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Introduction 

The Climate Change Office is seeking methodologies for estimating increases in 

electricity prices for consumers that would result from CO2 charges on thermal fuels.  

Price increases that will be faced by consumers will be mainly due to increases in 

contract prices. However under the assumption that hedge-contract prices are expected 

spot prices, increments in contract price can be interpreted as increases in averaged spot 

price. This makes it important to use state-of-the-art models for predicting increments in 

spot prices. 

The CO2 charges will be different for different generating technologies and will have an 

effect on the electricity spot price through the offers of the thermal generators that incur 

the charges. However the spot price is determined by the combination of offers from 

thermal plants and renewable energy plants (who are not subject to the charge). This 

makes the determination of the spot price increment a challenging problem. 

There are two general approaches to attacking this problem. The bottom-up approach 

endeavours to model the electricity price as arising from the actions of agents whose 

offers are made to optimize profit within a physical electricity system that is represented 

as accurately as possible within the model. In contrast, the top-down approach forms 

econometric relationships between price and input costs, and estimates the parameters of 

these models from historical data, typically using regression analysis. The resulting 

models can then be used to predict spot price increments based on estimates of fuel cost 

increases. These models have certain disadvantages in that it is difficult to estimate the 

effects of structural changes in the electricity market from historical data. Nevertheless 

they can serve as a useful benchmark.  

This report focuses on the bottom–up approaches that have been suggested for attacking 

this problem, and comments on their strengths and weaknesses. We have included two 

appendices to this report. Appendix 1 describes some particular bottom-up models in 

more detail, and Appendix 2 presents some analysis based on a Nash-Cournot model of 

generation. 

                                                 
1
 This paper was commissioned by Norske Skog in October 2004, and is posted on the EPOC site with their 

permission. 
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Bottom-up models  

The bottom-up models are essentially of two types. The first type of model seeks a 

system-optimal solution, as if the generation of electricity were centrally planned and we 

were seeking a plan of least cost. In this model the generators are assumed to make offers 

at their short-run marginal cost, and the dispatch delivers the perfectly competitive 

outcome. The major difficulty in this methodology is that price predictions based on 

offers at short-run marginal cost are likely to underestimate the true prices, because 

market participants often offer generation above short-run marginal cost. For example the 

generators who operate renewable energy plants under a carbon tax might seek to benefit 

from the increased costs of competitors and increase their offer prices. 

To overcome this drawback the second type of model seeks a set of user-optimal policies 

that form an equilibrium to a non-cooperative game. In the context of electricity markets 

where the possibility exists to exercise market power, these models could be viewed as 

being more realistic than the system-optimal models, but constructing realistic game-

theory models is much more complicated, both conceptually and computationally.  

The most popular game-theory models assume generators offer quantities in a Nash-

Cournot game. (An analysis of a simple one-shot model of this type is carried out in 

Appendix 2.) This approach is problematic for a number of reasons. 

(1) A demand function must be estimated. This is often done by calibrating the 

model on historical price data to estimate an imputed demand elasticity. Since in 

the short term prices appear to respond to outages, climate forecasts, and agent 

perceptions, it is not clear that this approach will give reliable results. 

(2) The models suppose that agents make single-quantity offers when in reality 

generators offer supply functions to meet an inelastic demand. The forms of the 

equilibria obtained are different for these two paradigms. Unfortunately supply-

function equilibria are very difficult to compute (or even prove existence thereof) 

for realistic situations. 

(3) We have assumed that electricity contract prices are equal to expected spot 

prices. It is not clear that this assumption is valid in a situation in which market 

power can be exercised. For example generators have an incentive to manipulate 

the spot price to improve their chances of obtaining a high contract price, then 

offer at low prices once contracted. This would tend to make contract prices 

exceed the expected spot price. (In a liquid market one might expect this 

discrepancy to be exploited by arbitrageurs, but even they might be wary of 

competitors who can influence prices.) 

(4) Agents in electricity markets play a game that is repeated in every trading period. 

Repeated games produce outcomes that can be quite different from one-shot 

games. For example, by learning from past mistakes, and signaling to 

competitors over time, agents might converge on tacit collusion strategies that 

are not one-shot equilibria but give higher payoffs to both players. Modeling 

these effects accurately is very difficult. 
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A Discussion of System-Optimal Models 

Since in most normal circumstances generators who are optimizing will offer their energy 

at no less than marginal cost, system-optimal models can be used to obtain bounds on the 

increment in electricity prices that would result from carbon charges. Let p(SRMC) be 

the price obtained by running a model based on short-run marginal cost offers without a 

CO2 tax, and let p(SRMC+ CO2) be the price obtained by running a model based on 

short-run marginal cost offers with a CO2tax. Similarly let p(T) be the true price without 

a CO2 tax, and let p(T+ CO2) be the true price with such a tax.  

We know that in the absence of unusual circumstances that might depress short term 

prices (e.g. many overcontracted generators) we expect short-run marginal cost offers to 

give lower prices than those observed, and so 

  p(SRMC) ≤ p(T)  

and 

p(SRMC+ CO2) ≤ p(T+ CO2). 

Observe that this does not necessarily mean that  

p(SRMC+ CO2) - p(SRMC) ≤ p(T+ CO2) - p(T). 

Furthermore, if the cost of generation of some agents increases by some factor then we 

cannot assert that the clearing price p cannot increase beyond this factor. In other words it 

is not necessarily true that 

p(T+ CO2) - p(T) ≤ p(SRMC+ CO2) - p(SRMC). 

This  inequality depends on the offer behaviour of the generators. In Appendix 2 we show 

using a one-shot Cournot model that prices in equilibrium might increase by more than 

the factor or by less than the factor depending on the demand elasticity. 

A (weak) bound that we do have from this analysis is given by the inequality 

p(T+ CO2) - p(T) ≥ p(SRMC+ CO2) - p(T). 

The application of this inequality for prediction is not straightforward as it requires an 

estimate of p(T). We can only really apply it to historical information to determine a 

lower bound p(SRMC+ CO2) - p(T) on the change in price due to a carbon tax if it had 

been applied during the period being investigated. Observe that this lower bound might 

be close to zero or even negative. 

One proposed estimate for the increment in price is p(SRMC+ CO2) - p(SRMC).  This 

might serve as an estimate of the price increment but it is not an upper bound. 
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Choice of System-Optimal Models 

The effect of a carbon charge will depend on the levels of demand for electricity and the 

supply of power from renewable sources. In a wet year it is likely that the effect of the 

carbon charge (when less coal is burnt) will be less than during a dry year. To accurately 

assess these effects, multi-period models are needed that trade off use of stored water 

against the use of thermal fuel. 

A discussion of different multi-period models is given in Appendix 1. These vary in their 

degree of simplicity. Since the output of simple models is easiest to understand, it makes 

sense to begin any study with the two-reservoir SPECTRA models and proceed to a more 

detailed model (e.g. with more reservoirs) if it is warranted. 

It is noteworthy that all of the models described in Appendix 1 can be configured
2
 to 

represent two reservoirs linked by the HVDC cable, and run in a mode in which all 

generators offer at short-run marginal cost. This allows a certain degree of validation, by 

cross checking the results obtained from the same data provided to different models. (The 

undertakings by the Electricity Commission to make data publicly available is a welcome 

move in the validation of these models.) It would be prudent of the Climate Change 

Office to perform such a validation before adopting recommendations drawn from a 

single implementation. Indeed it would also be prudent to triangulate the predictions of 

these models with the results of a simple top-down model calibrated to historical data. 

                                                 
2
 For DUBLIN this reconfiguration would require the equilibrium computation to be replaced by a system 

optimization. 



  

A.B. Philpott  5                 October 26, 2004 

 

Appendix 1: Models for medium-term hydro-thermal planning 

Models for hydro-thermal planning typically focus on handling uncertainties in inflows to 

reservoirs. The objective is to meet a known demand over some time horizon at least 

expected thermal cost using a mix of thermal and hydro generation. This corresponds to a 

central-planning paradigm where profit maximization for generators is not considered. 

The output of these models gives an indication of the likely outcomes should all agents 

offer at short-run marginal cost. One must be careful here as the short-run marginal cost 

of a hydro generator is approximately zero, and under this assumption a dispatch system 

like the NZEM will dispatch all hydro successively until water storage is zero. On the 

other hand a centrally-planned system will impute an expected value to stored water that 

comes from both a thermal cost and (if there is insufficient thermal capacity to meet 

demand) an estimated shortage cost. Indeed in some jurisdictions (e.g. Chile) the 

regulator requires the offers from hydro plant to be the values computed from a centrally 

operated model. 

 

The models alluded to above are optimization models. They compute a policy for each 

generator over a time horizon. They do not by themselves construct a distribution of 

outcomes that would occur if the policies were implemented. To do this a model is 

required that simulates the policies over the time horizon with sampled data. Preferably 

the inputs should be “out-of-sample” data, that were not used in constructing the optimal 

policies in the first place. Simulations allow modelers to estimate the probability of 

shortage or spill, and the probability distribution of price outcomes. 

 

An alternative set of models endeavour to represent strategic behaviour of agents within a 

market situation. The most common approach is to model generators as playing a Nash-

Cournot game in quantities, whereby a postulated demand function serves to set the 

clearing price in each trading period. A variation on this seeks supply-function equilibria 

in markets either with or without elastic demand. Though supply functions are a better 

approximation to how markets actually operate, they are computationally much more 

difficult than Cournot models, and so are less popular. 

 

In what follows we shall outline the features of the models of which we have some 

knowledge. This is not an exhaustive list, but will cover all of the hydro-thermal models 

being considered by the Climate Change Office. There is some difficulty in assessing 

some of these models as there are few publications in the open literature that give details 

of they work. 

 



  

A.B. Philpott  6                 October 26, 2004 

 

SPECTRA 

SPECTRA is a two-reservoir model designed specifically for the New Zealand system. 

The hydro reservoirs are aggregated into a single reservoir for each island joined by a 

single line representing the HVDC link. Water value surfaces are computed using a 

technique called “constructive stochastic dynamic programming” (CSDP) or “dual 

dynamic programming” (DDP) due to Dr Grant Read and his collaborators (see e.g. [9]). 

Once water values are obtained, SPECTRA simulates the system using the generation 

policy determined by the water values along with historical inflow data to obtain storage 

trajectories and probabilities of spill and shortage. If more detail is required during the 

simulation, heuristics are available in SPECTRA that disaggregate each reservoir release 

into separate reservoirs. 

 

In the two-reservoir model SPECTRA computes water value surfaces for every pair of 

reservoir levels. With random inflows these polyhedral surfaces become quite 

complicated, and one can imagine that the computations over many stages might require 

some approximations. Furthermore it is clear that such a constructive approach is difficult 

to extend to higher dimensions, both for conceptual as well as computational reasons. 

 

The SPECTRA system has been widely tested and used over the last 20 years within the 

NZED and ECNZ for water valuation, and so is likely to have acquired some degree of 

reliability, at least within its capabilities. Of course there exists the possibility that the 

code (which is not in the public domain) conceals some undetected bugs that have not 

been revealed by testing.  The danger of undetected bugs is higher with complicated code 

with a relatively small user base. SPECTRA constructs polyhedral surfaces, the 

computational representation of which can be very complicated, so the probability of 

undetected errors is high. Validation with other codes (like SDDP-PSR) on the same data 

sets would increase confidence that the code(s) perform correctly. 

SDDP 

SDDP stands for Stochastic Dual Dynamic Programming, a sampling-based technique 

developed by Mario Pereira of Power Systems Research Inc. in Brazil. By utilizing a 

linear programming approximation of the dispatch problem in each stage, SDDP 

computes optimal policies using a multi-stage Benders decomposition approach that is 

specifically tailored for hydro-thermal scheduling. The linear programming formulation 

allows the model to use a detailed representation of the transmission grid, and unlike 

SPECTRA, a large number of reservoirs. 

 

It is important to discriminate between what I am calling (generic) SDDP, the technique 

published by Pereira and Pinto in their 1991 Mathematical Programming paper [5], and 

the implementation of this algorithm developed by Pereira and colleagues at Power 

Systems Research (PSR). For this reason I have chosen to describe the PSR 

implementation in a separate section below.  
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The generic form of SDDP assumes that inflows are serially independent from week to 

week, and that the transmission system is modeled using DC load flow without losses. 

This means that the cost-to-go function is a convex polyhedral function that can be 

represented by “cuts” derived from the dual solutions to linear programs. Moreover cuts 

can be shared between subproblems at the same stage. 

 

The algorithm as described in [5] constructs a sequence of forward and backward passes. 

In each forward pass it samples fifty inflow sequences conditionally to give a “horse-tail” 

scenario tree. The backward pass then constructs fifty cuts for each stage that give a 

polyhedral function that is a lower bounding approximation of the true cost-to-go 

function. The next forward passes optimize each stage accounting for the effect of the 

decision on the cost-to-go represented by these functions. The algorithm can be shown to 

converge (see [4]) with probability 1 as long as: 

(1) cuts are computed in every stage; 

(2) there is a strictly positive probability that the cuts computed in each stage include 

the sampled inflow outcome. 

 

SDDP-PSR 

The implementation of SDDP at Power Systems Research has added a number of features 

not mentioned in [5]. Here we list a few that we have identified from looking at PSR 

documents on the PSR homepage (http://www.psr-inc.com.br/).   

1. Presampled scenarios: The “horse-tail” scenario tree that is sampled in each 

iteration of SDDP is pre-sampled in SDDP-PSR, and is not changed from 

iteration to iteration. 

2. Line losses: In SDDP-PSR fixed line losses are allowed in the DC-load flow 

model in each stage. This is acceptable as long as power can be shed at any node. 

Otherwise a linear programming model is not a valid approximation because it 

can lead to non-physical circulating branch flows. So SDDP-PSR must either 

work with no losses, or admit a relaxed model that allows power to be shed at any 

node (to ensure nonnegative prices). (An alternative relaxation admits circulating 

branch flows). Observe that including integer variables in the dispatch model to 

prevent this behaviour is not an option, as this destroys the convexity of the stage 

problems. 

3. Correlated inflows: In SDDP-PSR the inflow sequences can be serially 

dependent. SDDP-PSR represents these as periodic autoregressive models of 

order p (PAR(p) models). This represents an advance on the SPECTRA models 

which have been extended to cover AR(1) inflows (see [8]) but cannot handle 

more lags. However there is some controversy amongst hydrologists that these 

models represent the true correlation structure seen in observed sequences. (We 

note that this criticism can be leveled at all the models included in this Appendix.) 

Of course in a simulation using synthetic inflow sequences, one should use 

sequences that most accurately represent reality, even if these must be 

approximated to carry out the optimization. In the optimization process SDDP-
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PSR handles inflow models with quite complicated inflow dependencies by 

augmenting the state space to include previous inflow observations. Care must be 

taken here to avoid nonlinear transformations of the data (e.g. an assumption that 

log(inflow) is PAR(p)) that might destroy the convexity of the cost-to-go 

function. 

4. Convergence criteria: SDDP-PSR produces a lower bound on the cost of an 

optimal policy. It also constructs a statistical estimate of the cost of the policy it 

computes. This estimate has a probability distribution that is asymptotically 

normal (by the central limit theorem). We may estimate the variance of this 

distribution and apply a Student t test to the hypothesis that the true cost of an 

optimal policy is within a given tolerance of the lower bound. (In their papers 

PSR assume a known variance so their confidence interval for the upper bound is 

narrower than the correct one). SDDP-PSR terminates when the lower bound falls 

in a 95% confidence interval for the upper bound. Observe that if the variance is 

high then termination might occur when the candidate policy is far from optimal. 

5. It is important to observe that any policy from SDDP generates an estimate of the 

probability distribution of its cost, along with a lower bound on its expected cost. 

This should be borne in mind if making policy decisions based on this. 

 

Variations on SDDP 

1. CUPPS 

The cutting-plane and partial sampling algorithm (CUPPS) was developed by Chen and 

Powell at Princeton’s Castle Lab [1]. Its main area of application has been for logisitics 

planning under uncertainty. CUPPS is a sampling-based method (similar to SDDP) that 

performs only forward sampling passes, computing cuts along the way. 

2.  AND 

Abridged Nested Decomposition (AND) was developed by Birge and Donohue [2]. It 

was applied by Birge to the Colombian power system in the late 90’s. AND is a 

sampling-based method (similar to SDDP) tailored for scenario trees that are bushy rather 

than long and narrow. 

 

3. ReSa 

ReSa is a reduced sampling method produced by Hindsberger and Philpott [3]. It is 

similar to SDDP, but does not compute cuts at every stage in every iteration. In some 

instances this can speed up the computation. 
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Nash-Cournot models  

DUBLIN 

DUBLIN is a two-reservoir model designed specifically for the New Zealand system. 

The hydro reservoirs are aggregated into a single reservoir for each island joined by a 

single line representing the HVDC link. In DUBLIN the reservoirs are assumed to be 

owned by different agents who offer electricity to the market as players in a Nash-

Cournot game. A third set of agents who operate thermal plant can also be included. 

Observe that in DUBLIN the thermal agents offer strategically only in the single-period 

game (they do not consider the impact of their strategy on later periods). 

 

The theory of DUBLIN was developed by Grant Read and Tristram Scott in his PhD 

thesis [7] as part of the Electricity Modelling Research Group (EMRG) at Canterbury and 

the approach has been promoted by EMRG in a number of areas. His implementation was 

extended by Mark Craddock while at Putnam-Hayes-Bartlett. Implementations of these 

models have been developed further and maintained by Orbit (DUBLIN) and PA-

Consulting (called EMPACT). Details of these implementations are not available, and the 

account below is based on Scott’s thesis and Scott and Read [8]. 

 

As in SPECTRA, the water-value surfaces in Cournot models are created using a 

“constructive dynamic programming” approach. The papers describing the method speak 

of adding “demand curves for release” to “demand curves for storage”, but this 

terminology is misleading, as there is only one real demand curve, that describing 

demand for electricity as a function of price. In each stage of this game, agents offer 

quantities of electricity in such a way to maximize their individual profit, where the 

clearing price is determined a la Cournot from the demand curve and the total amount 

offered. 

 

With serially independent inflows, the maximum expected future profit that can be 

earned by each player in this game at any point in time t can be represented as a function 

of each of the hydro-generators’ reservoir levels. This payoff can be interpreted as a 

future value of water for each generator (as a function of its own level and that of its 

competitor). It is then straightforward (in principle at least) to compute a Nash-Cournot 

equilibrium in a one-shot game at period t-1 in which each player tries to maximize his 

current and expected future profit. This computation is carried out for each possible pair 

of reservoir levels to compute the maximum expected future profit that can be earned by 

each player in this game in the previous time period. 

 

Although the DUBLIN model has obvious attractions, its use requires some care. A key 

input parameter that drives the results is the demand function, and estimating the form of 

this is very difficult for electricity markets. Moreover when demand is inelastic (like it is 
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in the short term) the prices obtained from these models are very sensitive to the 

elasticity, so accurate estimation is important. Some of the other drawbacks of this model 

are mentioned in the body of this report. 
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