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Abstract Increasing levels of renewable power generation require changes
in investment models to deal with intermittent supply. We present a Markov
decision problem that can be used to model thermal plant operation with
intermittent demand, and show how this can be incorporated into a mixed
integer programming model for optimally choosing investments. The model
is extended to deal with staging investment over long planning horizons.
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1 Introduction

Recent years has witnessed an enormous growth in investment in renewable
energy generation. A description of the recent history of this development
under incentive schemes in the United States and Europe is given in [2].
Wind and solar power have zero short-run marginal cost of production and
if the load factors are high enough or the capital cost can be reduced by tak-
ing advantage of incentives then they provide an inexpensive and environ-
mentally acceptable generation technology. A number of authors [1],[13],[12]
have commented on the extra costs that must be borne by a system with
large amounts of wind or solar power. Some of these costs relate to the
variability of power supply that affects the system frequency and voltage,
requiring extra equipment to be installed to deal with this variability. On
the other hand, electricity systems that require reliable sources of power
must have either storage or reserve capacity available in case the wind does
not blow or the sun does not shine. Although the distinction is not precise,
the reserve capacity to meet this intermittency problem typically has slower
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response time than frequency-keeping or instantaneous reserve required to
deal with variability and outages. Most authors focus on the variability and
capture this aspect through time dynamics (see e.g. [12],[11]) without al-
lowing for intermittency. Wogrin et al. [18] address the variability problem
of introducing renewables through the concept of system states that takes
the place of a discretized load duration curve.
In this paper we derive a model for determining the optimal investment

in conventional generating plant to provide the required levels of reserve to
deal with an intermittent supply of renewable power. The model we describe
seeks an optimal mixture of peaking plant and plant with limited ramping
ability (such as combined-cycle gas turbines) to provide this reserve. Limited
ramping plant will be cheaper to run than peaking plant. By scheduling the
start-up and shut-down times of such plant it is possible to use less peaking
plant to cover periods when renewable power becomes unavailable. Our
model seeks to represent this flexibility in an optimal investment plan.
The paper assumes a central planning paradigm that seeks the optimal

level of investment to minimize total capital and expected fuel cost incurred
by a social planner. Our aim is to understand the differences in invest-
ments that are made when the flexibility of generating plant is accounted
for. While our model would pertain to a perfectly competitive electricity
market, other studies investigate generation investments under oligopolies,
but do not incorporate intermittency (see for example [19]). Although the
central planning approach to investment in electricity plant is becoming
increasingly rare in market economies, regulators and analysts still use op-
timization models as benchmarks of what investments might emerge from a
competitive market. However in the authors’experience, predictions made
from deterministic capital planning models are rarely matched by real in-
vestments.
Our goal in this paper is to provide a methodology to solve the stochas-

tic capital planning problem to serve as a different, and possibly improved,
benchmark. Such a benchmark might correspond to a competitive equilib-
rium in which all agents are risk neutral and share the same probability
distributions for future uncertainty. In practice, agents making investment
decisions based on discounted cash flows will be risk averse, with possibly
different discount rates. Unless the market for risk is completed, a compet-
itive equilibrium will not necessarily correspond to an optimal social plan.
In these circumstances a more realistic benchmark might come from a com-
plementarity model of the form discussed by [5].
Classical central-planning investment models [17],[7] use a screening

curve (Figure 1) to rank generation options by their long-run marginal
cost (LRMC), thus finding the best option to serve the production profile
for each additional demand unit. The screening curve shows the annual to-
tal cost per MW capacity plotted against the number of annual operating
hours. The total cost is a combination of fixed and variable cost based on
the number of production hours in a year. A minimum cost for each capacity
factor can be found by combining the screening curve with the load duration
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Fig. 1 The screening curve: how capacity is traditionally planned in electricity
systems. (Source: [7]).

curve (LDC). The projection produces the least-cost capacity combination
that can serve the load profile. For example, to supply the part of the LDC
that has higher capacity factor (i.e. running most of the year), base load is
the least cost option. As the number of operating hours decreases, the plants
that are less expensive to build but more costly to run start to become more
economical. For a small capacity at the tip of the duration curve, the very
high variable cost peakers are the most economical.
The screening curve approach can be formulated as a linear program

(LP), where

— i denotes different generating technologies,
— t ∈ T denote the operational hours in the year.
— the variable yi is the capacity invested in technology i,
— ri(t) denotes the production at time t with technology i.
—Fixed and variable cost for technology i is defined as Fi and Vi respec-
tively.

This gives:

LP: min
∑
i Fiyi + Vi

∑
t ri(t)

s.t. g(t) ≥ d(t), t ∈ T ,
g(t) ≤

∑
i ri(t), t ∈ T ,

0 ≤ ri(t) ≤ yi, t ∈ T .

Formulations like LP appeared as early as the 1950s [10], although the
basic formulation has been extended in the past two decades to include
operational constraints, and some supply-side uncertainties such as plant
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outages and technological changes were added. Demand distributions are
still represented by load duration curves, or their discretized versions [3].
The ability to produce electricity on demand becomes valuable in a world

with intermittency, but such flexibility cannot be valued in the traditional
models based only on the marginal cost of energy. In fact, when running the
ex-post dispatch problem, the optimization no longer follows the short-run
marginal cost merit order when expensive plants must be started because
of ramp constraints. To account for flexibility, the model we use requires
some representation of load uncertainty. Although we assume that overall
demand for power is relatively predictable, the residual demand after renew-
able energy has been subtracted, is not. In our context, residual demand is
demand net of renewable generation. In other words intermittent genera-
tion will always be dispatched first and provides the system with a level of
residual demand which must be met by conventional plant (or not satisfied
at some penalty cost).
In our model, demand net of intermittent generation is treated as a time-

inhomogeneous Markov process. This represents the case where demand is
deterministic and intermittent generation is Markov, but the model also
admits stochastic demand as long as the net demand is Markovian. The
Markov assumption enables us to treat the dispatch problem as a Markov
decision problem, in which dispatch actions for ramping plant and peaking
plant are chosen to meet the residual demand at least expected cost per
period. It is of course possible to include some provision for ramping plant
in the LP model by requiring a given number of hours of ramping capac-
ity, and then requiring that the optimal choice of plant type provide this.
The requirements are however endogenous as they depend on the operating
policies of the plants faced with uncertain residual demand. Specifying the
correct ramping capacity requirement in LP begs the question of what this
should be, which is the question that our model seeks to answer.
The paper is laid out as follows. In the next section we outline a Markov

decision process for dispatching generation in systems with intermittent
generation. We then explore how this model can be extended to optimize
capacity expansion decisions. Section 4 describes a multistage framework for
capacity expansion over a long planning horizon and applies this to some
simple examples. Finally, section 5 makes some concluding remarks. The
paper is intended to be an exposition of a new methodology and so the
results presented are from simple examples. More realistic examples can be
found in the first author’s PhD thesis [20].

2 A Markov decision process for dispatch

In this section we describe the Markov decision process used for dispatch
with intermittent generation. Consider demand net of intermittent genera-
tion. We refer to this amount, which must be met by non-renewable elec-
tricity generation, as net demand or residual demand. Clearly intermittent
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generation leaves the system with a random level of residual demand. If the
levels of renewable penetration are relatively low, then the net demand series
will look like a typical daily demand curve with some random variation.
To model the residual demand, we divide each 24-hour period into N

time intervals, and represent residual demand by an average demand (shown
by the blue curve in Figure 2), and a random variation about this average.
The random variations are represented by a discrete process that moves

Fig. 2 A realization of a Markov chain with N = 8 and M = 5, corresponding
to the sequence of states 3,5,2,5,2,1,2,5.

between a finite number (M) of states (five are shown in Figure 2.) By
studying historical renewable dispatch and electricity demand over each of
these intervals, one can estimate the parameters of a Markov chain that
models the transitions between each state. We denote the elements of the
M ×M transition matrix by pij(t). Since these probabilities depend on t
the Markov chain is time-inhomogeneous. A typical realization of a five-state
Markov chain is shown in Figure 2.
The investment model that we define in this paper accounts for the

operations of the chosen plant bearing in mind the variability of the resid-
ual demand process. These operational decisions are undertaken at a dif-
ferent time scale from the investment decisions, but the expected cost of
them depends on what plant investment decisions have been made. Given
a Markov decision process in which state transitions occur every few hours
the expected annual operating cost of the system is best represented by an
average reward per period objective. A infinite-horizon discounted reward
model is also possible in our framework, but we do not pursue this as the
discounting in each transition would be negligible. In both cases the optimal
operating policy can be computed by solving a linear program. This linear
program can then be embedded in an “upper level”optimization problem
that will determine the optimal investments in e.g. generation capacity of
various types, as we will observe.
Residual demand in our model will be satisfied by a mixture of baseload

plant, ramping plant, and peaking plant. For notational simplicity we re-
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strict attention in what follows to a model with a single ramping plant that
can operate at discrete levels L = {1, 2, . . . , L}, and a peaking plant that
can operate at discrete levels H = {1, 2, . . . ,H}. Several ramping plants
with different characteristics could be included in the model. However the
increase in complexity would obscure the methodology that we are trying
to illustrate. We assume that all baseload plant provides an exogenous level
of generation that reduces the residual demand uniformly, and as such is
not varied over the optimization. Peaking plant is utilized (as a last resort
simple recourse decision) to deal with demand that cannot be met by any
other means. The only remaining form of action is to move the ramping
plant from its current operating level to a feasible operating level for the
next period. This action is constrained by its ramp rate. To model this ac-
tion we must record the current operating level of the ramping plant. This
requires a state variable that measures its operating level.

The seven characteristics of our Markov decision process model are for-
mally laid out below.

1. States The states of the Markov decision process are s = (t, l, i) where

t = period of day, 1, 2, . . . , N,
l = operating level of ramping plant, 1, 2, . . . , L,
i = residual demand level, 1, 2, . . . ,M.

Since residual demand varies over the day, the optimal action to be taken
in any state will depend on the time of the day, and so a time variable
is added to the state space to enable the construction of a stationary
optimal policy.

2. Action sets For each state s = (t, l, i), we choose an action a ∈ L ×H
that determines the operating levels of the ramping plant and the peak-
ing plant for the next period. Any remaining demand is met by load
shedding. The operating levels of the ramping plant defined by a is re-
stricted to a subset L(s) of L that is determined by the ramping plant’s
current operating level.

3. Decision time points The decision time points t correspond to discrete
points in time when the operating level of a ramping plant can be ad-
justed, e.g. every five minutes or each half hour.

4. The immediate rewards (or costs) The immediate cost of action a in
state s is the fuel cost of the ramping plant for the corresponding time
period t plus the cost of meeting deficit in the net demand through
peaking plant utilization or load curtailment. We denote this by c(s, a).

5. Transition probabilities P a(s1, s2) denotes the probability that the sys-
tem transitions to state s2, given that it is in state s1 and action a is
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taken. 1 If we denote s1 = (t, l, i) and s2 = (u, k, j) then

P a(s1, s2) =

pij(t),
if u = (t+ 1) modN , and taking action a ∈ L(s1)×H
results in operating level k for the ramping plants.

0, otherwise.

6. Planning horizon and optimality criterion We consider an infinite plan-
ning horizon and optimize the average reward. Let the policy π be de-
fined by the generation action a ∈ L(l)×H in each state s = (t, l, i). We
can state the infinite horizon average reward Markov decision problem
of finding the optimal policy π by solving

min
π

lim
N→∞

E

[
1

N

N∑
ν=1

c(sν , π(sν))

]
.

This defines a minimum cost operational policy for dispatching thermal
plant to meet residual demand in case renewable generation is not available.
The problem of computing this policy can be formulated as a linear program
(see e.g. [14]).

MDP: minx
∑
s∈S,a∈L(s)×H c(s, a)x(s, a)

s.t.
∑
a∈L(s)×H x(s, a)

−
∑
k∈S,a∈L(s)×H P

a(k, s)x(k, a) = 0, s ∈ S,∑
s∈S,a∈L(s)×H x(s, a) = 1,

x(s, a) ≥ 0. a ∈ L(s)×H,
s ∈ S.

In the next section we show how MDP can be extended to inform ca-
pacity expansion in thermal plant.

3 Capacity expansion

We wish to select a capacity investment in peaking plant and an investment
in ramping plant that will cover predicted increases in intermittent genera-
tion. An increase in peaking plant capacity might decrease the cost of load
shedding in some states. An increase in capacity of ramping plant changes
the set of actions available in each state. The formulation MDP in the previ-
ous section restricts the action a to be within a subset L(s)×H of L×H, the
1 Note that we make the standard infinite time horizon MDP assumption that
the transition probabilities are stationary. We can extend this basic model to
accommodate time-varying transition probabilities by classifying time periods by
season and time-of-day so that this assumption still applies.
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set of operating levels at the next time period. In our application, L(s) de-
pends only on the current level of ramping generation, l, where s = (t, l, i),
and defines the set of operating levels k that can be ramped to from l in
one time period. For example, we might have L(s) = {l − 1, l, l + 1}.
We proceed to describe a model in which L(s) can be altered by in-

vestment decisions. To do this we model L(s) using a flexibility matrix U
where

Ulk =

{
1, if ramping operating level k ∈ L(s), s = (t, l, i)
0, if ramping operating level k /∈ L(s), s = (t, l, i)

.

In the example where L = {1, 2, 3} and for each s, L(s) = {l − 1, l, l + 1}
we have

U =


1 1 0 0 0
1 1 1 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

 .
In general U will be zero everywhere except in the neighbourhood of its

leading diagonal, the width of which defines how much ramping is feasible
at the corresponding state. Thus row l corresponds to ramping level l, and
the nonzero entries in row l are in columns corresponding to ramping levels
k that are reachable from l in one period. So this includes column l, of
course, and some columns either side of column l. The last diagonal entry
of 1 corresponds to the ramping plant capacity. Flexibility matrices allow us
to augment the linear programming formulation MDP to give an equivalent
formulation MDPU with variables x(s, a), s ∈ S, a ∈ L ×H.

MDPU: minx
∑
s∈S,a∈L×H c(s, a)x(s, a)

s.t.
∑
a∈L×H x(s, a)

−
∑
k∈S,a∈L×H P

a(k, s)x(k, a) = 0, s ∈ S,∑
s∈S,a∈L×H x(s, a) = 1,

x(s, a) ≤ Ulk, a = (k, h), k ∈ L,
h ∈ H, s = (t, l, i),

x(s, a) ≥ 0. a ∈ L ×H, s ∈ S.

Note that the constraints on ramping that were previously modeled by
a ∈ L(s) × H are now represented by bounds on x(s, a) defined by the
elements of the flexibility matrices. The formulation MDPU can be used to
represent different amounts of ramping generation. An investment choice g
that increases ramping capacity can be modeled by a new flexibility matrix
Ug with an increased number of nonzeros. Therefore some variables x(s, a)
representing (infeasible) ramping actions that were originally constrained
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to be 0 can now become positive since Ulk < Uglk for some l and k. This is
illustrated in Figure 3.

Fig. 3 Two flexibility matrices. Investment in ramping plant gives the right hand
matrix which has more capacity (a longer diagonal) and more ramping ability (a
wider diagonal).

We are now in a position to define an investment optimization model
based on MDPU. Suppose we are considering ramping investments g ∈ G
and peaking investments h ∈ H, and wish to choose at most one of each.
Let zg ∈ {0, 1} denote the choice of ramping investment (at amortized
capital cost Mg) and vh ∈ {0, 1} denote the choice of peaking investment
(at amortized capital cost Nh). We choose indices g = g0 and h = h0 to
denote existing capacity (with Mg0 = Nh0 = 0).
The investment optimization model is then a mixed integer program:

MIP: minx
∑
s∈S,a∈L×H c(s, a)x(s, a) +

∑
g∈GMgzg +

∑
h∈HNhvh

s.t.
∑
a∈L×H x(s, a)

−
∑
k∈S,a∈L×H P

a(k, s)x(k, a) = 0, s ∈ S,∑
s∈S,a∈L×H x(s, a) = 1,

x(s, a) ≤ vh, a ∈ L × {h}, h ∈ H,
s ∈ S,

x(s, a) ≤
∑
g∈G zgU

g
lk, a = (k, h), k ∈ L, h ∈ H,

l ∈ L, s ∈ S,∑
g∈G zg = 1,

∑
h∈H vh = 1,

zg, vh ∈ {0, 1}, x(s, a) ≥ 0, g ∈ G, h ∈ H,
a ∈ L ×H, s ∈ S.

Observe that the choice vh = 1 for some h ∈ H precludes peaking-plant
actions for all other h, and the choice zg = 1 for some g ∈ G restricts
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ramping actions to those that satisfy the restrictions defined by flexibility
matrix Ug.
The size of problem MIP grows very rapidly with the number of invest-

ment choices and Markov states. It is easy to see that each investment option
considered gives a new Markov decision problem with its own collection of
state-action variables. To overcome this we use the Benders decomposition
approach of Dimitrov and Morton [4]. This replaces MIP by a restricted
master problem

RMP:minz,w φ+
∑
g∈GMgzg +

∑
h∈HNhvh

s.t. αi + β>i z + δ>i v ≤ φ, i ∈ O,

γi + λ>i z + µ>i v ≤ 0, i ∈ F,∑
g∈G zg = 1,

∑
h∈H vh = 1,

zg, vh ∈ {0, 1}, g ∈ G, h ∈ H.

Here the first and second sets of constraints are optimality cuts and feasi-
bility cuts. The coeffi cients of these are determined by solving the following
subproblem.

SP: φ (z̄, w̄) = minx
∑
s∈S,a∈L×H c(s, a)x(s, a)

s.t.
∑
a∈L×H x(s, a)

−
∑
k∈S,a∈L×H P

a(k, s)x(k, a) = 0, s ∈ S,∑
s∈S,a∈L×H x(s, a) = 1,

x(s, a) ≤ vh, a ∈ L × {h}, h ∈ H,
s ∈ S,

x(s, a) ≤
∑
g∈G zgU

g
lk, a = (k, h), k ∈ L, h ∈ H,

l ∈ L, s ∈ S,

zg ≤ z̄g, g ∈ G,

vh ≤ v̄h, h ∈ H,

x(s, a) ≥ 0, a ∈ L ×H, s ∈ S.

At each iteration i the subproblem SP is solved with a candidate solution
(z̄i, v̄i). At optimality, the dual multipliers (βi and δi) on the constraints
containing z̄i and v̄i give the coeffi cients for the ith cutting plane constraint

αi + β>i z + δ>i v ≤ φ
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in the restricted master problem, where we set

αi = φ
(
z̄i, v̄i

)
− β>i z̄i − δ>i v̄i.

In case SP is infeasible, a feasibility cut is added to the restricted master
problem. The details are provided in [8].
The solution of MIP using Benders decomposition is complicated by

the presence of binary variables in the restricted master problem, which
requires a branch-and-cut procedure. We have used the procedure described
by Rubin that uses the callback classes in CPLEX 12.2. (see [15]).

4 Multistage investments

In the previous section we showed how investment in ramping capacity
could be formulated as a two-stage stochastic mixed integer program, in
which the second stage is a Markov decision process. In this section we
extend our basic model to the case where investments are to be staged
over time as an uncertain future unfolds. We discriminate here between
the uncertainty arising from intermittency (modeled by a Markov chain)
and the coarse-grained uncertainty that applies to states of the world in
future years. These uncertainties (for example in future demand, fuel prices
or taxation levels) are modeled using a scenario tree N with N nodes as
shown in Figure 4. Each node n represents a state of the world at a given
future time period, occurring with probability φn. In the tree Pn denotes
the set of predecessors of node n, and Sn the set of successors of node n. A
scenario is a set of nodes consisting of a leaf node and its predecessors.

P3={1,3}

t=1 t=2 t=3

s=1

1

2

3

4

5

6

7

S3={3,6,7}

Fig. 4 A scenario tree with three stages and four scenarios.

The investment model we use is based on that described in [16]. We
first introduce this for a general investment problem, and then specialize
it to investment in peaking capacity and ramping plants in the presence of
intermittent sources of generation. Suppose we have initial capacity u0 ∈ RU
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that we increase with actions zn ∈ {0, 1}Z in node n of N . Investment in
node n costs c>n zn and contributes additional capacity Knzn ≥ 0 to the
system in every node h ∈ Sn. So, given actions zn, n ∈ N , the resulting
capacity in node n will be u0 +

∑
h∈Pn Khzh. In the state of the world

corresponding to node n we operate our capacity choosing actions yn ∈ Yn,
(where Yn denotes the space of all feasible operating decisions in state of the
world n), to minimize the operating cost q>nyn. The operations in the state
of the world defined by node n are futher restricted by capacity constraints

Vnyn ≤ u0 +
∑
h∈Pn

Khzh,

where Vn and Kn are matrices of order U ×Y and U ×Z respectively. Here
Vn is a matrix that transforms operational decisions yn to compute their
resource usage which is then constrained by the capacity u0+

∑
h∈Pn Khzh.

The capacity planning problem then becomes a multistage stochastic
mixed integer program.

SIP: min
∑
n∈N φn

(
c>n zn + q>nyn

)
s.t. Vnyn ≤ u0 +

∑
h∈Pn Khzh, n ∈ N ,

yn ∈ Yn, n ∈ N ,

zn ∈ {0, 1}Z , n ∈ N .

Observe that SIP has a set of binary variables (yn, zn) defined for each
scenario node, which makes it a very large problem to solve as a single mixed
integer program. The actions yn, however, are not affected by any decisions
in other nodes of the scenario tree apart from through capacity decisions
zh, h ∈ Pn. We observe that SIP has the form of a multi-horizon stochastic
programming problem as discussed by [9]. Our approach to solving this
differs from theirs in that we use the Dantzig-Wolfe decomposition technique
developed by [16].

Following [16] we assume for simplicity that each facility can be ex-
panded at most once over the planning horizon, and the matrix Kn of
possible capacity expansions for node n is a constant matrix K. As shown
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in [16] the model SIP is then equivalent to the following problem.

SIPS: min
∑
n∈N φn

(
c>n zn + q>nyn

)
s.t.

∑
h∈Pn zh ≤ 1, ∀n ∈ N ,

z′n ≤
∑
h∈Pn zh, n ∈ N ,

Vnyn ≤ u0 +Kz′n, n ∈ N ,

yn ∈ Yn, n ∈ N ,

zn, z
′
n ∈ {0, 1}Z , n ∈ N .

Observe that SIPS has a split-variable formulation where new variables z′n
have been introduced to represent the extra capacity available for utiliza-
tion in node n. This cannot exceed the accumulated investment defined by∑
h∈Pn Kzh.

Applying a Dantzig-Wolfe decomposition, the problem SIPS decomposes
into a restricted master problem and single node subproblems of the form

SP(n): min φn
(
q>nyn + π>n z

′
n

)
s.t. Vnyn ≤ u0 +Kz′n,

yn ∈ Yn, z′n ∈ {0, 1}Z .

Here we select a single node n, and ignore all variables ym, m 6= n, while
accounting only for variables z′n. SP(n) can be interpreted as a two-stage
investment problem of the same form as MIP in section 3. Given the in-
vestment in capacity defined by z′n, we seek to minimize the cost q

>
nyn of

operating the capacity in node n.

The problem SP(n) is still a mixed integer program so it is challeng-
ing to solve numerically. The diffi culty arises in the operational constraints
yn ∈ Yn which might involve many integer variables depending on the appli-
cation. Our approach will work well if integer programming methodologies
can be applied to give strong formulations of SP(n) and branch-and-bound
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strategies that solve rapidly. In our case SP(n) takes the special form

SP(n): minx
∑
s∈S,a∈L×H cn(s, a)x(s, a)− (π>n z

′
n + σ>nv

′
n)

s.t.
∑
a∈L×H x(s, a)

−
∑
k∈S,a∈L×H P

a(k, s)x(k, a) = 0, s ∈ S,∑
s∈S,a∈L×H x(s, a) = 1,

x(s, a) ≤ v′nh, a ∈ L × {h}, h ∈ H,
s ∈ S,

x(s, a) ≤
∑
g∈G z

′
ngU

g
lk, a = (k, h), k ∈ L, h ∈ H,

l ∈ L, s ∈ S,∑
g∈G z

′
ng = 1,∑

h∈H v
′
nh = 1,

z′ng, v
′
nh ∈ {0, 1}, x(s, a) ≥ 0, g ∈ G, h ∈ H,

a ∈ L ×H, s ∈ S.

Here the role of Kz′n is played by replaced by v
′
n, the peaking plant capacity

choice, and
∑
g∈G U

g
ikz
′
ng, which defines the increases in ramping capacity

provided by the extra capacity made available by the variable z′n. We solve
SP(n) using Benders decomposition as discussed in section 3.
Suppose the solution to SP(n) yields z′n = ẑn ∈ {0, 1}Z and v′n =

v̂n ∈ {0, 1}V . This defines a column
[
ẑn v̂n

]>
of capacity decisions which

is added to the columns of a Dantzig-Wolfe restricted master problem, as
long as its reduced cost is negative. The columns are generated dynamically
with different πn and σn the dual variables at the optimal solution of the
restricted master problem

RMP:min
∑
n∈N φn(c>n zn + d>nvn) +

∑
n∈N

∑
j∈Jn φnq

>
n ŷ

j
nw

j
n

s.t.
∑
j∈Jn ẑ

j
nw

j
n ≤

∑
h∈Pn zh, n ∈ N , [πn]∑

j∈Jn v̂
j
nw

j
n ≤

∑
h∈Pn vh, n ∈ N , [σn]∑

h∈Pn zh ≤ 1,
∑
h∈Pn vh ≤ 1, n ∈ N ,∑

j∈Jn w
j
n = 1 n ∈ N , [µn]

wjn ∈ {0, 1} n ∈ N , j ∈ Jn,

vn ∈ {0, 1}V , zn ∈ {0, 1}Z n ∈ N .
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Fig. 5 A schematic showing the nonzeroes of the restricted master problem ma-
trix for a scenario tree with 7 nodes. The columns on the left correspond to
variables z, and those on the right correspond to variables w.

The reduced cost of the column defined by the optimal solution of SP(n) is
then

φn

 ∑
s∈S,a∈L×H

cn(s, a)x(s, a)− (π>n ẑn + σ>n v̂n)− µn

 .
The essential matrix structure of the restricted master problem for a

seven-node binary scenario tree after four iterations is depicted in Figure 5,
where we omit the coeffi cients of constraints∑

h∈Pn

zh ≤ 1,
∑
h∈Pn

vh ≤ 1, n ∈ N .

The seven blocks of columns on the right of the matrix correspond to[
ẑjn v̂

j
n

]>
, j = 1, 2, 3, 4, n = 1, 2, . . . , 7, and the blocks to the left of the

matrix yield
[
−
∑
h∈Pn zh −

∑
h∈Pn vh

]>
, n = 1, 2, . . . , 7. The constraints

are all ≤ 0, except for the last 7 convexity constraints on the variables wn.

5 Results

In this section we present the results of running the models on some exam-
ples. These are designed to give an indication of improvement in computa-
tional performance obtained as compared with alternative models, and to
show how the solutions obtained account for flexibility in investment and
operation.
The first experiment computes the solution to MIP in section 3 (called

the MDP model) and compares this to the solution computed using a screen-
ing curve. The results are shown in the table in Figure 6.
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The columns headed “Theoretical Results”show that the screening curve
yields a solution with more ramping capacity and lower peaking capacity
than the MDP model. Since ramping plant has lower short-run marginal
cost than peaking plant, the screening curve model predicts a lower cost
per period for the screening curve optimal solution than the cost per period
for the MDP solution. The amount of ramping plant recommended by both
models increases when the wind is more variable, while the screening curve
solution recommends a lower investment in peaking plant. In both scenarios
the screening curve model predicts a lower cost for the screening curve
solution (as one might expect).
The right-hand side of the table shows the result of simulating the op-

eration of each solution for 2920 consecutive eight hour-periods over 50
random sequences of wind accounting for the limited ramping capability of
the ramping plant. The cost-per-period for each solution is averaged over
the 50 simulations. Now the screening curve solution has a higher cost per
period than the solution recommended by the MDP model. Much of this
stems from insuffi cient peaking capacity leading to load shedding (at very
high costs). The MDP model accounts for ramping limitations and so in-
stalls more peaking plant to account for this.
The next experiment we describe compares investments for two net de-

mand profiles as shown in Figure 7. The first net demand profile comes from
a wind process that is negatively correlated with demand variation, so wind
reduces the net demand variation. The second net demand profile comes
from a wind process that is positively correlated with demand variation, so
wind increases the net demand variation. For both cases the net demand
duration curves are the same.
The investment solutions yielded by the MDP model in each case are

shown in Table 1. The second (more volatile) net demand scenario results
in more peaking and less ramping plant than that obtained from the MDP
model in the first scenario. Observe that the screening model would give

Fig. 6 Comparison of screening curve investments and MIP investments for dif-
ferent wind penetration. The MIP model puts more in peak load generation,
resulting in lower costs when simulated.
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identical solutions in these two scenarios (as they have identical net demand
duration curves).

Ramping (MW) Peaking (MW) Cost per period
Demand profile 1 700 780 $189,635
Demand profile 2 600 960 $223,047

Table 1 Results for wind profile example from MDP model

We now look at a multistage investment model with uncertain demand
growth. This model is called GEMSTONE-MDP as it is based on the GEM-
STONE model [6]. In all experiments, a discount rate of 8% per year is
applied to both investment and operational costs in the model, so that time
value of money is reflected in the reward calculations.
We first consider a version of GEMSTONE-MDP with no wind variabil-

ity but with random demand growth as shown in Figure 8. This shows a
scenario tree with two demand growth outcomes after each five-year period,
each with a 50% probability: in one outcome demand grows by 10% and in
the other demand remains constant.
The net demand satisfies a Markov chain with 40 demand variation

states but no uncertainty so its transition matrix at each stage is a permu-
tation matrix. The peaker capacity and ramping capacity each have seven
expansion options, and the investment decisions with a delayed implemen-
tation period can be made at nodes 1 to 7 (i.e. the first three stages of the
scenario tree), whereas the operation decisions are made at nodes 2 to 15.
We consider two cases. The base case assumes the same technology mix

that we have used in section 3. The second (advanced technology) case
assumes an improvement in technology that doubles the ramping flexibility
that would be available in five years. The optimal investment decisions for
each case are shown in Table 2.

Fig. 7 We compare investments from the MDP model for the two different wind
models shown. The second profile gives a more volatile net demand curve, although
both demand duration curves are identical.
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Fig. 8 Scenario tree showing demand growth for first multistage capacity expan-
sion problem.

Dec Node Ramp Expn Peak Expn Ramp Expn Peak Expn
MW - base MW - base MW - tech adv MW - tech adv

1 200 500 - 400
2 - - 200 -
3 - - 200 -
4 - - - -
5 - - - -
6 - - - -
7 - - - -

Table 2 Results on 15-node model, base versus technology advancement details

If ramping technology is expected to be better after five years, the ramp-
ing investment is delayed in the second case to node 2 and node 3, even
though the ramping capacity decisions are the same as before. The im-
proved ramping technology reduces the need for peaking plant, giving an
investment of 400MW rather than 500MW.
We now consider the same demand scenarios as in the previous example,

but with increased wind penetration in some scenarios as shown in Figure 9.
Investment decisions are made in the first 3-stages (nodes 1 to 7), and
operational decisions are made in nodes 2 to 15. These assumptions are
summarized in Table 3.
The value of more flexible plant and consequently the cost to supplement

intermittent generation is very much related to the fuel cost of peakers (i.e.
the gas price). In our model the gas price is assumed to be well predicted in
the next 10 years with one scenario for each existing node, but at the 15-year
stage there are two gas-price scenarios branching out for each existing node.
We now have 8 additional nodes, making the problem slightly larger than
before with 23 nodes (shown in Figure 10). A summary of the parameters
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Node P-node Decision Operation ∆Demand Wind%
1 Yes - -
2 1 Yes Yes +10% 5%
3 1 Yes Yes - 5%
4 2 Yes Yes +20% 15%
5 2 Yes Yes +10% 15%
6 3 Yes Yes +10% 5%
7 3 Yes Yes - 5%
8 4 Yes +30% 25%
9 4 Yes +20% 25%
10 5 Yes +20% 15%
11 5 Yes +10% 15%
12 6 Yes +20% 15%
13 6 Yes +10% 15%
14 7 Yes +10% 15%
15 7 Yes - 15%

Table 3 Data for the 15-node model with wind variation.

for this run is shown in Table 4.
The results for GEMSTONE-MDP applied to the two cases above are

shown in Table 5.
With a higher level of wind penetration, GEMSTONE-MDP delays

ramping investment until node 2 and node 3, varying the level of investment
according to which demand level was realised after the first time-stage (very
similar to the 7-node model shown previously). More wind variation results
in 600MW of peaker expansion in node 1 in contrast to 500 MW in the
previous model without wind variation.

Fig. 9 15 node scenario tree with uncertain demand and wind penetration.
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Fig. 10 23 node scenario tree with uncertain gas price and wind penetration.
Gas prices are expressed in $/MWh.

When fuel costs are uncertain, GEMSTONE-MDP delays both the ramp-
ing and the peaking decisions to node 2 and node 3. Here the peaker capacity
decision is delayed until the future cost of fuel is clearer.
To demonstrate the effectiveness of the decomposition in GEMSTONE-

MDP, we finish this section by presenting some computation times for the
models described above. All the algorithms were implemented on a desk-
top machine with Windows 7 (32-bit), duo core 3.2GHz with 4Gb RAM.
Software versions used are: JAVA JDK 7 and CPLEX 14.2. Following [16]
GEMSTONE-MDP solved all restricted master problems using the CPLEX
barrier optimizer without crossover. This produces more balanced dual vari-
ables for column generation. The optimal solutions to the restricted master
problems (which are linear programming relaxations) at the final iteration
were all naturally integer. A comparison of CPU times is given in Table
6. The largest model we solved has 8 scenarios (giving a 23-node tree).
Although this took about 6 hours to yield an optimal solution, this is far
beyond the capacity of a standard application of mixed integer programming
to this class of problems.

6 Final Comments

We have described a methodology for combining coarse-grained uncertainty
over long time horizons with fine-grained uncertainty in operations. The
ability to solve stochastic planning problems with multi-horizon scenario
trees is limited by the capacity of mixed integer programming codes to
scale. The Dantzig-Wolfe decomposition method described in this paper
provides one approach to tackling this computational problem. An appealing
feature of this methodology is the ability to target specific algorithms at the
operational subproblems. In our case we applied Benders decomposition to
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Node P-node Decision Operation ∆Demand Wind% Fuel Cost
1 Yes - - -
2 1 Yes Yes +10% 5% $90
3 1 Yes Yes - 5% $60
4 2 Yes Yes +20% 15% $90
5 2 Yes Yes +10% 15% $90
6 3 Yes Yes +10% 5% $60
7 3 Yes Yes - 5% $60
8 4 Yes +30% 25% $90
9 4 Yes +20% 25% $90
10 5 Yes +20% 15% $90
11 5 Yes +10% 15% $90
12 6 Yes +20% 15% $60
13 6 Yes +10% 15% $60
14 7 Yes +10% 15% $60
15 7 Yes - 15% $60
16 4 Yes +30% 25% $130
17 4 Yes +20% 25% $130
18 5 Yes +20% 15% $130
19 5 Yes +10% 15% $130
20 6 Yes +20% 15% $70
21 6 Yes +10% 15% $70
22 7 Yes +10% 15% $70
23 7 Yes - 15% $70

Table 4 Data for the 23-node model with wind variation and fuel cost changes.

Node Ramp Expn Peak Expn Ramp Expn Peak Expn
MW - wind MW - wind MW - fuel MW - fuel

1 - 600 - -
2 300 - 400 400
3 100 - 100 500

Table 5 Results for GEMSTONE-MDP with wind variation and fuel cost uncer-
tainty

an average reward Markov decision process represented as a linear program.
The resulting algorithm is effi cient enough to solve a stochastic capacity
programming model with both fine and coarse uncertainties on a common
desktop machine.
The solutions obtained by our GEMSTONE-MDP model are fundamen-

tally different from those produced using screening curves and give better
results when simulated with out-of-sample data. The objective functions in
the new models more accurately reward flexible generation, and this often
leads to different optimal capacity decisions.
Our models have assumed that levels of wind generation investment are

exogenous. Such an assumption would be valid if an analyst were seeking
the levels of conventional plant required to support a given level of installed
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Stages Scenario Investment SIP Benders GEMSTONE-MDP
Nodes Options (CPU secs) (CPU secs) (CPU secs)

1 1 10 12.5 26.4 -
3 7 15 OOM 25,892.1 6,328.2
4 15 15 OOM OOM 15,505.6
5 23 15 OOM OOM 21,091.7

Table 6 CPU Time Comparison. Here SIP is the mixed integer programming
problem applied to the scenario tree, Benders is the SIP with Benders cuts repre-
senting the operational costs and GEMSTONE-MDP is the decomposition model.
(OOM denotes out of memory)

wind capacity. An interesting extension would be to seek optimal levels
of wind investment, given its effect on the variability in residual demand.
This however would require alterations to the model so as to incorporate
the change in transition matrices governing residual demand that would
accompany such an investment, and this is not easy to represent in the
decomposition framework we employ.
Finally, the results we obtain are for optimal capacity expansion by a

social planner, to be used as a benchmark. As mentioned in the introduction,
one might expect different expansion plans to be produced from equilibrium
models in which agents are risk averse or exercise market power. Computing
equilibrium solutions to such models is an active area of research.
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