail is long the existence of a point in
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the sample that is far out in the left tail means that there will be a small
sample average and also the CVaR robustification adds weight to a point
far to the left. We end up with a negative correlation between g¢ — g and
2544(S) — xr(S). This effect works in the opposite direction to the o?/(2N)
term.

Examples for CVaR robustification show that when the distribution is
uniform over an interval, the 02/(2N) term dominates and MVRS is positive;
when the distribution is normal the effect from the left hand tail exactly
cancels the positive term and MVRS is zero; and when the distribution is
a mixture of normals having a heavier left hand tail than the normal, then
the tail behavior dominates and MVRS is negative. In loose terms we may
think of the normal distribution as a kind of boundary between cases where
MVRS for CVaR is positive or negative.

When we consider the total variation form of the robustification it is only
the tails that influence the change that is made, and (zs44(S) — zr(S5))/0
is simply half the range of values in the sample. Here any skew to the right
in the distribution of g(Y) will induce a correlation that yields a positive
value for MVRS. We note that MVRS is zero for symmetric distributions
under the total variation robustification, which does not hold for the other
two types of robustification.

For the Wasserstein robustification and convex g(y) the point where g has
the highest gradient is moved. This will be a point towards the extremities
of the y; values (that in general occur in a multivariate space) - and hence
is likely to be where g(y;) is large and so costs are low. In the special case
of y scalar and g(y) = y? then it is the lowest cost point in the sample that
is moved. Consistent with our discussion so far we have a positive value for
MVRS when the distribution of 2 has a positive skew.

The sign of MVRS has been our focus in this discussion. We need to be
cautious in directly comparing values of MVRS between different robustifi-
cations. The value will clearly be determined by the way that changes are
parameterized by ¢, and there is an arbitrariness in this.

There are a number of aspects in which it would be desirable to extend
our discussion. First our primary application is to historical data, it would
be natural to consider auto-correlation between sample points, and its im-
plications for the methods we consider, but this lies beyond the scope of the
present paper. Second our analysis has been restricted to the optimization
of smooth strictly convex functions, and specifically to the case where the
SAA approach is unbiased. A more complete treatment would consider cases
where cost functions are less well-behaved. Finally our concrete classifica-
tions are essentially restricted to the univariate case, and it would be valuable
to extend this work to give a more comprehensive treatment of multivariate
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problems.
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Appendix : Proofs of propositions
Proof of Lemma 1

Using z* = —H 0 and z544(S) = —H 05 we can deduce

1 1
C" = Blela’, )] = 5 (") Ha* +7" 0" = — 3 H'5,

2
and
Csaa(S) = Eplc(rs4a(5),y)] = %$SAA(S)TH$SAA(S) + 0" w544(95)
= %USH g — 0 H 'Tg
= C*+ %(E —vg) H (7 — Tg)
as required. O

Proof of Lemma 2
The translation equivariance of p yields

ple(z, S)}zixTHI + (1 — 5)]17 Z (v(y:) ") + 6CVaRy_o[{v(y;) "2}

The first order conditions for RSAA(J) become
0 € dp(c(x,5)) =Hx+ (1 —0)vs + dGcvar (12)

which gives (8) and (9) when the subgradient at the optimal solution is
unique. Il

Proof of Lemma 3

We begin by establishing the value that we will use for Ucvar in the case
that CVaR;_, [{v(yl) x}] is not differentiable at xg44(S). We suppose that
o € (4, %] for some integer m. For a given x, we suppose that

v(y) Tz > v(y2) Te > o) 'e = v(yp) e = o= o) '@

with v(ys) "z > v(y;) "z, for all j > ¢, and k < m < ¢. When k # ¢ we have
non-differentiability of CVaR and the subdifferential 9CVaRi_q [{v(y;) " z}]
is the set

k—
1 /{: —1
GCVaR = _N Z aN )COHV{’U(yk), U(ykJrl)a ey /U(yf)}
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We write 240’ for z r(S) at a particular value 9. Suppose that the ordering
R
(including equalities) of the elements v(y;) @, i = 1,2,..., N is the same at

5 and 2§”. Hence Gevar(ry”) = Gevan(zly”) = G. So we can find

g; € G with xgi) = —H ' ((1-6;)vs + 0;9;). Thus

025 + (1 - 0)29? = —0(H((1 - 6,)Ts + d1g1))
—(1- Q)H_l ((1 = d3)vs + 6292)
= —H((1-B)us + B2)

where 8 = 0§, + (1 — )y and z = (00,/8)g1 + ((1 — 0)02/8)g2. Now z
is a convex combination of ¢g; and g5 so is in G. Also GCV&R(ngl) + (1 -
H)xgz)) = (. (This follows since the ordering relation between any v(y;) '
and v(y;) "z is preserved by taking convex combinations of the z.) Thus
a:g) = Ha:gl) +(1— 6’)1:%2) since the optimality condition is satisfied. Hence
we have established that for any ¢ between d; and 5 the optimal solution
lies on the line between xgl) and xg?) and the ordering between the elements
v(y)) ', i=1,2,--- N is preserved.

Consider ¢ — 0. There are only a finite number of possible orderings and
by our argument above orderings cannot be repeated. Hence the ordering is
constant for ¢ close enough to 0. Now we can use the analysis above (setting

91 = A fixed, 02 = 0, u = 0) to show x%A) = ex%) +(1—¢)xsaa(S) provided
A is chosen so that the ordering of the elements v(yi)Txg) remains constant

for 6 < A. Now, from optimality of x%A), there is some g2 € GCV&R(x%A))

with
a:gA) = —H ™ ((1-eA)vg + (cA)g"Y) .
We define

Dovar = lim 2.
e—0

Since GCVaR(x%A)) is compact this limit point exists and because x%A) —
x544(S) as e — 0, and the graph of the subdifferential for a convex function
is closed, we can deduce that Tavar € Govar(Tsaa(S)).

More generally we will define Toyar (2r(S)) for § > 0 as

Uovar (2r(5)) = —(1/0) Hrr(S) — ((1/6) — 1)vs.

The optimality conditions ensure that this is in 9CVaR;_, [{v(y;)"z}], and
so matches the gradient when CVaR is differentiable. Recall xg44(S) =
—H 15g, so we get

.CER(S) = 5135,4,4(5) — 5H_1(ECVaR(xR(S)) - ES)
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and
1

CsAA<S) = Ep[c(achA(S),y)] = EstA(S)THISAA(S) +5TJ}SAA(S).

If we write R for (Tcvar(zr(S)) — Us), then the expected cost of the risk-
averse solution given the sample S is

Cr(S) = Eple(zr(S),y)]

- % (2544(5) - 5H_1R)T H (2544(S) = 6H'R) + 0" (z544(S) — 6H 'R)

= Cs4a(S) — 6x544(S) R + %ZRTH‘lR — 0o H 'R
= Cgaa(S)—6(W—1vg) H 'R+ ZjRTﬂlR.
Thus we obtain
VRS() = Eg[6(v —Tg)"H 'R — (SQ—QRTH‘lR].

In this expression R depends on zx(S) and hence 6. From our discussion
above we know that Tovar (r(S)) approaches Tevar as ¢ approaches 0. Hence

MVRS = Eg[(v—7vs) H 'R]

= Es[(v —vs)"H ' (Tevar — Us)),
as required. O

Proof of Corollary 4

Applying Lemma 3 with H = 2 and v(y) = —g(y), so s = —gg. Now
Tovar is the derivative of CVaRy_,[{v(y;) "2}] evaluated at x544(S) = gg/2.
Thus

Vovar = CVaRi_o[{—sgn(gs)g(v:) -
As in Lemma 3 there is a need for care when xg44(S) = 0 since at that
point we have CVaR;_,[{v(y;)"}] non differentiable. The formulation here
makes Uovar = 0 in this case. But since the Corollary statement involves an
expectation over a continuous distribution we can see that xg44(S) = 0 with
probability zero and our definition at this point will have no impact.
We obtain for all § > 0 sufficiently small

zr(S) = wg4a(S) — §H '(Vovar — Vs)
= x544(S) — (6/2)(CVaRi_o[{—sgn(gs)g(v:) }] + 7s)

= z544(5) — g@s + CVaRy_o[{—sgn(gs)g(¥i) }])
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and

MVRS = Es[(v—vs)' H  (Vovar — Us)]
= (1/2)Es[(—7 + 7s)(CVaRi_o[{—sgn(gs)g(v:) ] + gs)]
= (1/2)Es[(gs — 9)(gs + CVaRi_o[{—sgn(gs)g(v:) }])]

o? 1

= o+ 3Bsl@s — 9CVaRi_a[{—sen(@s)g(v:)}],

as required. O

We now prove some results on order statistics for samples of a random

variable W with mean 0 and cumulative distribution function F' and density
f- We let

Pue) = [ uftide, Q)= [ urn

z

where we usually drop the explicit dependence on the distribution W. Thus
P(2) + Q(z) =0, and P(o0) = Q(—o0) = 0. Suppose {wy,ws, ..., wy} is a

random sample of W, with order statistics z; < 29 < ... < zy. The sample
N

mean is z = ]lv E Z;.
i=1

Lemma 13 B[2}] = iy [ o 2 F(2) 7 f(2)(1 = F(2)V'dz.

Proof. Consider the event A; = {z; € (24,2, +€)}. Then

P(A4;) = P(z € (T4, 2q +€))
i — 1 of the w; in (—o00, x,),
N P( one w; in (T4, x, +¢€), N —iof w; >z, + €. )
N(N-1)(N—-2)...(N—i1+1)
(1—1)!
XF(2,) 1 (F(2q +€) — F(2,)) (1 — Fx, + £))N-i

= v o ! e F )T 1 Faa)™ e 4 ofe).

Thus
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Lemma 14 If: < j then

N(N = 1).(N = j+1)

Bzl == =iz

/ / oy B(Ta, xp)drpd, (13)

(o)

where
B(xa,x0) = F(a)" f(a) f () (F () = Flwa)) ™" (1= Fa)N .

Proof. The joint distribution of z; and z; can be expressed in terms of the
event A;; = {z; € (v4, 2, +¢) and z; € (zp, 7, + ') }.

P(A;;) = P(z € (24,7, +¢) and z; € (xp, 2 + £))
( (i —1) w; in (—00,x,), one w; in (z,,x, + €), )
P

j—1—1of the w; in (z, + ¢, 1),
one w; in (zy, zp + €'), rest of the w; >z, + €.

_ (i]_vl)(N—iJrl)(j]Yi__il)(N—j+1)

X F(24)  (F(2q + ) — F(z4)) (F(z3) — F(l'a + 8))j—i—l
X (F(xb + g/) — F(SL’b)) (1 . F(l’b + 8/>)N—J.

But
(@'71 ) (N—i+1)<j]l[i__i1 ) (N—j+1)
N(N =1)..(N = j+1)
(i—DI(G—i—1! 7
and
F(aa)™! (F (20 +€) = F(2a)) (F(zy) = Flaa +2)) ™
< (F(ay+€) = Play)) (1 - Flay + )V
= B(xg,xp)ee’ + o(ee’).
Thus
N(N 1) (N —j+1) [* [
Elziz;] = I _‘]1)! /_Oo /xa 2oy B(2 4, xp)dxpdr,

as required. m
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Lemma 15

> Bleisl = ey F ) PR T 000z,
J=i+1 (14)
Proof.

N

N(N=1)...(N—i+1)(N—4)
(i—1)!

N
D ==

1 — F(z,)V=1,

Substituting in (13) and substituting for Q(z) yields (14). m

Lemma 16

j—1
N! ° , .
Elzizi] = — - / P(2)zf(2)(1 = F(2))N 7 F(2)2dz.

> Bl = gy | PO~ FOP )
Proof. Observe that 37| E[zz2;] is the same as Zf\iN_jJrgE[win_jH]
when w = —z. Now using Lemma 15 we have

N NI 00 ' '

> Blunv jawi] = E 1/ 2Fw (2)" 7 (1=Fw ()~ fw (2)Qw (2)d=

where we use a subscript W to show that the relevant quantity is with regard
to w not z. Since Fiy(z) = 1 — F(—2) and Qw(2) = [° uf(—u)du we can
change variables v = —z and obtain

> Bluw-jiwl = o [ —o0=FE) I F) ) [ uf(-udude,

— N7 —2)!
i=N—j+2 (N =G =2 o e

Finally changing variables ¢ = —u gives f_oz uf(—u)du = fvfoo tf(t)dt =
—P(v) and we recover the expression we require. m
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Proposition 17

E[z;z] = Ty / Q(z WIR(Y e, (15)

Proof. Applymg Lemmas 13, 15, and 16, we obtain

Elzz] = (ZE zizj) + Bz Z Elzz )

i=j+1

B (7 _(]2\;!(_]\})— J)! /_OO P(2)z2f(2)(1 — F(2))N 7 F(2)2dz
(N (—]\;)T(jl)—' 1)! /_OO 2R ()1 = F(2)NYdz
- 1(>]’¥N_ _1); —1)! /_Oo 2P (Y7 (1= F(2)V 77 f(2)Q(2)dz
_ w-ny
(N =) -

where

A =[G DPEE0 - FE)IFG)
+ /_ Z 2EEV() (1 = F(2)Nde
[ - PN )
Integrating the third term of A by parts gives
[—(1 = F(2)V9Q(2)2 F(:) 1)
+ /_Z(l — F(z))Nj% (Q(2)zF(2) 1) dz
= [ a-Fey e re
- [Py [ ey
+ [0 Y Q) - DFEY ) d:

which cancels with the first two terms of A (using the fact that P(2)+Q(z) =
0) to yield

A= / (1~ F(:)Y Q) F(2) dz,
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which demonstrates (15) as required. =

Proof of Proposition 5
We will use Corollary 4 and show that

~Es[(Ts — 9)CVaR,_o[{—g(y:)} / Q(2)(1 — F(2))N 1A (2)dz. (16)
First observe that

Es[(gs —9)g] =0

SO

—Es((7s —9)CVaRio[{—g(w:)}]] = —Esl(gs —9)(CVaRi_o[{—g(s:)}] +7)]]
= —ES[QDCV&Rl_a[{—wZ‘}H.

We have that —CVaR;_,[{—w;}] assigns probability 1 to the lowest 100a%
outcomes of w;, and takes the expectation. Thus, if o € ("% L , %) then

1 1 m—1
—CVaRl_a[{—wi}] = a—Nzl + a—NZQ +...+ (1 T TaN )Zm,
SO
_ 1 1 1
—Eg [wCVaRy_o[{—w;}]] = —NES[w21]+—NES[w22]+ —I—(l—a—N)ES[wzm].

Since Proposition 17 gives

E[wz;] = 0 =1 / Q)1 —F()Y N F(2) dz
and
1 1 F(z)
Aol2) = TR+ oy WV - DT Foy
1 (N—1)(N—2) F(2)?
TN 2 1—F()?
m—1 ( N-1 F(z)m!
Foe ks azv>( —1)<1—F<z>>m—1’

where m is the unique integer for which a € (%, %], the identity (16) now
follows. o
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Lemma 18 Suppose z has density f and cumulative distribution function
F. For all a € (0,1],

/_ "R FE) Y A2z = 1 (17)
Proof. First observe that if v < <, then A,(2) =1 and
o 1 > 1

| fe0-rey e - -a-Fe] -4

We next show (17) for every a = &, m = 1,2,..., N. In this case
1 F(z) N -1 F(z)m 1

Au(2) = . (1+(N_1)—(1—F(z)) +..F ( m— 1 ) (1—F(z))m—1> :
Now

- — F(2))N-1 N -1 F(z)m1 i

[ rea-rer (1) g
— | e’}

G —%!(2 — ) | Q=R s

—00

= 5 ([ a9 = &

where the final equality follows from observing that the integrand is the
density of a beta distribution and hence integrates to 1.

1,1 1 1

So
/_OO f(2)(1 = F(2)VN Ay (2)dz = E(ﬁ N +...F N)

where the sum is over m terms. This yields the result for o =
1,2,...,N.
Now suppose a € (%, ’"T“], m=1,2,...,N — 1. Then

ol _m [ N=1Y\_FE"
Ao(2) = Am(2) + (1 @N)( m )(1—F(2))m

m —
N> o=

which is linear in L € [I5, &) so [* f(2)(1 — F(2))V"Au(2)dz is also

linear in é in this range. Since we have established that

= N-1 _ 1
| e PEP e =
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for o = 2 and o = 5, and for each z, A,(2) is continuous at o =

identity must hold throughout this range which gives the result. m

5 the

Proof of Lemma 6
Recall that

1
CSAA(S) =C"+ 5(5 — @S)THil(ﬁ — 55).

The expected cost of the robust solution has the same form as Cs44(S) but
with Ug replaced by vg+0 R(S&) /2 (given by the adjusted weights on the sample
points). Thus

Cr(S) = C"+ %(v — U5 —6RY /2)TH (v — 5g — 6RY /2)

= Csanl(S) + (6/2)(@ —vs)TH'RY + (6%/8)RYTH'RY.
Thus
VRS(6) = Es[(3/2)( —Ts) H'RY + (6*/8) RS’ H'RY).
We know that Rgs) approaches Rg as 0 approaches 0. Hence
MVRS = Eg[(1/2)(7 — Ts) " H ' Rg]
as required. O

Proof of Lemma 7
If z; is the 7’th order statistic of {w; : i = 1,....N} then

MVRS = 1B[(gs — 5)Rs
_ }lE (en — 21)3].
Let
Q) = ([ wstwan).
By Lemma 17,
Elzy7] = / Z Q(z)F(2)"1d>
and

B3] = /_ T 060 = Fl2)¥dz
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which yields the result. [

Proof of Proposition 8 B
From the definition of 7 we have F(z) = F(77!(z)), and

f) = fr @)/ ().

As 7 is the mean for F, we have zg = s wf(w)dw. We know that F has
mean 0 and hence

0= [ sptra= [ =T O | )t 19

using a change of variable w = 771(z) so 7/(w)dw = dz. We may write

| rwiwde = [ wftwe [ °° () Fw)du
-/ :°<2ZO ~af s [ Oo () Fw)du
using symmetry for fv So

/00 (7(2) + 220 — 2) f(2)dy = 0. (19)

We rewrite our required expression in terms of F':

Bl(Gs — 7)Rs] = / (F(2) F()Y ) ( /:ouf(u)du>dz
[ (e g

(L Wi )

I

ﬁj

8

(1= Fr ()"
(Flw)™ ~ F(w)™)

( /w dz)  (w)dw

using a change of variable w = 77%(z) and z = 77! (u).
Hence

E[(gs —9)Rs] = /Z (f(z)N—l (1- ﬁ(g))N—1> (/:O Wiz + /Z:O T(u)f(u)du) B
" /:° (ﬁ(z)N*I - (1= ﬁ(z»Nﬂ) (/oo T(U)f(u)du> 7(2)dz.

41



We want to replace 7/(z) with 1 in the second term and to do this we need

to establish that T'(z) = [7°7(u)f(u)du > 0 for z > 2. We have T"(z) =

—7(2)f(2) and as zp < 0 the function T'(z) increases as z increases from z
and then decreases to zero. It is enough to show that 7'(zp) > 0 to show
T(z) > 0 for z > z;. Now from (18)

T(x) = — /_ ) (2)ds = — / OO F(2)dz

[e.9] -

= —zo—i-/ wf(u)du
20

= —% +/ (u — 20) f(u)du > 0.
20

Hence (ﬁ(z)N_l —(1- ﬁ(z))N_l) (fzoo T(u)f(u)du) > 0 for z > 25. Thus

using 7/(z) > 1 we have shown that

20

E[(gs —9)Rs| > /oo (ﬁ(z)N_l —(1— ﬁ(z))N—1>

« ( / T2 + / OO T(u>f(u>du) d

+ / N <f(z)N’1 —(1— ﬁ(z))f“) ( / N T(u)f(umu) dz.

20

Now F(w)¥N=1 = (1—F(w))¥~! is symmetric with a change of sign around
zp- We can use the same argument that established MVRS is zero for sym-
metric f to show the corresponding expression for I is zero after shifting to
allow for the non zero mean:

[ (P == Ry ) ([0 fui) dw - o

We can subtract this integral from the right hand side of the inequality
to obtain
20

(ﬁ(z)Nfl —(1- ﬁ(z))Nfl) ( / o f(u)du + A> dz

w [ (Pt = = B
« </:O(T<u) —u+t zo)f(u)du) i

Ewy@mgzl/

—0o0
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where A = [>(7(u) — 2z + 20) f(u)du. Hence

Bligs - 9)fsl = [ (PGP = (= F)¥ ) U + VE)d:
where U(z) = [ 2of (w)du + A for z < zy and U(z) = I 2o (u)du + A for
z > z9. Note that U is symmetric around z; and is maximized at z; since
zo < 0. Hence

(ﬁ(zo BN (1= Pz — k:))N‘1> Uz — k)

_ (ﬁ(zo RN (1= Fzo + B)Y ) Ulzo + B),
and so [ ( ﬁ(z))N_l) U(z)dz = 0.
Also V(z) =

=0 for z < zy and for z > zy we have

V(z) = /:O(T(Z) — u+ 20) Flu)du — (/ zof(u)du + A)

= / (=220 — 7(u) + u) f (u)du.
20
So, from (19), V(co) = 0. Now 7(u) 4+ 2zp — u has derivative 7/(u) —1 > 0
and because the integral in (19) is zero, we can deduce that 7(u) + 229 — u
starts negative and becomes positive. Since

d

SV () = (=22 — () + 2)](2),

we know that V' starts by increasing and then decreases to zero. Moreover
V(z0) = 0. Hence it is always non-negative. Since V(z) is zero for z < zj
when F(2)V~1 — (1 - F(2))¥"! <0, then

/Oo (F(z)N—l (- ﬁ(z))N—1> V(z)dz > 0,

—00

and so B[(gs — g)Rs] > 0. In the case that F and F are not identical then
7'(z) > 1 on some region and the inequality becomes strict. O

Proof of Proposition 10

We suppose that ¢(z,y) is concave in y. We first observe by Proposition
9 that this is enough to show that the solution to P has each v; supported
on a single point (if v; has weight p on z; and (1 — p) on z;; then setting
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v; to have weight 1 on pz;; + (1_— P)zie increases the objective of P and still
satisfies the constraint). Thus P becomes

P1l:max,, Zf;l cz(2)
subject to Zfil |z — yill <96.

The Lagrangian of P1 is

N
L= (co(zi) = Mlzi — wil]) + A0

i=1

which is maximized at z;. So

Zj Yi
Ve (zi) — A =0
1z — will
if z; # y;. This establishes (a) where a; = m To establish (b), notice
that ||V (z)|| = A and so has the same value for each i where z; # y;.

In the case that z; = y; we must have £ is not increased when z; =
y; + eVeg(y;) for small € > 0. Thus

e IVealy)ll” = Ae [ Veaya)]| < 0,

and ||Ve,(v:)|| < A. And hence for any choice of z; with z; # y;, ||Veo ()| <
IVex(2i)]], as required. O

Proof of Proposition 11

Suppose that the solution to P has v, with support in .J; discrete points,
and probability v,; on point z;;, j = 1,2,...J;. (J; = 1 or 2). For some i
consider choosing a new point z, instead of z;;. More precisely we replace the
term v,;c,(2i5) with ygc.(20) + (745 — Vo) (y:) Where we choose 7, to make
the Wasserstein distance the same, or less:

Yo = min(;;, %5 (125 = %ill / 1|20 — will)-
There will be an increase in expected cost if ez (20) + (Vij — Vo)Ca(4i) —
Yi;C2(2ij) > 0. In the case that z;; is not at the boundary of M then we move
2p out to the boundary by choosing zy = y;+«(%;;—y;) for some o > 1, so that
125 = yill / 20 — will = 1/ By convexity c;(z0) > cx(y:) + a(c(zij) — c(vi))
and thus

Yocz(20) + (Vi5 — Vo) Ca (Vi) — Vijce(2is)

Ca(20)7i5/ o + (Vij = Vg /@) a(yi) — Vijca(2ig)

= 7y (ca(20) = calys) — alc(ziy) — c(ws)) oo > 0.

44



Hence we deduce that one of the points on which weight is placed must be
at the boundary (to avoid a contradiction).

Suppose now that v; has mass at y; and for some other j with v; # y;
we have max.cn(p;(2)) > max.en(p;(2)). Suppose that v; has weight at
zjn # yj- Choose a point 2 with ¢;(27,) > ©;(2;n). Then for small ¢ > 0 we
set Vj(zjn) = vi(zn) —¢, Vi(y;) = v;(y;) +e, vi(2h) = ke, vi(y:) = vi(y:) —ke
where k = ||zj, — y;|| / |25 — vill.  The change in the objective function is
given by

e (ca(ys) — calzjn)) + ek (ca(2h) — calys)) = € llzin — ysll (wilii) — @;(25m))
> 0,

so that there is an improvement and it is easy to check that the overall value

of NV, ijl |zij — will 7; is unchanged. This gives a contradiction and

establishes what we require. O

Proof of Proposition 12
(a) The first order conditions are

2 —gs+0||Vg(ys)l = 0.

Hence

rR(S) = “% —0lVgys)ll /2 = 544(5) = 0 [Va(ys)ll /2.

The expected cost for the robust solution can be calculated in the same way
as we have seen in the other two cases.

Cr(S) = Ep[c(xk(S5),y)]
= bap(S) +aR(S)” — 2x(9)g
= Csaa(S)+ @ —7s)0 IVas)ll /2 + 8 Vg (ys)|® /4.
So
VRS(0) = Es[(gs — 9)0 |Vl /2 + 6* [Va(ys)|I? /4],
and
MVRS = Es [(9s — 9) [[Vg(ys)ll] /2.

(b) In the case that g(y) = y* and y is non-negative then y% is the largest
y; in S, which we write as the order statistic yx. Then since Vg(y) = 2y we
have
N
MVRS = Eg|((1/N)Y_ 4 —Ely)yn

=1

= Es[y >_ v~ Ely’]Blyx].
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Writing y; for the order statistics we have, for i < N, (essentially this is
the result of Lemma 14 with j = N)

Es (ynyi)
| oo oo , |
- (i — 1)!(]]\\[[‘_ i—1)! /0 / wranF(2a) " f (2a) f () (F () — F(ZL"a))N_Z_l dxydx,.

But
3 N i—1 N—i—1 N_9
2 iy it @) () = Fla)) T = NV =D
SO
N-1
ZES (yvyi) = -1) / / 2oy F ()N 2 f (w0 f (23 dzpd,.

i=1

Now yn has distribution F(2)" so has density NF(z)Y~1f(z). Thus

s (yn) N/ ()Y f(2)dz

1= 1
MVRS = NZ yNyZ +NES (yN) Es[y2]Es[yN]
—1

~ (V-1 / ( /:ouﬂu)mf(u)du) 2f(2)dz

+ /000 BE()N T f(2)dz

~N ( /0 2 f(u)du) /0 TP (2)d

as required. ]

We have
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