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Abstract

Abstract

Spot pices of electricity are determined in New Zealand (and a number of other electricity markets
in the the world) using a linear programming model to construct a dispatch schedule to meet metered
loads at the nodes of the transmission network. The linear program seeks to minimise in each half hour
the delivered cost of the energy, as represented by the prices that generators offer their power to the
market, while accounting for transmission losses, network constraints and spinning reserve constraints.
The ex-post electricity price at any given node of the transmission system is given by the shadow price
of the energy balance constraint at optimality. We discuss the results of some experiments carried
out with a small electricity pricing model developed in the Department of Fngineering Science. The
prices obtained from these linear programming models have some interesting properties. Some of these
properties, although counterintuitive, have rational explanations. Other properties are less benign,
and arise in circumstances when a linear programming model is an inappropriate approximation of
the true load flow problem. We shall explain these effects, and discuss some possible remedies.

1 Introduction

The spot. market for wholesale electricity was introduced in New Zealand on October 1, 1996, as part,
of an ongoing restructuring of electricity generation and distribution. Electricity cannot be stored, and
when it is generated it must be distributed through a transmission network to the locations at which
it is required. By separating the generation function from the transmission and distribution functions,
electricity markets endeavour to stimulate competition amongst suppliers to deliver power to consumers
at a competitive price, while providing sensible signals for investment. and new entry. Tn recent years
electricity markets of varying forms have emrged in most western countries, and their study has led to a
substantial body of research into electricity market design (see e.g. [2]).

The New Zealand choice of market design was a nodal pricing model in which spot, prices of electricity
are determined for each half hour at approximately 470 buses (i.e. nodes) of the transmission network.
Spot, pices of electricity are determined using a linear programming model (called Scheduling, Pricing and
Dispatch Software or SPD) to construct, a dispatch schedule to meet metered loads at the nodes of the
transmission network. The linear program seeks to minimise in each half hour the delivered cost. of the
energy, as represented by the prices that generators offer their power to the market, while accounting for
transmission losses, network constraints and spinning reserve constraints. The ex-post electricity price at
any given node of the transmission system is given by the shadow price of the energy balance constraint,
at optimality.

In this paper we are concerned with the properties of the dispatch and the nodal prices that are
yielded by this process. We shall focus on the mathematical properties of linear programming models,
and endeavour to explain some of the problems that these features can lead to when applied to optimal
load flow models. We make no claim to the originality of our analysis; many of the features of SPT)
that we discuss in this paper are well known to users, and are openly discussed by New Zealand market



participants (see [4]). However, it is hoped that this paper can lead to some understanding of the
drawbacks in using linear programming models, and act as a guide to improving pricing and dispatch
software to overcome these problems if they are deemed to be worth correcting.

The paper is laid out as follows. In the next section we show how a linear programming model of
optimal power flow arises from approximating the equations of AC power flow, and then describe in
theoretical terms how this approximation might, lead to paradoxical or pathological results. Tn Section
3, we describe a simple pilot model of the New Zealand transmission network that we have developed in
the Department of Engineering Science. This model is used in Section 4 to test whether the paradoxical
behaviour described in Section 2 can actually occur in reasonably realistic circumstances.

2 Optimal Power Flow

The software (SPD) used to dispatch and price power in New Zealand is based on a DC-load flow model
of electricity transmission. This model ignores reactive power, and approximates the real power flows by
formulae that are analogous to Kirchhoff’s formulae for direct current (DC). Tn this section we derive
these equations to illustrate how this approximation occurs. (Since it is rather technical, this section may
be skipped by the reader without losing the main points of the paper.)

Consider a transmission system represented by a network of nodes and lines. T.et us consider a
typical line joining nodes k& and I. 'This line has an impedance 2 = r 4+ jz, and a resulting admittance
Yy = lz = ( + B, where for notational convenience we suppress the dependence of the parameters on k
and /. Suppose that we inject some power P + jQ® into node k for transmission to node I. Here P is
known as the active power and @ is the reactive power. If the phasor of current from k to I is 7, then we
have

P +3Q° =V, I,

where V7, is the voltage phasor (Ukejg’“) at node k& and T* is the complex conjugate of the current phasor.
The power which arrives at node 1 is P” + jQ)" defined by

P"+3Q" = VI
Given the admittance (G 4+ §B of the line we can compute

J = (Ukejgk — 71,e'j9’)((l +iB),

giving
" = (vge 1% —wve 1) (G~ jB),
and
PP +iQ° = 02G — v cos(0 — 0)G — vy sin(0 — 0,) B
+ j(—vi B — vgvy sin(0y — 0))G +vgv; cos(0y — 0;) B), (1)
Pr4+5Q" = 71112(1 —+ v 008(9, — 9k)G + v sin(@, - ek)R
+ (0B + v sin(0; — 0)G — vy, cos(0; — 0) B). (2)

Tn the New Zealand electricity market, there are currently no prices computed for reactive power. In
SPD this entails ignoring the imaginary parts of (1) and (2) to yield

pP? = 7)13(: —wvpvcos(fy, — )G — vpv;sin(f, — 0,)B (3)

P" = —0?G + vy cos(f; — 0,)G +vvg sin(f, — 0x)B. (4)



For large, high voltage transmission systems we can usually assume that the voltage magnitude does not
change much from node to node. Tn the DC-load flow model we assume that the voltage magnitude is
the same at each node, so (by scaling the problem appropriately) we may assume that v, = 1.0, for every
node k. The DC-load flow model also requires that the phase angle differences over transmission lines
are small. Tn these circumstances sin(f; — ;) is approximately equal to (A — 6;), and cos(f — ;) is

approximately equal to 1 — M. This results in the following expressions:
0, —6,)?
p=0 o 0m, )
0, —6,)?
pr— ,%cf (0, — 0))B. (6)

Tt is instructive to study equations (5) and (6). If the phase angle differences over transmission lines are
so small that (A — 8;)? is negligible then P* = P" = —(#;, — ;) B. This approximation gives a real power
flow in the line of —(f; — #;) B, which is a form of Ohm’s TL.aw with phase angles taking the role of DC
voltages, and (—1/B) taking the role of DC line resistance. In this model there are no power losses. Tf
we choose not to ignore terms in (8 — 9,)2 then the power P? sent exceeds the power P” received by an
amount equalling (8, — #;)2G. Denoting —(8;, — ;) B by p we obtain

pQ
PS: s 7
P+ om0 (7)
and
2
14
Pr=p-— —Q@. 8
P- 353 (8)

Since p is the lossless approximation to the DC-load flow, these equations indicate that the sending power

E%G) to deliver at, the other end the
lossless power decreased by half the line losses. The line losses are proportional to p2, the square of the

at, one end of the line must be increased by half the line losses (

lossless power flow.

Now we are in a position to define a model to compute an optimal dispatch and nodal prices. Consider
a network of 7 nodes with given active power loads and known generation costs. Tet 4z denote a level of
injection of active power at node k, and let d;, be the load at node k. We seek to minimize the revealed
cost, Y, Cr(yz) of power injection at the nodes, subject to meeting the loads. At each node k in the
New Zealand market, C(yz) is a piecewise linear convex function, with a derivative represented by the
aggregated offer stack of all participants at node .

The line from % to I is denoted by (k,1), where we adopt the convention that & < I and allow negative
power flows. Fach line has a capacity Uy, giving the maximum power flow that can be sent along that
line. This gives

—Up < P5 <Up. (9)

Power flow must be conserved, yielding

n

k1 )
ZP/}c* Z Per +yr = dr, (10)
=1

I=k+1

and for every k& < I we must have equations relating Py, to P;,. There are several ways to do this
depending on how we choose to approximate the losses.
First, with no losses we obtain

Py = Py = —(0 — 0;) B (11)

In these circumstances minimizing »°, Cy, (yx) subject to (9), (10) and (11) is a convex nonlinear program,
for which a globally optimal solution can be obtained using a nonlinear programming package (see e.g.



[3]). Tn the special case where C(yz) is a piecewise linear convex function, the convex program becomes
a linear program. At first sight this has the appearance of a single-commodity minimum cost network
flow problem, a well-known model in operations research. Observe, however, that the constraint (11) for
each line (k,1) imposes a restriction on the power flow in that line, namely that it is driven by a difference
in voltage angles. This means that for any loop I, in the network we have

> B _ >~k —0)=0.

(ke B (kDeT,
The important implication is that adding loops to the transmission system adds constraints to be satisfied
with potential increases in costs, and important consideration to be borne in mind when considering
investments in new lines.
If we increase the accuracy of the approximation to quadratic losses we obtain

pri = (0% — 01) B, (12)
s le 2

Py :PkH-WzlPku (13)
T le 2

Pri = pri — ﬁapm- (14)

In these circumstances minimizing >, Ci(yz) subject to (9), (10), (12), (13), (14) is a nonlinear program.
However even though Y, Ci(yg) is a convex function, and the constraints contain convex functions
(quadratics) the resulting optimisation problem is not guaranteed to be convex. (A convex optimisation
problem has a convex objective function and a convex feasible region the nonlinear program here is not,
convex beacuse its feasible region is not, convex.) Tt is possible to show that if we replace (10) by

k1 n
ZP;}C* Z Pry+yx > dp, (15)
[

I=k+1

(so excess power can be shed at any node with no penalty) then the feasible region becomes convex, and
so the optimal load flow problem becomes convex.

A more detailed model might, treat active power with full losses. Here we allow the nodal voltage
magnitudes to vary between specified bounds,

1—e<v,<14e¢, (16)
and in place of (9 14) we use the full active power-flow equations:

P* = 0iG — vy cos(f — 6,)G — vy sin(f, — 6,)B (17)

P" = —0?G + vy cos(f; — 0,)G +vvg sin(f, — 0x)B. (18)

Tn this model we lose convexity entirely, even if (15) is used.

Tn the above discussion we have emphasized convexity as an important feature of any mathematical
optimisation models we might consider for computing optimal dispatch. Convex nonlinear programs have
nice properties. First one can guarantee that any solution procedure that yields a local optimum (one
that is best if one only considers small perturbations of the variables from their curent, values) will also
yield a global optimum (one that is best for all possible choices of the variables). A second important
property of convex optimisation problems is that they can be approximated by linear programs. The error
in this approximation can be made arbitrarily small by making the linear programming problem have
enough variables and constraints. To obtain globally optimal solutions to optimisation problems that



are not convex requires very sophisticated techniques. These problems can be approximated by mixed
integer linear programming problems, but, the calculation time for these models becomes prohibitive as
the size increases, so it may be impossible to obtain an answer with a desired level of accuracy. The third
important property of convex optimisation problems is that they have a duality structure. The variables
of the dual problem often have an interpretation as marginal prices. Tt is these variables that give the
nodal prices reported by SPD.

The SPD software used in the New Zealand spot market is described in detail in [1]. Tt approximates
quadratic losses by a piecewise-linear function, and then applies a linear programming algorithm. As
stated in [1] this approximation is based on the premise that optimisations naturally favour reducing
losses. This implies that excess power can be shed at any node without, penalty, a sufficient condition for
convexity. In our notation, the linear programming approximation in SPT) replaces pz; by the difference
of two nonnegative power flows, to give

Prl = Z“k’ — wk, , 0< 112,),11)2,) < b](d), 1=1,2,...,m,
=1

and approximates the quadratic terms in (13) and (14) to give

Gri
Pr = Z“k! — i) + 552 ol () + wi})),
i=1 Fl =1

le 4
ZUH - “’k/ Y2 al(d) (“I(d) + wl(d))

i=1 Fl =1

(i)

where the slopes a,;

of p3,.
One disadvantage of such a formulation is that artificial price breaks are produced at breakpoints of

i) ()(() (i)

and breakpoints bg, are chosen to make Z g g (1, —l—wk, ) a good approximation

the piecewise linear loss functions, which do not appear in the (more natural) quadratic loss formulation.
On the other hand, the piecewise linear approximations become more accurate as more pieces are used,
and the inaccuracy in the solution seems to be small, even with only a few breakpoints in the loss
functions. An advantage of using piecewise linear losses is that an approximation to the optimal power
flow can be found by reliable and efficient. commercial software for linear programming.

Tn the next section we study a simple pricing and dispatch model of the New Zealand transmission
system under four different modelling assumptions. We begin by approximating the dispatch problem as a
linear program, under the quadratic loss assumption. The dangers of assuming convexity in this situation
are identified. We digress to consider overcoming the convexity issue using mixed integer programming.
The third model we consider uses a quadratic loss assumption, but does not assume convexity. Finally
we compare these models with an active power model assuming full losses.

3 Experiments

To illustrate the issues outlined above we have created a small (7—n0de) NC-load flow model of the New
Zealand transmission grid. The network for this is shown in Figure 1.
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Figure 1: Experimental Network.

There is a load to be satisfied at each bus, by a total of 17 generators. The figure shows at each bus
a set. of generators that offer generation at this bus. The line data that we have used in this model is
given in the following table.

Tine Capacity (MW) G B %
NPT-AKT, 920 270 | -1622 | 0.000051
TPO-AKI, 1200 1538 | -12308 | 0.000005
BPE-NPT, 700 7376 | -31612 | 0.000004
TPO-BPE 500 8 -909 | 0.000005
HAY-BPE 1700 2193 | -13338 | 0.000006
BEN-HAY 1240 - - -
ROX-BEN 1000 165 -764 | 0.000141

Table 1: TLine data: base case

These numbers have been computed to be approximations to the actual values for lines in the New
Zealand transmission network so as to illustrate the effects that we wish to study. We must be careful,
however, that this model is not used to draw conclusions about the magnitude or the frequency of these
effects. This would require a study with a full implementation of SPD.

Example 1: Base Case

The first example illustrates the difference in solution obtained with different approximations used

for the line losses. The base model uses the data in the following tables.

Node | Demand (MW)
AKT, 1179.00
NPIL. 173.00
TPO 1260.71
BPH 172.84
HAY 559.15
BEN 687.62
ROX 831.80

Table 2: Node demands: base case



Station | Node | Quantity (MWHr) | Price ($/MWHTr)
HLYA | AKIL 490 25
HLYB | AKL 490 26

MDN | AKI 120 200
OTA | AKIL 90 90
SDN | AKI, 110 99

NPLA | NPL 230 30
NPLB | NPL 345 31
SFD | NPL 208 36
TCC | NPL 340 99

WKO | TPO 600 27
GEO | TPO 257 1
WHI | BPE 162 140

NIO | BPE 550 24
WTK | BEN 1740 20
SIO | BEN 100 1
ROX | ROX 800 9
MAN [ ROX 590 8

Table 3: Generator offers: base case

The nodal prices obtained under each of the four loss models is shown in Table 9. We set. ¢ = 0.05 in
the full model, so nodal voltage magnitudes can vary by 5% from 1.0 p.u. Tn this example the quadratic
model provides ta good approximation to the losses in the full loss model, with the piecewise linear model
improving as the number of steps in the piecewise linear loss functions increases.

Node | Full losses | Quadratic losses | Piecewise losses (3 steps) | Piecewise losses (10 steps)
AKIT, 29.63 29.87 31.36 29.39
NPT, 27.48 27.56 29.31 27.30
TPO 29.73 29.99 31.30 29.46
BPE 27.27 27.33 29.09 27.08
HAY 27.01 27.04 28.79 26.81
BEN 20.00 20.00 20.00 20.00
ROX 14.21 14.88 15.34 14.72

Table 4: Nodal prices under various loss models in Example 1

Example 2: Non-convex optimal dispatch problem

Tn this example we illustrate some of the drawbacks of using a piecewise linear model for losses when
the problem is not, convex. This problem has been studied in situations where generators (who might pay
to be dispatched)are allowed to offer tranches with negative prices (see [4]). Here the incentive for SPD
is to maximise the payments of such generators, so it seeks to maximise the losses in order that more
of this power can be dispatched. When maximising losses, SPT) assigns flows to links in the model to
produce a solution that solves the linear program, but cannot be implemented in the physical network.

Symptoms of this behaviour are solution variables with both pz; > 0 and p; > 0, or 11,](:’) being positive

(at a high loss factor) while 71,](;1) = 71,](3) =...= 71,%) = 0 for some ¢ < m.

In fact SPD can fail to give a physically implementable solution, even in the absence of negative
offers. We illustrate this in the example by breaking the link between BPFE and HAY and changing the
capacities of the links (AKT,,NPT.) to 2000, and (BPE,NPT.) to 800, while setting the offer prices at, NPT
to be zero as shown in Table 5.

The solutions delivered by the full-loss model and the quadratic loss model prices were both physically
realisable. However as shown by Table 6 the link (BPE-NPT.) contained flow in opposite directions when

the piecewise linear model is used.



Station | Node | Quantity (MWHr) | Price ($/MWHTr)
NPLA | NPL 230 0
NPLB | NPL 345 0

SFD | NPL 208 0
TCC | NPL 340 0

Table 5: Generator offers at New Plymouth for Fxample 2

T.ink Full losses | Quadratic losses | Piecewise losses (3 steps) | Piecewise losses (10 steps)
NPIT.-BPE 746.61 676.198 800.00 800.00
BPE-NPT, 0.00 0.00 120.36 119.43

Table 6: Sent, power under various loss models for Fxample 2

The prices at the nodes are given by Table 7. Tt is interesting to observe in this example that the
nodal prices do not, seem to be affected by the non-physical dispatch.

Node | Full losses | Quadratic losses | Piecewise losses (3 steps) | Piecewise losses (10 steps)
AKIT, 25.00 25.00 25.00 25.00
NPT, 0.00 0.00 0.00 0.00
TPO 27.43 27.96 27.99 27.98
BPE -0.99 -1.16 -1.18 -1.16
HAY 23.56 23.56 28.79 23.29
BEN 20.00 20.00 20.00 20.00
ROX 14.21 14.88 15.33 14.72

Table 7: Nodal prices under various loss models for Example 2



Example 3: Loop constraints
Tn this example we study the effect of the loop constraint,

> B _g (19)

(kDeT, B
for I. defined by AKT, NPT, BPE TPO. We retain all the data from Example 2, but, break the (AKT,, TPO)
link. This means that the constraint (19) is removed from the optimisation problem, enlarging the set, of
possible optimal solutions. As a consequence the cost of meeting the load decreases as shown below in
Table 8.

Generation Cost, Full losses | Quadratic losses | Piecewise losses (3) | Piecewise losses (10)
With (AKT,, TPO) 46082 49074 50546 48817
Without (AKT, TPO) 41380 41395 42857 48761

Table 8: Nodal prices under various loss models for Fxample 3

The nodal prices with the link removed are as follows.

Node | Full losses | Quadratic losses | Piecewise losses (3 steps) | Piecewise losses (10 steps)
AKIT, - - 0.00 -

NPT, - - 0.00 0.00

TPO - - 27.00 27.00

BPE - - 0.00 0.00

HAY - - 28.79 23.29

BEN - - 20.00 20.00

ROX - - 15.34 14.72

Table 9: Nodal prices under various loss models for Fxample 3



Example 4: Nonunique shadow prices
Tn this example we look at, the shadow prices in the piecewise linear model (to be completed)

Example 5: Nonunique shadow prices
Tn this example we examine the shadow prices in the quadratic model (to be completed)

4 Discussion

There has been considerable discussion of problems with non-physical dispatch. Formulating the dispatch
problem as a mixed integer program can prevent non-physical dispatch. However, solving this can be
very slow, and can lead to incorrect dual variables. Dual variables might not be unique even with smooth
loss functions.
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