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Abstract

This paper provides a framework for deriving payment mechanisms for intermittent, flexible and inflexible electricity generators
who are dispatched according to the optimal solution of a stochastic program that minimizes the expected cost of generation plus
deviation. The first stage corresponds to a pre-commitment decision, and the second stage corresponds to real-time generation that
adapts to different realisations of a random variable. By taking the Lagrangian and decoupling in different ways we study two

payment mechanisms with different properties.
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1. Introduction

In response to pressure to reduce CO2 emissions and in-
creases in the penetration of renewables, electricity pool mar-
kets are procuring increasing amounts of electricity from in-
termittent sources such as wind and solar. This pressure can
cause difficulties for the independent system operator (ISO)
when dispatching generators. These difficulties arise because
many thermal generators are inflexible and need to be informed
of their generation obligations before the output of renewables
is known.

In markets with large amounts of inflexible generation, gen-
erators can be provided with a pre-commitment setpoint before
the generation output of renewables is known. The setpoint
is determined by assuming that renewables generate their ex-
pected output capacity. The ISO then dispatches generators at
the commencement of the trade period, with the objective of
minimizing the cost of generation plus deviation from the set-
point, in order to manage fluctuations between the expected and
the realised output capacity of intermittent renewables. We re-
fer to this dispatch mechanism as the traditional mechanism.

As noted by Chao et al in [3] this approach can be subop-
timal in maximising consumer welfare. The expected costs of
corrective actions arising from surpluses or shortfalls are not
priced into the market clearing problem, because the system
operator does not consider uncertainty. Dispatches derived via
the traditional mechanism therefore may have a small fuel cost
and a large expected cost of correction.

With small quantities of intermittent renewable penetration
the price of failing to consider uncertainty is small, as flexible
generators can be re-dispatched at a low cost to meet shortfalls.
However, as intermittent renewables increase their penetration,
the cost of corrective actions becomes significant. Limits on
flexible plants mean that expensive and inflexible plants need to
be re-dispatched to meet large shortfalls in wind or solar gen-
eration. Therefore, when the penetration of intermittent renew-
ables is high, a new dispatch mechanism is required.
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The first alternative to the traditional dispatch mechanism
was proposed by Bouffard and Galiana in [2], which involves
clearing a co-optimized pool and reserve market using a two-
stage stochastic program. The first stage is a capacity market
which is cleared before random events pertaining to the avail-
ability of plants and transmission lines take on a realisation.
The second stage is a market clearing problem where only units
committed in the first stage may be dispatched.

Subsequently, several authors including [9] [7] [4] [5] [10]
have proposed explicitly modelling uncertainty in the gener-
ation output of intermittent renewables as a random variable.
Existing ancillary market services are supplemented with a real-
time market, which is cleared after the generation capacity of
renewables is realised. This can be achieved by casting the
market clearing problem within a two-stage stochastic program-
ming framework, where the first stage corresponds to a pre-
commitment setpoint, and the second stage corresponds to a
real-time dispatch under a particular realisation of the genera-
tion output of renewables. We refer to this dispatch mechanism
as the Stochastic Dispatch Mechanism, or SDM.

In SDM, the pre-commitment setpoint can be interpreted as
the output level at which generators prepare to generate be-
fore wind generation is realised. The real-time dispatch quan-
tity is the generation quantity which the generator produces
throughout the trade period, after the generation of renewables
is known. A deviation to increase or decrease a generators real-
time dispatch output from its day-ahead setpoint causes the gen-
erator to incur a cost, in the form of e.g. wear-and-tear on gen-
eration equipment.

To replicate the dispatch found by SDM and maximize ex-
pected total social welfare, it is necessary to pay market par-
ticipants in a manner which causes their optimal behaviour
to align with the optimal dispatch found by a system opera-
tor when solving SDM. In the literature (see [9] [7] [4] [10])
this is achieved by compensating and charging market partici-
pants with a single-settlement payment mechanism, where the
amount charged to each participant under each possible reali-
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sation of renewable generation is made known apriori, and the
actual charge to each participant occurs after renewable gener-
ation is realised.

In single-settlement payment mechanisms, two desirable at-
tributes are revenue adequacy and cost recovery. A payment
mechanism is revenue adequate if and only if the system oper-
ator collects at least as much from consumers as it pays gener-
ators. A payment mechanism exhibits cost recovery if and only
if generators are paid at least as much as their fuel costs.

The first paper to study this aspect of pricing was by Wong
and Fuller [9] who introduced a two-stage dispatch mechanism
and suggested several payment mechanisms to compensate gen-
erators that were revenue adequate and recovered costs on av-
erage. A similar approach was taken by Pritchard et al [7] who
focused on wind intermittency. The dispatch mechanism of [7]
was improved by Zakeri et al in [10], who observed that wel-
fare could be enhanced by removing the first-stage constraint
on supply meeting demand, and suggested an alternative pay-
ment mechanism, which is revenue adequate in every scenario
and provides generator cost recovery on average.

In this paper, we revisit the dispatch mechanism of [10] in a
classical Lagrangian framework for modelling perfectly com-
petitive partial equilibrium. We define a price of informa-
tion, the amount which a generator needs to be paid to en-
force nonanticipativity on its first-stage generation. The price
of information leads to a discriminatory variation on the pricing
mechanism of [10], giving cost recovery in every scenario, ex-
pected revenue adequacy and expected revenue equivalence for
all agents compared to [10]’s mechanism, assuming that agents
behave in the risk-neutral price-taking manner assumed in [7]
and [10]. This discriminatory variation explicitly identifies the
uplift payment required to make all generators whole, and en-
sures that the expected uplift payment to each generator is zero.

2. The Stochastic Dispatch Mechanism

Following [7] and [10], we consider a SDM based on the
DC-Load Flow model of a constrained electricity transmission
network. We follow [1] in letting uncertainty be represented by
the scenario w € Q, which occurs with probability P(w). We
assume that a realisation of w prescribes all uncertainty due to
intermittent generation in an electricity pool market, and that
the sample space Q is a finite set containing all possible fu-
ture realisations of w. Although the real distribution of wind is
not finite, Q2 can be viewed as an approximation, obtained for
example by sampling from the true distribution if this is avail-
able. The dispatch models obtained are then Sample Average
Approximations for which one can derive asymptotic conver-
gence results as the sample size increases (see [8] for a general
theory, and [10] for asymptotic results in the context of SDM).
We note that any computational dispatch model must work with
a finite Q, and since our focus in this paper is on different pay-
ment mechanisms for these models, we restrict attention to this
case.

Our notation closely follows that of [7] and [10] in which
deterministic variables are denoted by lower case Roman sym-

bols, random variables by upper case Roman symbols, and
prices by lower case Greek symbols.

The sets and indices in the Stochastic Program (SP) solved to
obtain the day-ahead setpoint in SDM are defined as follows:

e i is the index of a generator. We assume perfect compe-
tition, so the ownership of generation does not affect the
solution. This means that each agent i can be thought of as
operating a single unit i.

e N is the set of all nodes in the transmission network.

e j(i) is the node j € N where generator i is located.

e a;, = 1 when agent i is located at node n and 0 otherwise.
e 7 (n) is the set of all offers at node n.

e ¥ is a set constraining the flows in the network to meet
thermal limits and the DC-Load Flow constraints imposed
by Kirchhoft’s Laws. We assume that 0 € F.

The decision variables in SP are defined as follows:

e x; is the day-ahead setpoint level which generator i is ad-
vised to prepare to produce before the generation capacity
of intermittent renewables is known.

e X;(w) is the real-time dispatch produced by generator i in
scenario w.

e Uj(w) and Vi(w) are the amounts which generator
i deviates up/down by in scenario w. That is,
Ui(w) =max(X;(w) — x;,0), and Vy(w) =max(x; - X;(w), 0).

e F(w) € F is the vector of branch flows in the network in
scenario w.

o 7,(F(w)) is the net amount of energy flowing from the grid
into node 7 in scenario w. We assume that 7, is a concave
function of F' with 7,(0) =0, Yn e N.

The shadow prices for the constraints in SP are defined as
follows:

e 1,(w) is the marginal cost of generating one additional unit
of electricity at node » in scenario w under SP. As the con-
straint on supply meeting demand is an inequality, we re-
quire that 4,(w) >0, Yn e N.

e p;(w) is the marginal cost of agent i generating one addi-
tional unit of electricity in scenario w under SP.

o 1, = Ey[4,(w)] is the expected value of the shadow price
A (w) in SP.

The problem data in SP are defined as follows:

e ¢; is the marginal cost incurred by generator i.
e D,(w) is the consumer demand at node » in scenario w.

e r,; and r,; are the marginal costs incurred by generator i
for deviating up or down in its generation. We require that
rui > ¢; > ry; to avoid providing generator i with arbitrage
opportunities when it is choosing whether to ramp up or
down.



¢ Gj(w) is the maximum output capacity of generator i in
scenario w.

The day-ahead setpoint is found by solving the following
stochastic program for x, as defined by Zakeri et al in [10]:

SP: min ¢"x + Z P(w)(r, Uw) + 1, V(w))

S.t. Z Xi(w) + 1,(F(w)) = D,(w), Yn,Yw € Q, [P(w)A,(w)],

€T (n)
x+ U(w) - V(w) = X(w), Yw € Q, [P(w)p(w)],
Flw)eF, YweQ,
0<X(w) £G(w), Uw), V(w), x>0, YweQ.

Observe that we have matched each constraint with a corre-
sponding shadow price in square brackets. Since A,(w) is the
marginal cost of meeting additional demand at node » in sce-
nario w, and p;(w) is generator i’s marginal cost of generation
in scenario w, each of these must be weighted by probability
P(w).

After the optimal day-ahead setpoint x* is found, the inter-
mittent generation scenario w = & is realised, and the ISO
follows the dispatch defined by (X*(®), U*(®), V*(©), F*()).
In a competitive market setting, agents respond to price sig-
nals, so the remuneration from these prices for each agent’s
dispatch provides incentives to respond as the dispatch dictates.
To model this, we decouple SP using a Lagrangian approach.

3. Payment Mechanisms

Assume that SP satisfies a constraint qualification such as a
Slater condition (see [1]). Then we can solve SP by minimizing
a Lagrangian. We choose first to use multipliers only on energy
balance constraints to yield:

& = Z CiX;
+ Z P(w) Z (ruiUi(w) + r,;Vi(w))

£ PW) ) (Dy(w) = Y ainXi(@) = Tu(F@) (@),

which is to be minimized, subject to the following constraints:

x; + Uj(w) — Vi(w) = Xi(w), Vi, Yw € Q,
0 < Xj(w) < Gi(w), Uj(w), Vi(w), x; 2 0,
Flw)e¥F.

All Lagrange multipliers should be nonnegative. Observe that
2on dindp(w) = Ajh(w). Rearranging £ and expressing as a
maximization we obtain:

max — Z CiXxi — Z Z P(w)An(w)Dp(w)
+ Z Z P(w)Ai)(w)Xi(w)
+ Z Z P(w)Ay(w)Tn(F(w))

- Z Z P(w)(riUi(w) + 1,;Vi(w))

s.t. x+ U(w) — V(w) = X(w), Yw € Q,
0 < Xi(w) € Gi(w), Ui(w), Vi(w), x; =0,
F(w)eF.

Observe that this problem can be decoupled by generation
agent. Given prices A;(w) each generation agent i can de-
termine its own dispatch by solving the following stochastic
program.

SP1: max Z P(w)(—c'ixi + /lj(i)(a))X,-(w) - ru,iU,‘(a)) - I‘V,l‘Vi((A)))

s.t. x; + Uj(w) — Vi(w) = Xij(w), Yw € Q,
0 < Xi(w) < Gi(w), Uiw), Vi(w),x; 2 0.

The objective function of SP1 also specifies the remuneration
for each agent. Here if scenario @ is observed then purchasers
in node n pay 4,(®)D,(&®) and generator i is paid A ;(L)X;(©).
This is the payment scheme studied by Zakeri et al. [10]. As
demonstrated by [10] the amount collected from purchasers is
always at least enough to cover the payments being made to
generators. This result is called revenue adequacy.

Definition 3.1. A payment mechanism is revenue adequate if
and only if in every scenario w € Q, clearing the market does
not leave the system operator in a financial deficit. As shown
by Philpott and Pritchard in [6], revenue adequacy is equivalent
to the following statement:

Z /ln(w)Tn(F(w)) > O, Yow € Q.

Proposition 1. If (x*, X" (w), U*(w), V*(w), F*(w)) solves SP,
then paying A;p(w)X{(w) to generator i and charging
A(w)D,(w) to demand agent n results in revenue adequacy in
every scenario.

Proof. See [10]. O

It is not hard to see that in some circumstances a generator
might not be compensated for the short-run costs of its first-
stage dispatch. For example, if x7 > 0 and X(&) = 0 in the
realized scenario then no revenue will be earned to cover the
cost ¢;x} +r,; VI (@). If this is the case, then there is no incentive
for generator i to participate in the market, unless the payments
can be made whole in some manner.



Definition 3.2. A payment mechanism exhibits cost recovery
if and only if in every scenario w € Q, all generators recover
their short-run (fuel and deviation) costs. That is,

Ri(w) — c;xi(w) Yw € Q,

- ru,iUi(w) - rv,iVi(w) > 0, Vl’

where R;(w) is generator i’s revenue in scenario w.

The payment mechanism of SP1 does not exhibit cost re-
covery. We say that a market clearing mechanism exhibits ex-
pected cost recovery if all generators recover their generation
and ramping costs in expectation. This was shown to be the
case for SP1 by [10].

Proposition 2. Paying Aj;(w)Xi(w) to generation agent i in
scenario w results in expected cost recovery.

Proof. See [10]. ]

It is not surprising that the payment mechanism of SP1 might
result in some generators not recovering their costs. In SP1 each
agent is presented with scenario prices and solves a stochastic
program to maximize their expected profit. The constraints

xi + Uj(w) — Vi(w) = Xij(w),Yw € Q,
can be rewritten
Xi(w) + Ui(w) — Vi(w) = Xi(w),Yw € 4,

)_C,‘(u)) = x,-,Va) S Q,

where the second set of constraints are called nonanticipativity
constraints.

Cost recovery for each generator would be possible if there
were only one scenario, or if the generator’s nonanticipativity
constraints were relaxed, so that the first-stage decision x; can
vary with scenario (becoming X;(w)). This enables a genera-
tor to use perfect foresight in choosing X;(w) and gain from
this. Enforcing a nonanticipativity constraint incurs a cost from
the loss of information, and so to ensure a nonnegative profit,
each generator should be compensated with an ex-post infor-
mation payment in scenarios where it makes less than its ex-
pected profit and charged an ex-post information rent in scenar-
ios where it makes a profit greater than its expected profit.

The values of these payments and charges can be made ex-
plicit by applying a Lagrangian relaxation of nonanticipativity
constraints. Equivalently, one can introduce Lagrange multipli-
ers for the constraints linking x; and X;(w) in SP. This gives the

following Lagrangian.
j = Z CiXi

+ Z P(w) Z (ruiUi(w) + 1y Vi)
+ Z P(w) Z (Dn(@) - Z i Xi() = Ty(F())) ()

+> PW) Zpi(w)(vxw) - Uiw) + Xi(w) - x),

which is to be minimized, subject to the following constraints:

0 < Xi(w) £ Gi{(w), Ui(w), Vi(w), x; 2 0,
F(w) e F.

Rearranging £ and expressing as a maximization yields:
max Z( i+ Z P@)pi(@))x;
+ Z Z P() (Aj6(@) = pi(@)) Xi(@)

+ Z Z P(w) ()T, (F(w))

=3 P@)(@)Dy(w)
+ 2, 2, PO(0i(@) = ) Us(@) + (=pi(@) = i) Vi(w))

s.t. 0 < Xj(w) < Gi(w), Ui(w), Vi(w), x; = 0,
F(w) € F.

This can be decoupled by generation agent. Generation agent
i solves the following problem:

SP2: max Z P(w)((Pi(w) = c)x; + (A (w) — pi(w)Xi(w)

+(pi(w) = ru)Ui(w) + (—pi(w) = 1) Vi(w))
s.t. 0 < Xj(w) < Gi(w), Ui(w), Vi(w), x; > 0.

The objective function coefficient for the first-stage decision
can be rewritten as p; — ¢;, where:

p;i = Z P(w)pi(w).

Observe that SP2 then decouples into the optimization of an
action x;, and optimal actions for each scenario. When p; > ¢;,
x} will be infinite, so we require p; < ¢;, and (¢; — pp)x; = 0.
This means x; will be non zero only when generator i is paid
exactly its marginal cost ¢;. Similarly for finiteness we require
pi(w) < i and (=pi() < 1), yielding (oi(w) — ) U} (@) =
and (—pi(w) — 1, )V (w) = 0. We collect these results in the
following lemmas.

Lemma 3. For every generation agent i, the optimal dispatch
policy (x7, X} (w), U (w), V] (w)) satisfies:

©i — c)x; + (pi(w) = rHU (W) + (—=pi(w) — 1, )V (w) =
Lemma 4. For every generation agent i with X:(w) > 0, it
Sollows that pj(w) < A (w).

Proof. We take the contrapositive. Suppose p;(w) > Aju(w).
Then since X;(w) > 0 it follows that the optimal choice of X;(w)
is X(w) = 0. O

We use Lemmas 3 and 4 to yield the following result:



Proposition 5. For every i, if agent i has made the optimal
choice of x; then paying:

pix; + (A (w) = pilw)X; (w) + pi(w)U; () = pi(w)V] (w),
results in cost recovery in every scenario.

Proof. Assume that generation agent i has seen the realisation
of w and is making its second-stage decision. Then agent i’s
profit in scenario w is:

(w) = max oi — ¢))x: + (i, — pilw)Xi(w
#; (W) X;(w),Ui(w),Vi(w)(p )x; + (i) — pilw)Xi(w)

+(pi(w) = ryHUi(w) + (—pi(w) — 1) Vi(w)
s.t.0 < X,(w) < Gi((/.)), U,»(a)), VI((L)) > 0.

Now, by Lemma 3, we know that:
Bi = c)x; + (pi(w) = 1)U (W) + (=pi(w) = 1)V (w) = 0.

Therefore, ¢:(w) = (1;4) — pi(w))X(w).  Furthermore, we
know from Lemma 4 that (1) — pi(w))X; (w) > 0. Therefore,
¢ (w) 20, Yw e Q. O

Proposition 5 gives cost recovery for the payment mechanism
from SP2 because p; = ¢; whenever x} > 0. This discriminatory
mechanism means each generator that is dispatched in the first
stage has their exact costs for this dispatch paid by the ISO. This
might require the ISO to suffer a negative rent if a particular
scenario is realized, but as shown in Corollary 7 below the ISO
rental will be positive in expectation. It follows that the ISO
will not incur a deficit in the long run if we assume that the
random outcomes in each dispatch instance are i.i.d.

The payment mechanism in Proposition 5 can be rewritten as
follows:

Proposition 6. For every i, if generation agent i makes the op-
timal choice of x}, X[ (w), U} (w) and V}(w) then paying:

pix; + (Ajiy(w) = pi(w)X] () + pi(w)U; () = pi(w)V; (w),
gives the same profit as paying agent i:
i = pi(w))x; + Aj(WX] (w).
Proof. Agent i’s actions satisfy:
X+ Ul (w) - Vi(w) = X](w), Ywe Q.
It follows that:

pix; + (jiy(w) — pi(w)X; (W) + pi(w)U; (w) = pi(w)V} (w)
= pix; + i ()X (W) + pi(w)(U; (w) = X} (w) = V] (w))
=piX; + (W)X (w) — pi(w)x]
= (i — pi(w)x; + Ao (W)X] (w).

Proposition 6 shows that each generation agent is paid ex-
actly the same as in the first payment scheme except they are
compensated by (0; — pi(w))x] for the first-stage dispatch. The
expected value of this compensation will be zero, as this com-
pensation will be negative in some scenarios, and so in expec-
tation generators will receive the same amount under both pay-
ment schemes.

A market clearing mechanism is said to exhibit revenue ad-
equacy in expectation if the rental collected by the ISO is non-
negative in expectation. The first payment scheme satisfies this
because it is revenue adequate in every scenario, and the discus-
sion above demonstrates that the second payment scheme addi-
tionally pays a price of information which has an expected value
of zero, meaning that the second scheme is revenue adequate in
expectation. We formalize this as corollaries to Proposition 6.

Corollary 7. If (x*, X" (w), U*(w), V*(w), F*(w)) solves SP,
then paying each generation agent (9; — p;(w))x} + A ) (W)X (w)
results in revenue adequacy in expectation.

Corollary 8. A sufficient condition for revenue adequacy in
scenario @ is:

(&) - p)" x* > 0.

Corollary 9. If all agents act as risk-neutral price takers, then
the payment mechanism of charging consumer n the amount
An(w)D,(w) and paying generator i the amount A ;) X;(w) results
in the same expected profit for each generator, each consumer
and the ISO as the payment mechanism of charging consumer
n the amount A,(w)D,(w) and paying generator i the amount

Vi — pilw)xi(w) + A Xi(w).

4. A Six Node Example

To illustrate the differences between the two payment mech-
anisms, we analyse the payoffs to agents that would occur in
the six node example described by [7].

The transmission network is depicted in Figure 1, where
there are two inflexible thermal generators who cannot deviate
in the second stage, two flexible hydro generators who can ramp
up or down at costs of 35 and 20 per unit, and two intermittent
wind generators. The generation capacity of each generator and
cost per unit generation are indicated by “X@$Y”. The wind
generators independently produce one of the following amounts
with equal probability: {30, 50, 60, 70, 90}, resulting in 25 sce-
narios each having probability 0.04. There is a single consumer
who requires 264 units of generation in each scenario and in the
second stage a transmission constraint dictates that at most 150
units can be transmitted from node A to node B or vice versa.
The reactances of all lines are assumed to be identical, meaning
% of the power generated by Thermal 1 flows via the constrained
line, and % of the power generated by Wind 1 flows via the con-
strained line. In order to prevent dual degeneracy, we impose
quadratic losses on all transmission lines, with a loss coeflicient
of 105, That s, 7,(f) = Su(fuk— 107 12)+ S~ fiu =107 £2).
where f,; is a flow into node n from node k, and f;, is a flow
out of node n to node k.



Wind 2:
W, @$0

Finax = 150

Thermal 1:
100 @$40

Hydro 1:
50 @$42, +$35,-$20

Hydro 2:
@$80, +$35, -$20

Consumer

Demand=264

Figure 1: The six node example from Pritchard et al [7]

Summary statistics regarding the first and second stage dis-
patches are available in Tables 1 and 2, and payoffs of each
participant under the payment mechanisms considered in this
paper are available in Tables 3 and 4. The Expected Profit num-
bers illustrate the equivalence of payoffs in expectation, and the
Std Deviation values indicate how the two mechanisms allocate
risk to agents and the ISO in each case.

Indeed, for a worst case risk measure, Table 3 identifies a sce-
nario where wind generator 1 can produce up to 90 units, wind
generator 2 can produce up to 90 units, agents lose $5560 and
the ISO loses nothing. In contrast, the same scenario in Table
4 leads to an ISO shortfall of $5560 and all agents recovering
their costs.

This scenario also shows why it is not possible in a stochas-
tic dispatch to have both revenue adequacy and cost recovery in
every scenario. Here 114 units of demand are satisfied by the
inflexible thermal generators, leaving 150 units of demand to be
satisfied. However, 180 units of wind generation are available,
meaning that 30 units of wind generation must be shed, result-
ing in a real-time marginal price at each node of zero. In this
scenario, either the thermal generators or the ISO must experi-
ence a shortfall.

Table 1: First and second stage dispatches

Agent First Stage Dispatch | Mean 2nd Stage Dispatch | Std Deviation 2nd Stage Dispatch
Thermal 1 74 74 0
Wind 1 n/a 60 20
Thermal 2 40 40 0
Wind 2 n/a 60 20
Hydro 1 40 30.5 17.2
Hydro 2 0 4 9.4
Sum Agents n/a 268.5 79
Table 2: Dispatch summary statistics
Agent % Not dispatched | Min 2nd Stage Dispatch | Max 2nd Stage Dispatch
Thermal 1 0 74 74
Wind 1 0 30 90
Thermal 2 0 40 40
Wind 2 0 30 90
Hydro 1 4 0 50
Hydro 2 80 0 40
Sum Agents 0 264 294

Table 3: Statistics for the payment mechanism corresponding to SP1

Agent Expected Profit | Std Deviation | % Negative Profit | Min Profit | Max Profit
Thermal 1 0 34234 68 -2960 5550
Wind 1 2010.2 2083.2 0 0 7630
Thermal 2 0 1703.8 68 -1800 2800
Wind 2 2288.8 1689.2 0 0 6900
Hydro 1 444 1724.7 64 -800 3300
Hydro 2 0 0 0 0 0
1SO 2250 3812.5 0 0 17325
Sum Agents 6993 9328.1 24 -5560 22000

Table 4: Statistics for the payment mechanism corresponding to SP2

Agent Expected profit | Std Deviation | % Negative Profit | Min Profit | Max Profit
Thermal 1 0 0 0 0 0
Wind 1 2010.2 2083.2 0 0 7630
Thermal 2 0 0 0 0 0
Wind 2 2288.8 1689.2 0 0 6900
Hydro 1 444 792 0 0 1900
Hydro 2 0 0 0 0 0
1SO 2250 5736.2 64 -5560 15505
Sum Agents 6993 9328.1 24 -5560 22000
References
[1] J. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer

(2]

[3]
(4]

[3]
(6]

[7

—

[8]
[9]

[10]

New York, 2nd edition, 2011.

F. Bouffard, F. Galiana, An electricity market with a probabilistic spinning
reserve criterion, IEEE Transactions on Power Systems 19 (2004) 300—
307.

H. Chao, H. Huntington, Designing Competitive Electricity Markets,
Springer US, 1998.

J. Morales, A. Conejo, K. Liu, J. Zhong, Pricing electricity in pools with
wind producers, IEEE Transactions on Power Systems 27 (2012) 1366—
1376.

J. Morales, A. Conejo, H. Madsen, P. Pinson, M. Zugno, Integrating Re-
newables in Electricity Markets, 205, Springer US, 2014.

A. Philpott, G. Pritchard, Financial transmission rights in convex pool
markets, Operations Research Letters 32 (2004) 109-113.

G. Pritchard, G. Zakeri, A. Philpott, A single-settlement, energy-only
electric power market for unpredictable and intermittent participants, Op-
erations Research 58 (2010) 1210-1219.

A. Shapiro, A. Ruszczynski, D. Dentcheva, Lectures on Stochastic Pro-
gramming: Modeling and Theory, SIAM, 2014.

S. Wong, J. Fuller, Pricing energy and reserves using stochastic optimiza-
tion in an alternative electricity market, IEEE Transactions on Power Sys-
tems 22 (2007) 631-638.

G. Zakeri, G. Pritchard, M. Bjorndal, E. Bjorndal, Pricing wind: A rev-
enue adequate cost recovering uniform price for electricity markets with
intermittent generation, NHH Dept. of Business and Management Science
(2016).




