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1 Introduction

Stochastic Dual Dynamic Programming (SDDP) has been widely used to
build policies for multistage stochastic problems in many practical problems,
with a historical focus on problems related to energy and hydrothermal
scheduling. When SDDP was first introduced by [16] the objective was to
build a policy to optimize the expected value of a multistage linear stochastic
problem. In recent years several contributions have led to the discussion of
non-convex and risk averse cases. In this paper we are particularly interested
in models of risk aversion proposed within the SDDP framework.
The relevance of analyzing such modeling in the SDDP algorithm comes

from the fact that there are several conditions that need to be met in order
to be able to build a valid outer approximation for the Bellman function
defining an optimal policy [13]. In recent years the incopration into SDDP
of coherent risk measures [1] such as Conditional Value-at-Risk (CVaR) has
received lot of attention (see [21,17,18,15]). The Average Value-at-Risk of a
random cost can be viewed (in a minimization problem) as an expectation
that assigns positive probabilities to only the most expensive outcomes. To
be able to compute a policy, in practice these outcomes are the finite sample
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space of an approximating problem (such as a sample average approximation
[22]) endowed with a finite probability distribution.
In this paper we consider the problem of distributionally robust opti-

mization (DRO) in SDDP. This seeks a policy that minimizes expected cost
over the worst-case probability distribution in some family of distributions.
The appeal of such a model comes from the fact that in practical applica-
tions the real probability distribution is not known and in most cases we
consider the historical data to build an approximation which will then be
used to sample possible realizations that are going to be used in the SDDP
valuation process. We might expect a robust approach to avoid overfitting
the policy to a single distribution that has been estimated from data, which
is particularly important when there are only a small number of outcomes
per stage in the model.
Robust optimization has received a lot of attention in recent years. A

good summary is provided in the review article [3]. Our interest in this paper
is confined to distributionally robust models in probability spaces with a fi-
nite number of random outcomes. We assume that these outcomes are fixed
and model distributional ambiguity by allowing changes in the probability
measure on these outcomes, as long as the new probability measure is close
to a given nominal measure. A broad class of such distance measures are
the so-called ϕ-divergence distances [2]. A different strand of research uses
uncertainty sets based on probability metrics such as the Wasserstein dis-
tance [11],[10]. As observed by [11], these have advantages over ϕ-divergence
distances in that the probability measure is not confined to a given set of
points, but computational methods are more complicated.
Our purpose in this paper is to investigate the effect of distributional

robustness on policies computed by SDDP. Since standard SDDP imple-
mentations on real models take several hours to converge, our choice of
uncertainty set is dictated to some extent by computational convenience,
so we seek a method that is distributionally robust without requiring a big
increase in computational effort. Our choice of distance is a ϕ-divergence
based on the Euclidean norm on the difference in probabilities which gives
rise to a so-called modified χ2 distance (see [2]). A version of this (the χ2

distance) was used in an inventory lot-sizing setting by [14], and has been
discussed in general stochastic optimization by [4] and [5].
The χ2 distance has the following goodness-of-fit interpretation. Given

a sample of historical data of size N , represented for example frequency
ni in bin i of a histogram, and a probability distribution pi for the same
histogram bins, one can test the hypothesis that the sample was obtained
from the probability distribution using the statistic

∑
i

(ni−Npi)2

Npi
that has a

χ2 distribution. Thus given a sample, an uncertainty set P of probabilities p
that would not be rejected under a goodness of fit at some confidence level
takes the form P = {p :

∑
i pi = 1, pi ≥ 0,

∑
i

(ni−Npi)2

Npi
≤ r2}. As shown

by [14] this leads to a problem with second-order cone constraints defining
P.
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In the current paper we adopt a slightly different approach to that of
[14]. We assume that given a set of m historical data points, the nominal
distribution assigns equal probability 1

m to these. For a sample of N ob-
servations we would expect N

m observations for each point. We then seek
a set of possible sample frequencies ni, i = 1, . . . ,m for these outcomes
that would be such that we would not reject the null hypothesis that each
outcome had probability 1

m . Expressing these frequencies in terms of ratios
pi = ni

N gives an uncertainty set

P = {p :
∑
i

pi = 1, pi ≥ 0,
∑
i

(pi −
1

m
)2 ≤ r2

mN
}.

This is a modified χ2 distance. As we show below this choice of P leads to a
solution with a closed form that enables fast optimization of stage problems.
In this paper we make the following contributions:

1. We derive a distributionally robust SDDP algorithm, and show that it
converges almost surely to an optimal policy;

2. We implement the SDDP algorithm in the Julia language[6] and the
modeling package JuMP[9], and demonstrate its out-of-sample perfor-
mance on a hydrothermal planning problem in New Zealand;

The paper is laid out as follows. We first describe a multistage distrib-
utionally robust optimization model in a finite probability space. We then
look at a specific example where the uncertainty set takes the form of a
unit simplex intersected with a ball centred on the probability measure with
equal weights. By varying the radius of the ball we can construct increas-
ingly conservative robust optimization problems. The inner maximization
for these problems can be computed by a simple algorithm. In section 4
we show how this can be imbedded in SDDP to give a distributionally ro-
bust version of this algorithm. Section 5 applies this algorithm to some
hydrothermal scheduling models from New Zealand to illustrate the effect
of increasing conservatism on water release policies. The paper concludes
with a discussion of the results of these experiments.

2 Multistage distributionally robust optimization

The type of problem we consider has T stages, denoted t = 1, 2, . . . , T , in
each of which a random right-hand-side vector bt(ωt) ∈ Rm has a finite
number of realizations defined by ωt ∈ Ωt. We assume that the outcomes
ωt are stagewise independent, and that Ω1 is a singleton (i.e. we know ω1).
For t > 1, the probability of each outcome ωt is not known exactly, but lies
in some convex set Pt−1 of probability distributions.
The assumption of finite probability spaces greatly simplifies the analy-

sis, whereby we can dispense with most measurability assumptions, such as,
for example, specifying constraints that hold almost surely. If we let Ω =
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×Tt=1Ωt then the evolution of bt(ωt) defines a probability space (Ω,F , P )
and a filtration {∅, Ω} = F1 ⊂ F2 . . . ⊂ FT ⊂ F of σ-fields where b1 is
assumed to be deterministic. The decision variables xt, t = 1, 2, . . . , T , are
constrained to be non-negative Ft-measurable random variables that obey
the linear dynamics

Atxt = bt(ωt)−Htxt−1,

where for simplicity we assume that At and Ht are deterministic m × n
matrices. The objective function to be minimized is

c>1 x1 + max
P∈P1

EP[c>2 x2 + max
P∈P2

EP[c>3 x3 + . . .+ max
P∈PT−1

EP[c>T xT ] . . .]]

where ct ∈ Rn is a cost vector. In our setting, this construction leads us to
a recursive form for the dynamic programming problem to be solved. The
first-stage problem is

z = min c>1 x1 + maxP∈P1 EP[Q2(x1, ω2)]
s.t. A1x1 = b1,

x1 ≥ 0,
(1)

where for t = 2, 3, . . . , T ,

Qt(xt−1, ωt) = min c>t xt + maxP∈Pt EP[Qt+1(xt, ωt+1)]
s.t. Atxt = bt(ωt)−Htxt−1,

xt ≥ 0,
(2)

and in the last stage we assume for simplicity that QT+1(xT , ωT+1) = 0.
(The approach can be easily modified to make use of a known (convex)
polyhedral function that defines QT+1(xT , ωT+1).)
Observe that the convexity of Pt implies thatmaxP∈Pt EP[Qt+1(xt, ωt+1)]

is a coherent risk measure, so it is monotonic and convex. It follows that
maxP∈Pt EP[Qt+1(xt, ωt+1)] is a convex function of xt wheneverQt+1(xt, ωt+1)
is convex in xt for every ωt+1. This means that Qt(xt−1, ωt) is convex in
xt−1 for every ωt whenever Qt+1(xt, ωt+1) is convex in xt for every ωt+1,
and so it follows by induction that for every t = 2, 3, . . . , T , Qt(xt−1, ωt) is
convex in xt−1 for every ωt.
Our goal is to construct an approximately optimal solution for the mul-

tistage problem defined by (1) and (2). We define

X1(ω1) = {x1 ≥ 0 : A1x1 = b1}

and for t = 2, 3, . . . T , recursively we let

Xt(ωt) = {xt ≥ 0 : Atxt = bt(ωt)−Htxt−1, xt−1 ∈ Xt−1(ωt−1)}.

Under the assumption that the random disturbances ωt are stagewise in-
dependent, the solution has the form of a policy defined for each stage t
by a mapping π from Xt−1(ωt−1) × Ωt to Xt(ωt), specifying the decision
xt(xt−1, ωt) made by the policy at time t.
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3 Some preliminary results

In our distributionally robust version of SDDP we need to solve a subprob-
lem of the form

max
P∈P

EP[Z(x, ω)]

where Z(x, ω) is a cost. The choice of P can be made in different ways.
We assume that ω takes a finite number of values ωi, i = 1, 2, . . . ,m, each
with a nominal probability qi. In the special case where the outcomes are
obtained by sampling, for example in a sample average approximation, we
have qi = 1

m . We now define

P = {p ∈ Rm |
m∑
i=1

pi = 1, p ≥ 0, ‖p− q‖2 ≤ r}.

This results in a subproblem of the form

P: max
∑m
i=1 zipi

s.t.
∑m
i=1 pi = 1,

‖p− q‖2 ≤ r,
p ≥ 0.

where zi = Z(x, ωi) and we assume without loss of generality that z1 ≤
z2 ≤ . . . ≤ zm. We use the notation

z̄ =

∑m
i=1 zi
m

and

s =

√∑m
i=1 (zi − z̄)2

m
,

and given zi, i = 1, 2, . . . ,m, and r, we denote the optimal value of P by
ρr(z).

Lemma 1 Given zi, i = 1, 2, . . . ,m, ρr(z) is a continuous and nondecreas-
ing function of r ≥ 0.

Proof See Appendix 1.

We will make use of a more general formulation of problem P. This is

P(n):min −
∑n
i=1 ziyi

s.t.
∑n
i=1 yi = a,∑n
i=1 y

2
i ≤ b2.

Observe that P is an instance of P(n) in which we set n = m , a = 0, and
b = r, and change variables by setting p = q + y.

Lemma 2 P(n) has an optimal solution if and only if a2 ≤ nb2.
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Proof See Appendix 1.

Lemma 3 Suppose a2 ≤ nb2. The optimal solution to P(n) is

yi =
a

n
+
√
nb2 − a2

zi − z̄
ns

.

Proof See Appendix 1.

Lemma 4 If r ≤
√

m
(m−1) min{qi} then P has optimal solution

pi = qi +
zi − z̄√
m

r

s

and solution value
m∑
i=1

qizi +
(√
ms
)
r.

Proof See Appendix 1.

We now consider the case where r >
√

m
(m−1) min{qi}. Suppose z1 <

z2 < . . . < zm. We are no longer guaranteed that pi = qi + zi−z̄√
m

r
s ≥ 0 for

every i. Consider a candidate solution that identifies an index set K for
which we set pi = 0, i /∈ K, and solve P for the remaining pi, which will
solve

min −
∑
i∈K zipi

s.t.
∑
i∈K pi = 1,∑
i/∈K (−qi)2

+
∑
i∈K (pi − qi)2 ≤ r2

or
min −

∑
i∈K zipi

s.t.
∑
i∈K pi = 1,∑
i∈K (pi − qi)2 ≤ r2 −

∑
i/∈K q

2
i .

For i ∈ K we define yi = pi − qi, which yields

min −
∑
i∈K(qi + yi)zi

s.t.
∑
i∈K(qi + yi) = 1,∑
i∈K y

2
i ≤ r2 −

∑
i/∈K q

2
i .

To compute y we solve

Q:min −
∑
i∈K ziyi

s.t.
∑
i∈K yi =

∑
i/∈K qi,∑

i∈K y
2
i ≤ r2 −

∑
i/∈K q

2
i

and then add yi to qi, for i ∈ K.
Observe that problem Q is of the form of P(n) where n = |K|, a =∑
i/∈K qi, and b

2 = r2 −
∑
i/∈K q

2
i . By Lemma 2 P(n) has a solution if and

only if nb2 − a2 ≥ 0. Thus Q has a solution if and only if
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r2 ≥
∑
i/∈K

q2
i +

1

|K|

(∑
i/∈K

qi

)2

.

The optimal solution to Q when K ⊂ {1, 2, . . . ,m} is

yi =
a

n
+
√
nb2 − a2

zi − z̄
ns

=

∑
j /∈K qj

|K| +

√√√√√|K| (r2 −
∑
j /∈K

q2
j )−

∑
j /∈K

qj

2

zi − z̄
|K| s

whence

pi = qi +
1

|K|

∑
j /∈K

qj +

√√√√√|K| (r2 −
∑
j /∈K

q2
j )−

∑
j /∈K

qj

2

zi − z̄
s

 .

Observe that z̄ and s must now be computed using a smaller set of data. In
other words

z̄ =
1

|K|
∑
i∈K

zi

and

s =

√
1

|K|
∑
i∈K

z2
i − z̄2.

In the special case where r is large enough so that we must set K = {m},
then we obtain

Q:min −zmym
s.t. ym = 1− qm,

y2
m ≤ r2 −

∑
i/∈K q

2
i

so ym = 1− qm, and pm = ym+ qm = 1. In this case we choose probabilities
equal to the worst-case measure. So by varying r, the solution to P can vary
from expectation when r = 0 to worst case when r is large enough so that
the unit simplex is a subset of the ball

{p : ‖p− q‖2 ≤ r}.

Now recall
P: max

∑m
i=1 zipi

s.t.
∑m
i=1 pi = 1,

‖p− q‖2 ≤ r,
p ≥ 0.

We propose the following algorithm for computing the solution to P.
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Algorithm 1: Solving P

1. Set K = {1, 2, . . . ,m}
2. While |K| > 1

(a)

z̄ =
1

|K|
∑
i∈K

zi

and

s =

√
1

|K|
∑
i∈K

z2
i − z̄2.

(b) If k = m then let

pi = qi +
zi − z̄√
ms

r

else let

pi =


0 i /∈ K,

qi + 1
|K|

(∑
j /∈K qj +

√
|K| (r2 −

∑
j /∈K q

2
j )−

(∑
j /∈K qj

)2
zi−z̄
s

)
i ∈ K.

(c) If pi ≥ 0, i ∈ K, then STOP and return p as the optimal solution.
(d) Find critical j ∈ K. This is the last index of pi < 0 to become positive

as we decrease r. This can be found by a line search or by analysis
of the formula for pi. Set K = K \ {j}.

3. Return

pi =

{
0 i /∈ K,
1 i ∈ K. .

3.1 Equal nominal probabilities

The algorithm for computing the solution to P takes a simpler form when
qi = 1

m . Then the set K can be shown to take the form {k+1, k+2, . . . ,m}.
This gives

Algorithm 2: Solving P (equal probabilities)

1. For k = 0 to m− 2 do
(a) Compute

z̄ =
1

(m− k)

m∑
i=k+1

zi

and

s =

√√√√ 1

(m− k)

m∑
i=k+1

z2
i − z̄2.
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(b) Compute

pi =

{
0 i = 1, . . . , k,

1
(m−k) +

√
(m−k)r2− k

m

zi−z̄
s

(m−k) i = k + 1, . . . ,m.
(3)

(c) If pk+1 ≥ 0 then STOP and return p as the optimal solution.
2. Return

pi =

{
0 i = 1, . . . ,m− 1,
1 i = m.

.

The value of k that is computed by Algorithm 2 is called the threshold
value of k for r, denoted k(r). If k(r) = 0 then all probabilities in P are
positive. If k(r) = m− 1 then P corresponds to a worst-case risk measure.
Recall ρr(·) to be the risk measure computed using a distributional un-

certainty set with radius r. Depending on the value of k(r), we get

ρr(Z(x)) =

{
z̄ + s

√
(m− k(r))r2 − k(r)

m k(r) < m− 1,

zm k(r) = m− 1.
(4)

Lemma 5 If r1 < r2 then k(r1) ≤ k(r2).

Proof See Appendix 1.

4 Using P in SDDP

We now show how the problem P can be incorporated into SDDP to give
a distributionally robust version of this algorithm. The SDDP algorithm
performs a sequence of major iterations known as the forward pass and the
backward pass to build an outer approximation of the Bellman function at
each stage. This approximation defines a policy in which the action at each
stage solves a problem of the form (2) with maxP∈Pt EP[Qt+1(xt, ωt+1)]
replaced by its approximation. In each forward pass, a single scenario is
sampled from the scenario tree and decisions are taken according to the
approximate policy, starting in the first stage and moving forward up to
the last stage. In each stage, the observed values of the decision variables
xt, and the costs of each node are saved. The backward pass improves the
outer approximation of the Bellman function at each stage by adding a
single cutting plane computed using information from the optimal decision
variables.
To obtain the cut coeffi cients, we use the following proposition which is

a special case of [22, Theorem 6.11].

Proposition 1 Suppose that Z(x, ω) is a convex function of x for each ω ∈
Ω, and that g(x̃, ω) is a subgradient of Z(x, ω) at x̃. Then EP∗ [g(x̃, ω)] is a
subgradient of maxP∈P EP[Z(x, ω)] at x̃, where P∗ ∈ arg maxP∈P EP[Z(x̃, ωm)].

Proof See Appendix 1.
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The approximation at stage t replaces maxP∈Pt EP[Qt+1(xt, ωt+1)] by
the variable θt+1 which is constrained by the set of linear inequalities

θt+1 + π̄>t+1,kHt+1xt ≥ ht+1,k for k = 1, 2, ..., ν, (5)

where ν is the number of cuts. Given P∗t ∈ arg maxP∈Pt EP[Qt+1(xt, ωt+1)],
we set π̄t+1,k = EP∗t [πt+1(ωt+1)], which defines the gradient −π̄>t+1,kHt+1

and the intercept ht+1,k for cut k in stage t, where

ht+1,k = EP∗t [Q̃t+1(xkt , ωt+1)] + π̄>t+1,kHt+1x
k
t ,

and we define Q̃t and πt(ωt) (the Lagrange multipliers of the constraints)
by the approximate stage problem

Q̃t(xt−1, ωt) = min c>t xt + θt+1

s.t. Atxt = bt(ωt)−Htxt−1, [πt(ωt)]
θt+1 + π̄>t+1,kHt+1xt ≥ ht+1,k, k = 1, 2, . . . , ν,

xt ≥ 0.

(6)

Thus if we denote Ωt+1 = {ω1
t+1, ω

2
t+1, . . . , ω

m
t+1} and P∗t (ωit+1) = pi,

then the cut parameters are defined by

π̄t+1,k =

m∑
i=1

piπt+1,k(ωt+1,i ), (7)

ht+1,k =

m∑
i=1

piQ̃t+1(xkt , ωt+1,i) + π̄>t+1,kHt+1x
k
t .

The Distributionally Robust SDDP algorithm can now be defined as
follows.

Algorithm 3: Distributionally robust SDDP

1. Set ν = 0.
2. Sample a scenario ωt, t = 2, ..., T ;
3. Forward Pass

For t = 1, solve (6) where and save x1(ν) and z;
For t = 2, ..., T ,

Solve (6), and save xt(ν) and Q̃t(xt−1(ν), ωt).
4. Backward Pass

For t = T, ..., 2,
For ωt,i ∈ Ωt, solve (6) using xt−1(ν) and save πt(ωt,i)
and zi = Q̃t(xt−1(ν), ωt,i), i = 1, 2, . . . ,m.
Apply Algorithm 2 to compute pi, i = 1, 2, . . . ,m.
Calculate a cut using 7 with probabilities p for iteration ν, and

add it to all nodes in stage
Set ν = ν + 1.
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5. If ν < νmax, go to step 2. Otherwise, stop.

In order to compute a cut it is necessary to add a step in the backward
pass which calculates the worst-case probabilities p when the outcomes for
the stage problem are zi, i = 1, 2, . . . ,m. This is done using Algorithm
2. The cut computation then proceeds using the probabilities p. Since the
probabilities p change from iteration to iteration, we need to verfify that
the cuts computed do not violate the outer-approximation property. Since
Algorithm 3 is essentially identical to the SDDP algorithm with coherent
risk measures described in [18] we can reiterate the argument from [18].
This proceeds as follows.
In any backwards pass, we begin with an exact Bellman functionQT+1(xT , ωT+1)

that is a convex (trivial) outer approximation to the future cost. If we denote

Xt(ωt) = {xt ≥ 0 : Atxt = bt(ωt)−Htxt−1, xt−1 ∈ Xt−1(ωt−1)}.

then by construction for any xT ∈ XT (ωT ), and every k = 1, 2, . . . , ν,

hT+1,k − π̄>T+1,kHT+1xT ≤ max
P∈P

EP[QT+1(xT , ωT+1)]

so maxk=1,2,...,ν{hT+1,k− π̄>T+1,kHT+1xT } is a convex outer approximation
tomaxP∈P EP[QT+1(xT , ωT+1)]. It follows that Q̃T (xT−1, ωT ) defined by (6)
is a convex outer approximation to QT (xT−1, ωT ) defined by (2). Extending
this argument to every t we have

Proposition 2 If for any xt ∈ Xt(ωt), ht+1,k−π̄>t+1,kHt+1xt ≤ EP∗t [Qt+1(xt, ωt+1)]
for every k = 1, 2, . . . , ν, then

Q̃t(xt−1, ωt) ≤ Qt(xt−1, ωt).

Proof See Appendix 1.

By Proposition 2, the convex outer approximation property of Q̃t is in-
herited in every step of the backwards pass, and so it is maintained through-
out every iteration of the algorithm.

5 Computational results

We now present some computational results of applying SDDP to hydrother-
mal scheduling problems in New Zealand, with and without distributional
robustness.
The aim in a hydrothermal scheduling problem is to construct a policy

for managing water levels in hydroelectric reservoirs, subject to uncertain
inflows. We consider a model of the New Zealand national electricity system,
described in [19]. In this model, the state of the system is defined by the
reservoir levels of seven lakes, which supply water to 25 hydro generators in
various locations. The releases and spills from each lake can be viewed as
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decision variables. Any electricity demand that is not satisfied due to hydro
releases must be met by thermal generation, or considered as lost load. Our
objective is then to minimize the costs of thermal generation and lost load
over a finite planning horizon. In our experiments, we construct policies for
a planning period of one year, which is divided into 52 weekly stages.

5.1 Implementation

The SDDP algorithm is implemented in Julia [6], using the Julia library
SDDP.jl [8] and a Julia model of HTSP formulated in JuMP [9]. All linear
subproblems are solved in Gurobi [12].
During policy generation, we sample historical realizations of weekly

inflows over the years 1970 – 1999, giving m = 30 stagewise independent
random outcomes per week. The policies we compute using these samples
aim to minimize the (risk-adjusted) expected cost of meeting electricity
demand over the calendar year 2008. We apply a cut selection heuristic [7]
every 50 iterations of SDDP to reduce computational effort.
Policies were generated using Algorithm 3 with radii 1

m ,
2
m ,

4
m , and also

without using a distributionally robust approach. We also created policies
using a nested risk measure based on the one-stage measure

ρ(Z) = (1− λ)E[Z] + λCV aR1−β [Z]

as described in [18]. We chose λ = 0.5 and tested values of β = 0.1, 0.2, and
0.3.
Each policy was created with 10,000 cuts and simulated using the ten

historical inflow sequences observed in the years 2000 – 2009. Since none
of the inflow data in these ten years is used to generate the policy, the
simulations can be viewed as out-of-sample tests of the policy. It is also
important to note that Algorithm 3 samples in its forward pass, and so even
after a large number of SDDP iterations, policies generated from different
samples of forward passes will not be identical. Policies that are not identical
will not necessarily give rise to the same sequence of actions when simulated.
In practice, we set a random seed at the start of policy generation, and
pseudo-random numbers dictate the inflows that are sampled while a policy
is computed. In order to explore the effect of different uncertainty sets in
SDDP, it is necessary to generate samples of policies for each uncertainty
set.
Policies were created using ten different random seeds (ten different sets

of 10,000 scenarios), for each uncertainty set. Observe that this is a form of
out-of-sample testing that uses only one hold-out observation (the year to
be studied). In practice the year in question would be dealt with by solving
SDDP once using historical (in-sample) data and then applying the policy.
Since SDDP creates (ten) random policies for each uncertainty set, we can
view each policy simulated on the year in question to be an out-of-sample
test. The results of these are shown in Table 1 and Table 2.
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Table 1 Mean simulated cost (NZ$(M)) for policies created with different uncer-
tainty sets.

No DRO DRO CVaR with λ = 0.5
Years r = 0 r = 1/m r = 2/m r = 4/m β= 0.1 β= 0.2 β= 0.3
2000 286.226 285.742 286.809 301.685 286.119 288.513 288.651
2001 475.933 476.991 477.778 480.112 477.221 478.571 479.516
2002 342.190 342.633 343.483 348.345 343.794 344.504 344.292
2003 387.975 385.473 385.503 386.780 386.560 385.913 385.681
2004 256.212 254.958 254.189 253.308 255.121 254.153 253.958
2005 487.581 484.349 482.792 483.685 483.240 481.887 481.532
2006 349.597 350.264 350.573 353.512 350.150 351.004 350.329
2007 449.999 449.803 449.988 450.603 450.974 449.803 449.858
2008 501.069 471.477 461.730 481.015 454.249 466.564 471.199
2009 345.046 344.281 343.431 347.191 344.973 343.130 342.986

Table 2 Standard deviation of simulated cost (NZ$(M)) for policies created with
different uncertainty sets.

No DRO DRO CVaR with λ = 0.5
Years r = 0 r = 1/m r = 2/m r = 4/m β= 0.1 β= 0.2 β= 0.3
2000 0.082 0.138 0.282 3.485 1.678 2.483 0.146
2001 0.088 0.040 0.033 0.245 0.042 0.261 0.268
2002 0.100 0.111 0.332 2.090 0.155 0.214 0.277
2003 5.159 0.560 0.368 1.296 0.267 0.124 0.122
2004 0.348 0.140 0.258 0.597 0.442 0.467 0.555
2005 0.529 0.191 0.188 2.721 0.351 0.275 0.198
2006 0.064 0.203 0.438 1.408 0.164 0.425 0.077
2007 0.008 0.021 0.617 1.606 0.031 0.032 0.188
2008 42.335 18.743 18.424 60.108 12.657 19.668 27.152
2009 0.019 0.025 0.026 3.964 0.209 0.157 0.031

The years (2001, 2005, 2008) with high average costs are those with
dry winters in which a lot of thermal fuel is consumed as well as some
load shedding in extreme cases. The years with low average costs (2000,
2004) are those with winters with high reservoir inflows. In some of the
dry years increasing the uncertainty-set radius (to 1/m or 2/m) appears
to give lower average cost out of sample. This is particularly noticeable in
2008. In high inflow years this outcome is more ambiguous. Observe also that
distributional robustness decreases out-of-sample variation in dry years, but
this is not always the case for the other years.

6 Conclusions

We have shown how SDDP can be extended to solve a distributionally
robust model. This generalizes the capability of SDDP beyond models with
nested coherent risk measures as discussed in [18]. We have also indicated
how uncertainty sets might be constructed that vary with stored energy
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levels, so that decision makers can adapt their levels of conservatism with
observed hydrological conditions.
Our research has been aimed at understanding the effect on policies of

a distributionally robust approach. From our experiments the outcomes of
the policies become less variable and less costly for sample years where there
are substantial risks of high costs.

Acknowledgements

We are very grateful for discussions with Oscar Dowson, Eddie Anderson,
Karen Willcox, and Michael Kapteyn, and for comments from participants
at the Workshop on Stochastic Programming Honoring Maarten van der
Vlerk held at the University of Groningen on August 10-11, 2017. Andy
Philpott acknowledges the financial support of the New Zealand Marsden
Fund under contract UOA1520.

References

1. P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk,
Mathematical Finance 9 (1999), no. 3, 203—228.

2. G. Bayraksan and D.K. Love, Data-driven stochastic programming using phi-
divergences, The Operations Research Revolution, INFORMS, 2015, pp. 1—19.

3. D. Bertsimas, D.B. Brown, and C. Caramanis, Theory and applications of
robust optimization, SIAM review 53 (2011), no. 3, 464—501.

4. D. Bertsimas, V. Gupta, and N. Kallus, Data-driven robust optimization,
arXiv preprint arXiv:1401.0212 (2013).

5. , Robust SAA, arXiv preprint arXiv:1408.4445 (2014), 617.
6. J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah, Julia: A fresh ap-
proach to numerical computing, SIAM Review 59 (2017), no. 1, 65—98.

7. V.L. de Matos, A.B. Philpott, and E.C. Finardi, Improving the performance of
stochastic dual dynamic programming, Journal of Computational and Applied
Mathematics 290 (2015), 196—208.

8. O. Dowson, SDDP in Julia, Tech. report, University of Auckland, 2017.
9. I. Dunning, J. Huchette, and M. Lubin, JuMP: A modeling language for math-
ematical optimization, SIAM Review 59 (2017), no. 2, 295—320.

10. P.M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization
using the Wasserstein metric: Performance guarantees and tractable reformu-
lations, arXiv preprint arXiv:1505.05116 (2015).

11. R. Gao and A.J. Kleywegt, Distributionally robust stochastic optimization
with Wasserstein distance, arXiv preprint arXiv:1604.02199 (2016).

12. Gurobi Optimization Inc., Gurobi Optimizer Reference Manual, 2016.
13. G. Infanger and D.P. Morton, Cut sharing for multistage stochastic linear

programs with interstage dependency, Mathematical Programming 75 (1996),
no. 2, 241—256.

14. D. Klabjan, D. Simchi-Levi, and M. Song, Robust stochastic lot-sizing by
means of histograms, Production and Operations Management 22 (2013),
no. 3, 691—710.



Distributionally Robust SDDP 15

15. V. Kozmík and D.P. Morton, Evaluating policies in risk-averse multi-stage
stochastic programming, Mathematical Programming 152 (2015), no. 1, 275—
300.

16. M.V.F. Pereira and L.M.V.G. Pinto, Multi-stage stochastic optimization ap-
plied to energy planning, Mathematical Programming 52 (1991), no. 1-3, 359—
375.

17. A.B. Philpott and V.L. de Matos, Dynamic sampling algorithms for multi-
stage stochastic programs with risk aversion, European Journal of Operational
Research 218 (2012), no. 2, 470—483.

18. A.B. Philpott, V.L. de Matos, and E. Finardi, On solving multistage stochastic
programs with coherent risk measures, Operations Research 61 (2013), no. 4,
957—970.

19. A.B. Philpott and Pritchard G., EMI-DOASA, downloadble from
https://www.emi.ea.govt.nz/Content/Tools/Doasa, 2013.

20. R.T. Rockafellar, Convex analysis, Princeton University Press, 1972.
21. A. Shapiro, Analysis of stochastic dual dynamic programming method, Euro-

pean Journal of Operational Research 209 (2011), no. 1, 63 —72.
22. A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic pro-
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A Appendix

This appendix contains proofs of all the results in the paper. We begin by
proving some technical lemmas. Recall the problem

ρr(z) = max
∑m
i=1 zipi

s.t.
∑m
i=1 pi = 1,

‖p− q‖2 ≤ r,
p ≥ 0.

Lemma 1 Given zi, i = 1, 2, . . . ,m, ρr(z) is a continuous and nondecreas-
ing function of r ≥ 0.

Proof Observe that given r ≥ 0 and zi, i = 1, 2, . . . ,m, P is a convex
optimization problem with a compact feasible region, so it has an optimal
solution, with optimal value denoted ρr(z). Moreover for fixed z, the optimal
value function is a concave increasing function of r. By [20, Theorem 10.1]
ρr(z) is therefore continuous on {r : r > 0}. It is also easy to show that
lim

r→0
ρr(z) =

∑m
i=1 qizi, so ρr(z) is also continuous at r = 0.

Consider the problem

P(n):min −
∑n
i=1 ziyi

s.t.
∑n
i=1 yi = a,∑n
i=1 y

2
i ≤ b2.

Lemma 2 P(n) has an optimal solution if and only if a2 ≤ nb2.
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Proof The objective function is continuous and the feasible region is com-
pact, and so P0 has an optimal solution if and only if the feasible region is
nonempty. If a2 ≤ nb2 then yi = a

n is feasible as it satisfies

n∑
i=1

y2
i =

n∑
i=1

(a
n

)2

=
a2

n
≤ b2.

If a2 > nb2 then the feasible region is empty, for any feasible y satisfies∑n
i=1 yi = a so (

n∑
i=1

yi

)2

> nb2 ≥ n
n∑
i=1

y2
i

But this contradicts

n

n∑
i=1

y2
i ≥

(
n∑
i=1

yi

)2

which is true because

n

n∑
i=1

y2
i −

(
n∑
i=1

yi

)2

= n

n∑
i=1

(yi −
∑n
i=1 yi
n

)2

≥ 0.

Lemma 3 Suppose a2 ≤ nb2. The optimal solution to P(n) is

yi =
a

n
+
√
nb2 − a2

zi − z̄
ns

.

Proof Since P(n) is a convex program we can solve it by minimizing the
Lagrangian, giving

miny −
∑n
i=1 ziyi + µ(

∑n
i=1 yi − a) + λ(

∑n
i=1 y

2
i − b2).

Differentiating gives
−zi + µ+ 2λyi = 0

so

yi =
zi − µ

2λ

Since
n∑
i=1

yi = a

we have
n∑
i=1

zi − nµ = 2λa.
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If a = 0 then
µ = z̄

so
yi =

zi − z̄
2λ

This gives
n∑
i=1

y2
i =

ns2

4λ2 = b2

so
2λ =

√
n
s

b

and

yi =
b (zi − z̄)
s
√
n

as required.
If a 6= 0 then substituting for λ gives

yi =
−zi + µ

−
∑n
i=1 zi + nµ

a

Now
n∑
i=1

y2
i = b2

so
n∑
i=1

(
−zi + µ

−
∑n
i=1 zi + nµ

)2

a2 = b2

a2
n∑
i=1

(−zi + µ)
2

= b2(−
n∑
i=1

zi + nµ)2

a2

(
n∑
i=1

z2
i − 2µ

n∑
i=1

zi + nµ2

)
= b2

(
(

n∑
i=1

zi)
2 − 2nµ

n∑
i=1

zi + n2µ2

)
(8)

Let z =
∑n
i=1 zi, and d =

∑n
i=1 z

2
i , so

dn− z2 = n

n∑
i=1

z2
i −

(
n∑
i=1

zi

)2

= n2s2.

Equation (8) is a quadratic in µ,(
a2n− n2b2

)
µ2 −

(
2a2z − 2znb2

)
µ+

(
a2d− z2b2

)
= 0,

that has roots

µ ∈ {z̄ − a√
nb2 − a2

s, z̄ +
a√

nb2 − a2
s}.
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The first root is

µ = z̄ − a√
nb2 − a2

s.

This gives

yi =
−zi + µ

−
∑n
i=1 zi + nµ

a

=
−zi + z̄ − a√

nb2−a2
s

−
∑n
i=1 zi + nz̄ − na√

nb2−a2
s
a

=
a

n
+
√
nb2 − a2

zi − z̄
ns

with objective

−
n∑
i=1

ziyi = −
n∑
i=1

zi
a

n
−

n∑
i=1

√
nb2 − a2

z2
i − z̄zi
ns

= −az̄ − s
√
nb2 − a2

(The other root of (8) gives

yi =
a

n
−
√
nb2 − a2

ci − c̄
ns

which has value −az̄ + s
√
nb2 − a2, a local maximum of P(n).)

Lemma 6 Let z̄ =
∑n

i=1 zi
n . For all i,

|zi − z̄| ≤

√√√√ (n− 1)

n

n∑
j=1

(zj − z̄)2
.

Proof Without loss of generality choose i = 1. Then
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(n− 1)

n∑
j=2

(
zj −

1

n

n∑
i=1

zi

)2

−
(
z1 −

1

n

n∑
i=1

zi

)2

= (n− 1)

n∑
j=2

(zj − z̄)2 − (z1 − z̄)2

= (n− 1)

n∑
j=2

(
z2
j − 2z̄zj + z̄2

)
− (z1 − z̄)2

= (n− 1)

n∑
j=2

z2
j − 2(n− 1)z̄

n∑
j=2

zj + (n− 1)2z̄2 − z2
1 + 2z̄z1 − z̄2

= (n− 1)

n∑
j=2

z2
j − 2(n− 1)z̄(nz̄ − z1) + (n− 1)2z̄2 − z2

1 + 2z̄z1 − z̄2

= (n− 1)

n∑
j=2

z2
j − (z1 − z̄n)

2

= (n− 1)

n∑
j=2

z2
j −

 n∑
j=2

zj

2

.

This expression is (n−1)2 times the variance of the quantities z2, z3, . . . , zn
which is nonnegative, so it follows that

n

(
z1 −

1

n

n∑
i=1

zi

)2

≤ (n− 1)

 n∑
j=2

(
zj −

1

n

n∑
i=1

zi

)2

+

(
z1 −

1

n

n∑
i=1

zi

)2


from which the result follows.

Lemma 4 If r ≤
√

m
m−1 mini{qi} then P has optimal solution

pi = qi +
zi − z̄√
m

r

s
.

with optimal value
∑m
i=1 qizi + (

√
ms) r.

Proof We consider a solution in which we drop the constraint p ≥ 0. This
gives pi = qi + yi where y solves

min −
∑m
i=1 ziyi

s.t.
∑m
i=1 yi = 0,∑m
i=1 y

2
i ≤ r2.

Thus Lemma 3 with a = 0 gives

yi =
√
mr2

zi − z̄
ms
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whence
pi = qi +

zi − z̄√
m

r

s
.

Now by Lemma 6

z̄ − zi ≤
√

(m− 1)

m

∑
i

(zi − z̄)2

=
√
m− 1s

so

pi = qi +
z̄ − zi√
m

r

s

≥ qi +

√
m− 1r√
m

≥ 0

as r ≤
√

m
m−1 mini{qi} by assumption.

We also have

ρ(Z(x)) =
m∑
i=1

pizi

=

m∑
i=1

qizi +

m∑
i=1

zi − z̄√
m

r

s
zi

=

m∑
i=1

qizi +
r√
ms

m∑
i=1

(
z2
i − z̄zi

)
=

m∑
i=1

qizi +
r√
ms

(
m∑
i=1

z2
i −mz̄2

)

=

m∑
i=1

qizi +
r√
ms

(
ms2

)
=

m∑
i=1

qizi +
(√
ms
)
r.

Lemma 5 If r1 < r2 then k(r1) ≤ k(r2).

Proof Recall for any fixed k and r that if r ≤
√

1
m(m−1) ,

pi(r) =
1

m
+

r

s
√
m

(zi − z̄), i = 1, . . . ,m,

and otherwise

pi(r) =

{
0 i = 1, . . . , k(r),

1
(m−k(r)) +

√
(m−k(r))r2− k(r)

m

zi−z̄
s

(m−k(r)) i = k(r) + 1, . . . ,m.
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If we assume that k(r) is constant at value k as r varies then

dpi(r)

dr
=

{
0 i = 1, . . . , k,
zi−z̄
s

r√
(m−k)r2− k

m

i = k + 1, . . . ,m. (9)

Since zi ≤ zi+1, for a fixed k and r we have

pi(r) ≤ pi+1(r), i = k + 1, . . . ,m− 1.

Also dpk+1(r)
dr ≤ dpi(r)

dr for i = k + 2, . . . ,m and dpk+1(r)
dr ≤ 0. This means

that as r increases pk+1(r) becomes negative before (or at that same r as)
any pi(r), i = k + 2, . . . ,m. In other words as r increases k(r) remains
constant and then increases at some value of r. If the zi are distinct then
k(r) increases by 1 at each step. We therefore have k(0) = 0, and k(r) is
piecewise constant and nondecreasing with r.

Proposition 1 Suppose that Z(x, ω) is a convex function of x for each ω ∈
Ω, and that g(x̃, ω) is a subgradient of Z(x, ω) at x̃. Then EP∗ [g(x̃, ω)] is a
subgradient of maxP∈P EP[Z(x, ω)] at x̃, where P∗ ∈ arg maxP∈P EP[Z(x̃, ωm)].

Proof For any x,

max
P∈P

EP[Z(x, ω)] = EP∗ [Z(x, ω)]

≥ EP∗ [Z(x̃, ω) + g(x̃, ω)>(x− x̃)]

= EP∗ [Z(x̃, ω)] + (EP∗ [g(x̃, ω)])
>

(x− x̃)

which demonstrates that EP∗ [g(x̃, ω)] is a subgradient at x̃.

Proposition 2 If for any xt ∈ Xt(ωt), ht+1,k−π̄>t+1,kHt+1xt ≤ EP∗t [Qt+1(xt, ωt+1)]
for every k = 1, 2, . . . , ν, then

Q̃t(xt−1, ωt) ≤ Qt(xt−1, ωt).

Proof For any xt ∈ Xt(ωt) the optimal choice of θt+1 satisfies

c>t xt + θt+1 = c>t xt + max
k
{ht+1,k − π̄>t+1,kHt+1xt}

≤ c>t xt + EP∗t [Qt+1(xt, ωt+1)]

by hypothesis. It follows that

Q̃t(xt−1, ωt) = min
xt∈Xt(ωt)

{c>t xt + max
k
{ht+1,k − π̄>t+1,kHt+1xt}}

≤ min
xt∈Xt(ωt)

{c>t xt + EP∗t [Qt+1(xt, ωt+1)]}

= Qt(xt−1, ωt)

giving the desired result.


