
On the convergence of sampling-based

methods for multi-stage stochastic linear

programs

A. B. Philpott and Z. Guan∗†

September 6, 2007

Abstract

We discuss the almost-sure convergence of a broad class of sam-

pling algorithms for multi-stage stochastic linear programs. Although

the convergence of methods of this type is part of the stochastic pro-

gramming folklore, we provide an explicit convergence proof based

on the finiteness of the set of distinct cut coefficients. This differs

from existing published proofs in that it does not require a restrictive

assumption.

1 Introduction

Multistage stochastic linear programs with recourse are well known in the
stochastic programming community, and are becoming more common in ap-
plications. The typical approach to solving these problems is to approximate
the random variables using a finite set of outcomes forming a scenario tree
and then solve a large-scale mathematical programming problem (see e.g.
[1]). The scenario tree can be constructed to represent certain desired prop-
erties of the uncertain parameters (see e.g. [9]), or it can be (conditionally)
sampled from some probability distribution (see e.g. [10]).

∗Department of Engineering Science, The University of Auckland
†The authors would like to acknowledge discussions with Geoffrey Pritchard and Clau-

dia Sagastizábal that have improved the presentation of this paper.

1

One approach to solving multistage stochastic linear programs that has
been widely applied in energy and logistics settings is based on the stochastic
dual dynamic programming (SDDP) algorithm of Pereira and Pinto [8]. This
algorithm constructs feasible dynamic programming policies using an outer
approximation of a (convex) future cost function that is computed using
Benders cuts. The policies defined by these cuts can be evaluated using
simulation, and their performance measured against a lower bound on their
expected cost. This provides a convergence criterion that may be applied to
terminate the algorithm when the estimated cost of the candidate policy is
close enough to its lower bound. The SDDP algorithm has led to a number of
related methods (see [2],[3],[4],[6]) that are based on the same essential idea,
but seek to improve the method by exploiting the structure of particular
applications.

Since its publication in 1991, a number of authors have studied the con-
vergence behaviour of SDDP and related algorithms. In his PhD thesis [3]
(and in [4]) Donohue states that “finite convergence of this algorithm follows
from the finite convergence of the Nested Decomposition algorithm, since the
scenarios from which the optimality cuts are generated are resampled at each
iteration.” This remark which, strictly speaking, should be a statement of
convergence with probability 1, is not accompanied by a formal proof.

The first formal proof of the almost sure convergence of multi-stage sam-
pling algorithms was published by Chen and Powell [2] who derived this for
their CUPPS algorithm. This proof was extended by Linowsky and Philpott
[7] to cover other multi-stage sampling algorithms (SDDP [8], AND [4], ReSa
[6]) that use outer approximation. The convergence proofs in [2] and [7]
make use of an unstated assumption regarding the independence of sampled
random variables and convergent subsequences of algorithm iterates. This
assumption seriously weakens the analysis in these papers, and leaves open
the question of convergence in general.

The purpose of this paper is to define a broad class of sampling algorithms
that include SDDP, AND, ReSa and CUPPS and give a simpler proof of
almost sure convergence that does not require this assumption. Our proof
follows the finiteness argument that Donohue alluded to in his thesis, and
makes this argument explicit, by basing it on two well-defined properties of
the sampling procedure.

In the next section we define the class of multi-stage stochastic linear
programs that we shall be considering and the class of algorithms for these
problems. We then discuss in section 3 the implicit assumption that is made

2

in the proofs in [2] and [7], and give a new proof of almost sure convergence
that does not require this assumption, but requires conditions on the forward
and backward sampling procedures that are easily shown to hold for all the
algorithms discussed above. In section 4, we give a discussion on the role
of these conditions and their relationship to the properties used in Linowsky
and Philpott.

2 Multistage Benders decomposition

We follow the notation and terminology of [7], and restrict attention to mul-
tistage stochastic programs with the following properties:

(A1) Random quantities appear only on the right-hand side of the linear
constraints in each stage.

(A2) The set Ωt of random outcomes in each stage t = 2, 3, . . . , T is discrete
and finite
(Ωt = {ωti| i = 1, . . . , qt <∞} with probabilities pti > 0 , ∀i).

(A3) Random quantities in different stages are independent.

(A4) The feasible region of the linear program in each stage is non-empty
and bounded.

Under these assumptions, the multi-stage stochastic linear program can be
written in the following form:

Solve the problem defined by

[LP1] Q1 = minx1 c
⊤
1 x1 +Q2(x1)

subject to A1x1 = b1,
x1 ≥ 0,

where for all t = 2, . . . , T,

Qt(xt−1) =

qt∑

i=1

ptiQt(xt−1, ωti),

3

Qt(xt−1, ωti) is defined by the problem

[LPt] Qt(xt−1, ωt) = minxt c
⊤
t xt +Qt+1(xt)

subject to Atxt = ωt −Bt−1xt−1,
xt ≥ 0,

and we set QT+1 ≡ 0.
The problem [LPt] depends on the choice of ωt and xt−1, and so we could

write [LPt(xt−1, ωt)], though we choose to suppress this dependence in the
notation. By Assumption (A3), [LPt] is independent of ωt−1, ωt−2

In the class of sampling algorithms that we consider in this paper the
functions Qt(xt−1) in each stage are approximated by the maximum of a
collection of linear functions, each of which is called a cut. In each iteration
k = 1, 2, . . . , the type of algorithm we consider computes a set of feasible
solutions {xkt : t = 1, . . . , T − 1}, and a set of cuts, one for each stage
t = 1, . . . , T − 1. This gives rise to a sequence of approximate problems
[AP k

t], k = 1, 2, . . . , for each stage. These are defined as follows:
For t = 1, we solve the linear program

[AP k
1] Ck

1 = minx1,θ2 c
⊤
1 x1 + θ2

subject to A1x1 = b1,

θ2 + (βj2)
⊤x1 ≥ α2,j , j = 0, . . . , k − 1,

x1 ≥ 0,

and, for t = 2, . . . , T − 1, we solve

[AP k
t] Ck

t (x
k
t−1, ωt) = minxt,θt+1 c

⊤
t xt + θt+1

subject to Atxt = ωt −Bt−1x
k
t−1,

θt+1 + (βjt+1)
⊤xt ≥ αt+1,j , j = 0, . . . , k − 1,

xt ≥ 0.

Finally for every k, we set [AP k
T]=[LPT]. The problems [AP k

t] are approxi-
mations of [LPt] in the sense that Qt+1(xt) is approximated (below) by the
polyhedral function

max
j=0,...,k−1

{αt+1,j − (βjt+1)
⊤xt}.

This means that any solution to [AP k
t] has a value that is a lower bound on

the optimal value of [LPt].

4

For all stages, the first cut (j = 0) is set as the trivial cut θt+1 ≥ −∞. We
use the notation Ckt (xt−1) to denote

∑qt
i=1 ptiC

k
t (xt−1, ωt). In the last stage,

T , we have [AP k
T]= [LPT], and so for every xT−1 and ωT

Ck
T (xT−1, ωT) = QT (xT−1, ωT), k = 1, 2,

Since cuts are added from one iteration to the next, and no cuts are
taken out, the optimal values of [AP k

t] form a monotonic sequence, i.e. for
k = 1, 2, . . .

Ck+1
t (xt−1, ωt) ≥ Ck

t (xt−1, ωt), t = 2, 3, . . . , T,

and

Ck+1
1 ≥ Ck

1 .

Observe that under Assumption (A4),

{xt | Atxt = ωt −Bt−1x
k
t−1, xt ≥ 0}

is nonempty and bounded so [AP k
t] always has a nonempty feasible set (with

θt+1 chosen large enough) and hence an optimal solution. Thus its dual has
an optimal solution (πt, ρt), where πt corresponds to the equality constraints,
and ρt corresponds to the cut constraints. Furthermore, by Assumption (A1),
the set of extreme points of the dual of [AP k

t] is independent of the outcomes
of the random quantities, which allows us to construct a valid cut at each
stage based on an assembled collection Dkt of extreme-point dual solutions
from different samples.

Initially at iteration k = 0, D0t = ∅. At any subsequent iteration k the
coefficients of the cuts at each stage t = 1, 2, . . . , T − 1, are calculated as
follows.

Cut Calculation Algorithm (CCA)

1. Choose a sample Ωkt ⊆ Ωt, solve [AP k
t] for all ωti ∈ Ωkt , and add the

optimal extreme-point dual solutions to Dkt .

2. Let (πit(x
k
t−1), ρ

i
t(x

k
t−1)) be the best dual solution in Dkt for [AP k

t] for
each ωti ∈ Ωt, that is,

(πit(x
k
t−1), ρ

i
t(x

k
t−1))

= argmax{π⊤t (ωti −Bt−1x
k
t−1) + ρ⊤t α

k−1
t+1 | (πt, ρt) ∈ D

k
t }.

5

3. The cut has the formula

θt ≥ αt,k − (βkt)
⊤xt−1

where

βkt =

qt∑

i=1

pti B
⊤
t−1 π

i
t(x

k
t−1) for 2 ≤ t ≤ T,

αt,k =

qt∑

i=1

pti
[
ω⊤ti π

i
t(x

k
t−1) + (αk−1t+1)

⊤ρit(x
k
t−1)

]
for 2 ≤ t ≤ T − 1,

αT,k =

qT∑

i=1

pTi ω
⊤
Ti π

i
T (x

k
T−1).

Observe that αt,k is a scalar, whereas αk−1t+1 denotes a (k− 1)-dimensional
vector. This means that the dimensions of αk−1t+1 and ρit(x

k
t−1) are increasing

as the iteration count k increases, and thus the collection of extreme-point
solutions of the dual of [AP k

t] may be infinite. On the other hand, the
collection of distinct values of (βkt , αt,k) is provably finite, as we show in the
following lemma.

Lemma 1 For each t = 2, 3, . . . , T , define the set

Gkt = {(β
j
t , αt,j) : j = 1, 2, . . . , k − 1}.

Then for any sequence Gkt , k = 1, 2, . . . generated by the repeated application
of CCA there exists mt such that for all k

∣∣Gkt
∣∣ ≤ mt.

Furthermore, there exists kt, so that if k > kt then Gkt = G
kt
t .

Proof. Consider any realization of the sequence Gkt , k = 1, 2, . . . gener-
ated by the repeated application of CCA. We use induction on t to construct
mt such that

∣∣Gkt
∣∣ ≤ mt. The second part of the lemma follows immediately.

First at T , ρT = 0 and πT is an extreme point of {π | A⊤T π ≤ cT} of which
there are at most mT+1, say. Then the cut coefficients

αT,k =

qT∑

i=1

pTi ω
⊤
Ti π

i
T (x

k
T−1),

βkT =

qT∑

i=1

pTi B
⊤
T−1 π

i
T (x

k
T−1),

6

each can only take at most mqT
T+1 values, and thus if mT = m2qT

T+1, then for
all k

∣∣GkT
∣∣ ≤ mT .

Now suppose at t that there exists mt+1 such that for all k
∣∣Gkt+1

∣∣ ≤ mt+1.

It follows that there exists kt+1, so that if k > kt+1 then Gkt+1 = Gkt+1t+1 and
the cut at iteration k > kt+1 is a repeat of some cut in the existing cuts.
Consider the feasible region of the dual of [AP k

t], namely

Hk
t = {(πt, ρt) | A

⊤
t πt +

k−1∑

j=1

βjt+1ρ
j
t ≤ ct,

k−1∑

j=1

ρjt = 1, ρt ≥ 0}.

If k > kt+1 then any extreme point (πkt , ρ
k
t) of H

k
t corresponds to an extreme

point (π, ρ) ofHkt+1
t with the same dual objective value, obtained by choosing

π = πkt and basic columns βjt+1 for j < kt+1 that match the basic columns

βjt+1, kt+1 ≤ j < k. This is because each latter column βjt+1 and its cost

coefficient αt+1,j is a duplicate of some (β, α) ∈ Gkt+1t+1 . Since there are a finite

number, say et, of extreme point solutions to Hkt+1
t , there are at most et

distinct values of

[
ω⊤ti π

i
t(x

k
t−1) + (αk−1t+1)

⊤ρit(x
k
t−1)

]

and so (et)
qt distinct values of

αt,k =

qt∑

i=1

pti
[
ω⊤ti π

i
t(x

k
t−1) + (αk−1t+1)

⊤ρit(x
k
t−1)

]
,

Similarly,

βkt =

qt∑

i=1

pti B
⊤
t−1 π

i
t(x

k
t−1),

can take at most (et)
qt values and so if mt = (et)

2qt then
∣∣Gkt
∣∣ ≤ mt,

7

which proves the result.
Lemma 1 states that in any realization of the algorithm there will exist

finite mt and kt independent of k. Observe however that in the case that
Ωkt is randomly sampled, mt and kt are random variables with distribution
determined by the sampling distribution. So they could be arbitrarily large.

Linowsky and Philpott [7] define a class of sampling-based decomposition
algorithms, the Multi-stage Sampled Benders Decomposition (MSBD), which
includes SDDP, AND, ReSa and CUPPS. Here we define a different class of
sampling algorithms, which we call Dynamic Outer Approximation Sampling
Algorithms (DOASA). To do this we will use the terminology scenario to
denote an element of

∏T−1
t=2 Ωt indexed by j so

T−1∏

t=2

Ωt = {ω(j) | j = 1, 2, . . . ,
T−1∏

t=2

qt}.

Algorithms in the DOASA class perform the following steps:

Step 0: (Initialization) Set k = 1.

Step 1: (Forward pass)
Sample a single outcome ωt of the random variable in each stage t =
2, 3, . . . , T − 1, to give a single scenario {ωkt }. For each stage t =
1, 2, . . . , T − 1, compute the primal solution (xkt , θ

k
t+1) of the problem

[AP k
t].

Step 2: (Cut Generation)
For each stage t = T, T −1, . . . , 2, generate a cut at xkt−1 with a sample
Ωkt .

Step 3: Set k = k + 1 and go to Step 1.

Algorithms in the DOASA class also require the following properties of
the sampling methods used to obtain {ωkt } and Ωkt :

Forward Pass Sampling Property (FPSP):
For each j = 1, 2, . . . ,

∏T−1
t=2 qt, with probability 1

∣∣{k : {ωkt | t = 2, 3, . . . , T − 1} = ω(j)
}∣∣ =∞.

8

Backward Pass Sampling Property (BPSP):
For each t = 2, 3, . . . , T and i = 1, 2, . . . , qt, with probability 1

∣∣{k : ωti ∈ Ωkt
}∣∣ =∞.

FPSP states that each scenario ω(j) is traversed infinitely many times
with probability 1 in the forward pass. BPSP states that each scenario
outcome ωti is visited infinitely many times with probability 1 in the back-
ward pass. There are many sampling methods satisfying these two prop-
erties. For example, consider independently sampling a single outcome in
each stage with a positive probability for each ωti in the forward pass and
backward pass respectively. Then by the Borel-Cantelli lemma (see [5]) this
method satisfies both properties. Another sampling method that satisfies
FPSP and BPSP is to repeat an exhaustive enumeration of each scenario
ω(j), j = 1, 2, . . . ,

∏T−1
t=2 qt in both the forward pass and the backward pass,

although such a method would be prohibitively expensive in all but the small-
est examples.

3 Convergence of DOASA algorithms

3.1 Previous results

Previous published results in [2] and [7] give proofs for the almost sure con-
vergence of CUPPS and MSBD respectively. The proofs in both of these
papers require an important but unstated assumption. Here we state this
assumption formally and discuss it.

Let the iterations of the algorithm be indexed by N = {1, 2, . . . } and
suppose t ∈ {1, . . . , T − 1}. Let {ωnt , x

n
t }n∈N be the sequence generated by

the sampling algorithm at stage t.

Assumption 1: For any infinite subsequence {xkt }k∈K of {xnt }n∈N there
exists a convergent subsequence {xjt}j∈J that is independent of {ωjt+1}j∈J .

Remark 4.1 in [2] correctly claims that if N is infinite then with proba-
bility one N has an infinite subset Nti corresponding to draws of outcome
ωti for any i = 1, . . . , qt and t = 2, . . . , T . This follows by an application
of the Borel-Cantelli lemma, because each ωnt in {ωnt }n∈N is independently
sampled and Pr[ωnt = ωti] > 0.

9

However, the situation becomes more subtle in the proof of Lemma 5.2 in
[2]. Here the authors claim that for any infinite subset K of N , there exists
an infinite subset J with a convergent subsequence {xjT−1}j∈J such that with
probability one there exists an infinite subset Ji of J corresponding to draws
of each sample ωTi for i = 1, . . . , qT . The convergent subsequence {x

j
T−1}j∈J

in this lemma is constructed using the assumed compactness of the set X in
which xT−1 lies. Of course, compactness guarantees a convergent subsequence
{xjT−1}j∈J of {xkT−1}k∈K, but it cannot be deduced from this and Remark 4.1

in [2] that there are infinite number of ωTi in {ω
j
T}j∈J for every i = 1, . . . , qT .

(The problem here is that for every convergent subsequence it might be the
case that there are only finitely many ωTi for some i = 1, . . . , qT , and this
possibility needs to be ruled out somehow.)

In claiming the independence of the sampling procedure from the conver-
gence of the subsequence, the authors of [2] are making an implicit assump-
tion (Assumption 1), which is needed to make the proof of Lemma 5.2 valid.
The proof in [7] is based on Lemma 5.2 in [2], and so it is also flawed in the
absence of Assumption 1.

In this section we give a direct proof of almost sure convergence that
does not rely on Assumption 1. The new proof formalizes the assertion by
Donohue [3] that convergence follows from resampling. It also clarifies the
role that extreme-point dual solutions play in the almost sure convergence of
these sampling algorithms.

3.2 Single-scenario Multistage Benders Decomposition

To demonstrate the convergence of our class of sampling methods it is help-
ful to first understand the convergence of an algorithm that uses a single
scenario. This algorithm will construct a cut for every xkt , t = 1, . . . , T −
1, k = 1, 2, . . . that is visited by simulating the solution forward over a
single sample scenario ω(j) that remains the same throughout the course of
the algorithm. We call this algorithm SSMBD.

SSMBD

Step 0: (Initialization) Set iteration counter k = 1. Select at each stage
t = 2, 3, . . . , T − 1, a single outcome ωt of the random variable to give
a single scenario.

10

Step 1: (Forward pass)
For each stage t = 1, 2, . . . , T − 1, solve [AP k

t] to yield the primal
solution (xkt , θ

k
t+1).

Step 2: (Cut Generation)
For each stage t = T, T −1, . . . , 2, generate a cut at xkt−1 with a sample
Ωkt .

Step 3: Set k = k + 1 and go to Step 1.

We can apply Lemma 1 to give the following result.

Lemma 2 Under every realization of iterations, SSMBD converges in a fi-
nite number of iterations to a policy giving limk C

k
1 which is at most equal to

the optimal expected cost of [LP1].

Proof. Under every realization of iterations, by Lemma 1, for t ∈
{2, . . . , T}, there exists kt, so that if k > kt then Gkt = Gktt and thus there is
no further change in the cuts defining Ckt (xt−1), that is, for every xt−1

max
j=0,...,k−1

{αt,j − (βjt)
⊤xt−1} = max

j=0,...,kt−1
{αt,j − (βjt)

⊤xt−1}.

Thus all solutions (xk1, θ
k
2) to [AP k

1] are the same for k > k2, as are
all solutions (xkt , θ

k
t+1) to [AP k

t], t = 2, 3, . . . , T , so the SSMBD algorithm
terminates after iteration k2.

Since any solution to [AP k
1] has a value that is a lower bound on the

optimal value of [LP1], this will be true at termination of SSMBD.

Remark 3.1: The solution obtained from SSMBD defines a set of cuts
at each stage. If for every k, Ωkt = Ωt then this set of cuts at termination will
be the same every time the algorithm is run (assuming the single scenario
ω(j) remains fixed). On the other hand if Ωkt is a random sample then the
set of cuts will also be random, and defined by the sampling distribution.
Every time the algorithm is run (with different random number seeds) we
should expect to obtain a different sequence of cuts.

Remark 3.2: The cuts at stage 1 define a lower bound on the expected
cost of any policy. Every time the algorithm is run, with a possibly different

11

ω(j), this lower bound will be (possibly) different. However every realization
of this value will be a lower bound on the expected cost of any policy, and so
the maximum of these values will be the best lower bound of those available.

Remark 3.3: The solution obtained from SSMBD is not the same as the
optimal solution of the mathematical program obtained by using a single sce-
nario and solving a deterministic problem. The latter solution would define
a single set of actions, one for each stage t, that may not be feasible for some
scenarios in the original problem. On the other hand, the SSMBD solution
is a set of (possibly) random cuts defining a policy that is feasible for the
original problem. The simulation of this policy using a randomly sampled
forward pass, yields a random value having an expectation that is greater
than or equal to the optimal expected cost of the underlying stochastic pro-
gram. A simulation of the policy with the single scenario used in SSMBD
gives the cost of the policy when implemented in the single scenario. The
observed value of this simulation depends on the outcomes in the single sce-
nario. This means that it may be significantly lower or significantly higher
than the true expected cost of the policy.

3.3 Multiscenario Multistage Benders Decomposition

We now consider a multiple-scenario version of SSMDB called MSMBD. In
this version a finite set of N scenarios is sampled in advance. The algo-
rithm then constructs an optimal solution corresponding to a scenario tree
consisting of these scenarios.

MSMBD

Step 0: (Initialization) Set k = 1. For s = 1 to N , select at each stage
t = 2, 3, . . . , T − 1, a single outcome ωst of the random variable to give
a set of N scenarios.

Step 1: (Forward pass)
For each scenario s, and stage t = 1, 2, . . . , T − 1, compute the primal
solution (xkst, θ

k
s,t+1) of the problem [AP k

t].

Step 2: (Cut Generation)
For each stage t = T, T − 1, . . . , 2, generate N cuts at the states xks,t−1
with samples Ωks,t, s = 1, 2, . . . , N .

12

Step 3: Set k = k + 1 and go to Step 1.

Lemma 3 In every realization of iterations, MSMBD converges in a finite
number of iterations to a policy giving value limk C

k
1 which is at most equal

to the optimal expected cost of [LP1].

Proof. The proof is similar to that for SSMBD. For each s = 1, 2, . . . , N ,
since k = 1, 2, . . . and one cut is constructed in each iteration k, then by
Lemma 1, for t ∈ {2, . . . , T}, there exists ks,t, so that if k > ks,t then Gkt =

G
ks,t
t and thus there is no further change in the cuts defining Cks,t(xs,t−1), that

is, for every xs,t−1

max
j=0,...,k−1

{αt,j − (βjt)
⊤xs,t−1} = max

j=0,...,ks,t−1
{αt,j − (βjt)

⊤xs,t−1}.

For t ∈ {2, . . . , T}, if we choose kt = maxNs=1{ks,t}, then for each k > kt
there is no change in the cuts defining Ckt (xt−1), that is, for every xt−1

max
j=0,...,k−1

{αt,j − (βjt)
⊤xt−1} = max

j=0,...,kt−1
{αt,j − (βjt)

⊤xt−1}.

Thus all solutions (xk1, θ
k
2) to [AP k

1] are the same for k > k2, as are
all solutions (xkt , θ

k
t+1) to [AP k

t], t = 2, 3, . . . , T , so the MSMDB algorithm
terminates after iteration k2.

It is easy to see that for every k the optimal value of [AP k
1] is a lower

bound on the optimal expected cost of [LP1].

The algorithm MSMBD works with N scenarios that do not change over
the course of the algorithm. All of the remarks that were made for SSMBD
apply in this case also. In particular we observe that a termination criterion
that uses the N scenarios to simulate the candidate policy defined by the cuts
might give a misleading indication of convergence. Lemma 3 demonstrates
that MSMBD will terminate at some policy that gives a lower bound on the
optimal expected cost of [LP1]. Simulating this policy using a set of randomly
sampled scenarios will give a statistical estimate of an upper bound on the
optimal expected cost of [LP1]. If the sample of N scenarios is small then
we might expect termination of MSMBD at a poor policy. In this case the
standard termination criterion using the statistical estimate of the upper
bound might fail to be met, even though no further improvement in the
policy is possible by continuing to iterate MSMBD.

A special case of MSMBD uses the universe of N =
∏T−1
t=2 qt scenarios.

13

Lemma 4 Under BPSP, MSMBD with the universe of scenarios converges
with probability 1 to an optimal solution to [LP1] in a finite number of iter-
ations.

Proof. From Lemma 3 in every realization of iterations MSMBD will con-
verge in a finite number of steps to a policy that has limk C

k
1 giving a lower

bound on the true expected cost. Now consider a realization of MSMBD it-
erations, and denote the limiting policy by (x̄1, x̄2(ω2), x̄3(ω2, ω3), . . .), which
is obtained at iteration k̄, say. For any scenario ω2, ω3, . . . , ωT , we denote
x̄t(ω2, . . . , ωt) by x̄t(ω). We claim that for every k > k̄, and any scenario ω,

CkT (x̄T−1(ω)) = QT (x̄T−1(ω)), (1)

with probability 1, which implies Ck
T (x̄T−1(ω), ωT) = QT (x̄T−1(ω), ωT) for all

ωT . Otherwise for some particular outcome ω̂T , we have ω̂T /∈ Ωkt , for every
k > k̄, with positive probability which violates BPSP.

Now we claim that if k > k̄ then for every scenario ω

CkT−1(x̄T−2(ω)) = QT−1(x̄T−2(ω)). (2)

Otherwise for some particular outcome ω̂T−1,

Ck
T−1(x̄T−2(ω), ω̂T−1) < QT−1(x̄T−2(ω), ω̂T−1). (3)

But

Ck
T−1(x̄T−2(ω), ω̂T−1) = minxT−1,θT c

⊤
T−1xT−1 + θT

subject to AT−1xT−1 = ω̂T−1 −BT−2x̄T−2(ω),

θT + (βjT)
⊤xT−1 ≥ αT,j , j = 0, . . . , k − 1,

xT−1 ≥ 0,

which has optimal solution

(x∗T−1, θ
∗
T) = (x̄T−1(ω),maxj=0,...,k−1{αT,j − (βjT)

⊤x̄T−1(ω)})

with ωT−1 = ω̂T−1.
If θ∗T < CkT (x

∗
T−1), then for any k > k̄

maxj=0,...,k−1{αT,j − (βjT)
⊤x̄T−1(ω)}) < C

k
T (x

∗
T−1) = QT (x̄T−1(ω)) (4)

14

xT-1(ω)

xT-1(ω)Q T(xT-1(ω)xT-1(ω)Q T()

Θ∗
Τ

Figure 1: A new cut shown in bold would be created if θ∗T < CkT (x
∗
T−1).

by (1). But by BPSP we have with probability 1 that for each ωT there

is some k(ωT) > k̄ with ωT ∈ Ω
k(ωT)
T . If we let k̂ denote the maximum of

the k(ωT) then the height of the cut at x̄T−1(ω) evaluated at iteration k̂ is
QT (x̄T−1(ω)) contradicting (4) (see Figure 1). Thus we have

θ∗T = CkT (x
∗
T−1) = QT (x

∗
T−1)

and

Ck
T−1(x̄T−2(ω), ω̂T−1) = c⊤T−1x

∗
T−1 +QT (x

∗
T−1) = QT−1(x̄T−2(ω), ω̂T−1)

contradicting (3), thereby demonstrating (2). Observe that since ω̂T−1 was
arbitrary this shows that x̄T−1(ω) solves [LPT−1(x̄T−2(ω), ωT−1)] for any
ωT−1.

In a similar way, it is easy to show by induction that x̄t−1(ω) solves
[LPt−1(x̄t−2(ω), ωt−1)] thus demonstrating that (x̄1, x̄2(ω2), x̄3(ω2, ω3), . . .) is
an optimal policy.

We now return to the DOASA class of algorithms, in which a single
scenario is re-sampled in each forward pass, in contrast to the methods above
when these are sampled once and then fixed.

15

Theorem 5 Under FPSP and BPSP, DOASA converges with probability 1
to an optimal solution to [LP1] in a finite number of iterations.

Proof. By FPSP, each scenario in the finite collection of N =
∏T−1
t=2 qt

scenarios will occur an infinite number of times in the course of the algorithm
with probability 1. Thus with probability 1, DOASA will contain a sequence
of iterations that are equivalent to MSMBD applied to the universe of sce-
narios. We may then apply Lemma 4 which shows that with probability 1,
DOASA will converge in a finite number of steps to an optimal solution to
[LP1] in a finite number of iterations.

4 Discussion

The proof of almost-sure convergence above assumes the sampling procedures
satisfy FPSP and BPSP. The proof of convergence in [7] makes some different
assumptions, namely the Cut Sampling Property and the Sample Intersection
Property. The Cut Sampling Property (CSP) states that there are only a
finite number of iterations in the algorithm where Ωkt is empty. Since we are
investigating convergence as k →∞, CSP is effectively the same as assuming
that Ωkt is nonempty for all k.

The Sample Intersection Property (SIP) states that for any t, each ωti ∈
Ωt and each k (given Ωkt �= ∅),

Pr[(ωti ∈ Ωkt) ∩ (ωkt = ωti)] > 0.

SIP is sufficient to guarantee FPSP and BPSP if it is accompanied by inde-
pendent sampling in the forward pass and the backward pass. We state this
formally.

Lemma 6 Given independent sampling in the forward pass, SIP implies
FPSP. Given independent sampling in the backward pass, SIP implies BPSP.

Proof. By SIP, for each ωti ∈ Ωt and each k (given Ωkt �= ∅),

Pr[ωkt = ωti] > 0, (5)

Pr[ωti ∈ Ωkt] > 0. (6)

16

By (5) and independent sampling in the forward pass, for any scenario ω(j)
with ωti ∈ ω(j), t = 2, 3, . . . , T − 1,

Pr[{ωkt } = ω(j)] =
T−1∏

t=2

Pr[ωkt = ωti] > 0.

Then with independent sampling in the forward pass, by the Borel-Cantelli
lemma, there are infinite traversals of each scenario ω(j), j = 1, 2, . . . ,

∏T−1
t=2 qt

with probability 1, and thus FPSP is satisfied.
And with (6) and independent sampling in the backward pass, by the

Borel-Cantelli lemma, there are infinite visits to each ωti with probability 1,
and thus BPSP is satisfied.

Remark 4.1: Independent sampling is necessary in Lemma 6. If in-
dependent sampling in the forward pass is not assured, then FPSP is not
guaranteed. For example, suppose for t = 2, 3, . . . , T − 1, Ωt = {ω1, ω2} and
we choose ωkt with

Pr[ω1t = ω1] = Pr[ω1t = ω2] =
1

2
,

ωkt = ω1t , k ≥ 2.

Then for ω1,

Pr[ωkt = ω1] = Pr[ω1t = ω1] > 0,

and it is easy to show that Pr[ωkt = ω2] > 0 for each k, and thus this sampling
method satisfies (5). But obviously some of the scenarios will never be visited,
and thus the sampling method does not satisfy FPSP.

Similarly if independent sampling in the backward pass is not assured,
then BPSP is not guaranteed. For example, suppose for t = 2, 3, . . . , T ,
Ωt = {ω1, ω2}, and we choose Ωkt with

Pr[Ω1t = {ω1}] = Pr[Ω1t = {ω2}] =
1

2
,

Ωkt = Ω1t , k ≥ 2.

Then for example for ω1 and k ≥ 2,

Pr[Ωkt = {ω1}] = Pr[Ω1t = {ω1}] > 0.

17

Similarly Pr[Ωkt = {ω2}] > 0 for each k, and thus this sampling method
satisfies (6), but does not satisfy BPSP.

Remark 4.2: The CUPPS algorithm ([2]) comprises independent sam-
pling in the forward pass, and cuts computed using Ωkt = {ω

k
t }. This is easily

seen to satisfy SIP, and FPSP and BPSP, even though the backward pass is
not sampled independently, but constructed from the forward pass.

Remark 4.3: SIP is not necessary for FPSP and BPSP to hold. Consider
a version of CUPPS in which cuts are computed using Ωkt = Ωt \ {ωkt }. This
does not satisfy SIP, but it does satisfy FPSP and BPSP.

Remark 4.4: The algorithms SDDP1, AND, and ReSa all use indepen-
dent sampling in the forward pass, and set Ωkt = Ωt. In this case BPSP is
trivially true, and FPSP follows by the Borel-Cantelli lemma. These algo-
rithms also satisfy SIP trivially.

Remark 4.5: Lemma 8 in [7] asserts that CSP, SIP and independent
sampling in the forward pass are sufficient for almost sure convergence. As
discussed above there is an implicit independence assumption in the proof of
Lemma 8. It is tempting to suppose that independent sampling in the for-
ward pass and SIP give BPSP, which would make Lemma 8 true. However
this is not true in general, as shown by Remark 4.1. Thus, in the absence
of independent sampling in the backward pass, Lemma 8 in [7] remains un-
proven.

References

[1] Birge, J.R., and Louveaux, F. Introduction to Stochastic Program-
ming, Springer Verlag, New York, 1997.

[2] Chen, Z. L., and Powell, W. B. Convergent Cutting Plane and
Partial-Sampling Algorithm for Multistage Stochastic Linear Programs
with Recourse, Journal of Optimization Theory and Applications,
Vol. 102, pp. 497-524, 1999.

1We are assuming here that SDDP re-samples in its forward pass. Some commer-

cial implementations of SDDP do not re-sample and so are more akin to MSMBD than

DOASA.

18

[3] Donohue, C. J. Stochastic Network Programming and the Dynamic
Vehicle Allocation Problem, PhD Dissertation, University of Michigan,
Ann Arbor, Michigan, 1996.

[4] Donohue, C. J., and Birge, J.R. The Abridged nested Decomposi-
tion Method for Multistage Stochastic Linear Programs with Relatively
Complete Recourse, Algorithmic Operations Research, 1, 20-30, 2006.

[5] Grimmett, G.R., and Stirzaker, D.R. Probability and Random
Processes, Oxford University Press, Oxford, UK, 1992.

[6] Hindsberger, M., and Philpott, A.B. ReSa: A Method for Solving
Multi-stage Stochastic Linear Programs, SPIX Stochastic Programming
Symposium, Berlin, 2001.

[7] Linowsky, K., andPhilpott, A.B. On the Convergence of Sampling-
Based Decomposition Algorithms for Multistage Stochastic Programs,
Journal of Optimization Theory and Applications, 125, 349-366, 2005.

[8] Pereira, M.V.F., and Pinto, L.M.V.G.Multi-Stage Stochastic Op-
timization Applied to Energy Planning, Mathematical Programming,
52, pp. 359-375, 1991.

[9] Pflug, G.Ch. Scenario Tree Generation for Multiperiod Financial Op-
timization by Optimal Discretization, Mathematical Programming B,
89, 251-271, 2001.

[10] Shapiro, A. Monte Carlo Sampling Methods, in: Ruszczyński, A. and
Shapiro, A., (Eds.), Stochastic Programming, Handbook in OR & MS,
Vol. 10, North-Holland Publishing Company, Amsterdam, 2003.

19

