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We study a competitive partial equilibrium in markets where risk-averse agents solve multistage stochastic

optimization problems formulated in scenario trees. The agents trade a commodity that is produced from an

uncertain supply of resources. Both resources and the commodity can be stored for later consumption. Several

examples of a multistage risked equilibrium are outlined, including aspects of battery and hydroelectric

storage in electricity markets, distributed ownership of competing technologies relying on shared resources,

and aspects of water control and pricing. The agents are assumed to have nested coherent risk measures

based on one-step risk measures with polyhedral risk sets that have a non-empty intersection over agents.

Agents can trade risk in a complete market of Arrow-Debreu securities. In this setting we define a risk-

trading competitive market equilibrium and establish two welfare theorems: competitive equilibrium will

yield a social optimum (with a suitably defined social risk measure) when agents have strictly monotone

one-step risk measures. Conversely, a social optimum with an appropriately chosen risk measure will yield

a risk-trading competitive market equilibrium when all agents have strictly monotone risk measures. The

paper also demonstrates versions of these theorems when risk measures are not strictly monotone.
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1. Introduction

In many competitive situations, manufacturers of a product that is sold over several periods use

storage to improve their profits. Storage of the finished product enables the manufacturers to
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store the product in periods when prices are low for later sale in periods when they are high. In

practice, prices are uncertain and so the optimal storage policy becomes the solution to a stochastic

control problem in which manufacturers seek to maximize expected profits if risk neutral, or some

risk-adjusted profit if they are risk averse.

In some cases it is also possible to store the raw materials used in production. An example arises

in renewable electricity production in which intermittent generation (wind or photovoltaic energy)

can be stored in a battery for later sale. Similarly hydroelectric reservoirs can store energy for

later conversion to electricity, or farmers can store pasture (or silage, its harvested form) for later

conversion into milk by dairy cows. The process by which the storage is replenished has a random

element (e.g. wind, sunlight, catchment inflows, and beneficial weather, in the respective examples

we cite). Storage of raw materials enables the producer to maximize their capacity utilization when

sale prices are high, while possibly holding back production during low-priced periods.

Our current interest focuses on a situation in which prices of the finished product are determined

by an equilibrium of several competing producers, where the total sales of product from the man-

ufacturers equals the demand from consumers in each period. Demand is defined in terms of price

by a known decreasing demand function.

The simplest case occurs when the future is known with certainty and producers have convex

costs. Then an equilibrium time-varying price can be derived from a Lagrangian decomposition of

a social planning model that seeks to maximize the consumer and producer surplus summed over

all periods. The Second Welfare Theorem (see e.g. Feldman and Serrano (2006)) in this setting

is a straightforward consequence of Lagrangian duality theory, and states that the optimal social

plan can be interpreted as a perfectly competitive equilibrium at the prices that solve the dual

problem. The First Welfare Theorem, stating that any perfectly competitive equilibrium maximizes

the consumer and producer surplus in the social plan is also immediate from this duality.

When the parameters of the model are uncertain, but governed by a known stochastic process,

the social planning problem becomes a multistage stochastic programming problem. Multistage
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stochastic optimization models have been well studied (see e.g. Birge and Louveaux (2011), Shapiro

et al. (2014)). If all agents act as price takers, and seek to maximize expected operating profits,

then the first and second welfare theorems translate naturally into the stochastic setting. When the

stochastic supply process (or its approximation) is represented by a scenario tree (see Birge and

Louveaux (2011)) the Lagrangian theory can be applied to the extensive form of the deterministic

equivalent social planning problem and its dual to yield versions of these theorems.

Multistage stochastic optimization becomes more complicated when agents are risk-averse. As

in the risk-neutral case, decisions are measurable with respect to the filtration defined by the

random parameters. For a scenario tree this means that decisions are made in each node given

the history of information accrued in previously visited nodes. When combined with realizations

of the random parameters, these decisions lead to a stochastic process of payoffs defined at the

nodes of the scenario tree. A risk-averse optimizer then requires a preference relation over these

random payoff processes to be able to compare different policies. In a two-stage setting, risk pref-

erences can be approached through a wide variety of models including but not limited to utility

theory (Von Neumann and Morgenstern (2007)), mean-variance optimization (Markowitz (1952)),

value-at-risk (Jorion (2000)), stochastic dominance (Levy (1992)), prospect theory (Tversky and

Kahneman (1992)), dual utility theory (Yaari (1987)), and coherent risk measures (Artzner et al.

(1999)). For a summary and comparison of these and other approaches to optimzation under risk

see e.g. Anderson (2013) or Shapiro et al. (2014).

A theory of extending one-step risk preferences to a multistage setting using conditional risk

mappings is described in Shapiro et al. (2014). Conditional risk mappings add current costs to

risk-adjusted uncertain future costs expressed as a certainty-equivalent value defined in terms of a

single-step coherent risk measure as defined by Artzner et al. (1999). The translation equivariance

and monotonicity axioms of coherent risk measures then enable the evaluation of the risk-adjusted

cost of a random cost sequence using a recursive formula. When information is revealed over

time, and agents make optimal decisions given their current history of observations of random
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outcomes, this enables the solution of a risk averse dynamic optimization problem using dynamic

programming. Mean-variance measures of risk do not extend like this, and following the same

approach using utility theory is only possible for a limited set of utility functions (e.g. linear or

exponential (Howard and Matheson (1972))) that have translation-equivariant certainty-equivalent

forms. For example the one-step exponential utility function leads to the class of entropic risk

measures (Föllmer and Knispel (2011)) which are translation-equivariant and monotone.

When one-step risk measures are translation-equivariant, monotone, convex and positively homo-

geneous (i.e. coherent), the certainty-equivalent value of future costs at a node of the scenario tree

can be expressed using duality theory as the conditional expectation of future costs with respect

to a probability measure that is chosen to be the worst in a convex set of conditional probability

distributions (see e.g. Shapiro et al. (2014)). There is assumed to be such a set of distributions

(which we denote the risk set) defined for every node of the scenario tree.

Asset pricing models with risk-averse agents have been widely studied in a two-stage equilibrium

setting. The classical economics literature has many examples of this including the capital asset

pricing model (CAPM) (Sharpe (1964)) and asset-pricing models of Arrow and Debreu (Arrow

(1973)) in complete markets. The CAPM model has been successfully applied to forward contract-

ing in electricity markets (a key application area) by Bessembinder and Lemmon (2002). However,

since it is based on a single-step mean-variance risk measure which is not translation equivariant,

it is hard to see how to extend the CAPM model to a multistage setting.

Following Heath and Ku (2004) and Ralph and Smeers (2015) our work is more closely related

to the asset-pricing models of Arrow (1973). In this setting, the welfare theorems rely heavily on

the concept of market completeness achieved though a set of Arrow-Debreu securities that span

all possible random future outcomes. In a classical two-stage setting, a complete market of Arrow-

Debreu securities will ensure by a no-arbitrage argument that every collection of contingent payoffs

in stage 2 can be priced at stage 1 using the state prices of the Arrow-Debreu instruments (see

e.g. Varian (1987) for an elementary explanation of this principle). The results of Heath and Ku
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(2004) (assuming finite probability distributions) and Ralph and Smeers (2015) (for continuous

distributions) provide asset prices for a complete market of Arrow-Debreu securities in exchange

economies of agents with risk-averse coherent risk measures. They show that when the relative

interiors of the risk sets of agents intersect, agents will trade Arrow-Debreu securities at equilibrium

prices that are a probability measure lying in this intersection. These prices have an interpretation

as risk-adjusted probabilities (state prices) that all agents agree on when evaluating their payoffs,

and so provide risk-adjusted probabilities for a social planner to evaluate total system welfare.

Using common probability distributions yields risk-adjusted welfare in equilibrium that has the

same risk-adjusted value in the social plan.

Our goal in this paper is to extend the welfare theorems for partial equilibrium to a multistage

setting with risk-averse agents. We assume perfect competition throughout the paper, so agents are

assumed to be price takers. The recent paper Philpott et al. (2016) (building on the models of Heath

and Ku (2004) and Ralph and Smeers (2015) studies a special case of this problem for multistage

electricity markets when some producers operate hydroelectric reservoirs with uncertain inflows.

Under an assumption that agents can trade risk using a complete set of Arrow-Debreu securities,

Philpott et al. (2016) show that a risk-averse social planning solution with an appropriately chosen

risk measure can be interpreted as a competitive equilibrium in which the agents trade risk. This

result corresponds to the Second Welfare Theorem.

The result in Philpott et al. (2016) is specific to electricity systems with hydroelectric generators.

In this paper we extend this theorem to systems that operate with storage in a more general

setting. Like the hydroelectricity case, agents can store raw materials (water) for later electricity

production, but we also admit the possibility of storing the commodity (corresponding to e.g.

battery storage in the electricity setting). Agents might own and operate a single production or

storage facility, or a collection of both production and storage facilities in different locations. The

storage facilites could be a linked system of raw material storage sites (such as a river chain of

hydro reservoirs) or a system of final product storage sites (e.g. warehouses linked by roads, or

batteries linked by electricity transmission lines).
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We also add to the theoretical results in Philpott et al. (2016), by giving new proofs of both

first and second welfare theorems. Our second welfare theorem (Theorem 4 and Corollary 2) is

an extension of Theorem 11 in Philpott et al. (2016) to the more general case. The proof in this

general case is arguably simpler. It also illuminates the role of strict monotonicity of risk measures

in stochastic risked equilibrium. Theorem 3 and Corollary 1 (which are both new) give our version

of the First Welfare Theorem (which is not discussed in Philpott et al. (2016)).

Our motivation in studying welfare theorems comes from a desire to understand imperfectly

competitive markets. The analogue of the Second Welfare Theorem shows that a social planner

could argue that their actions in solving a risk-averse social planning problem replicates what one

might expect to see in a perfectly competitive market with a complete market for trading risk. A

number of wholesale electricity markets (e.g. Brazil and Chile) operate on this principle, whereby

regulated energy prices are computed using an agreed social planning model rather than emerging

from a market trading process.

The (newly established) analogue of the First Welfare Theorem shows that if markets are per-

fectly competitive and endowed with a complete market for trading risk, then one might expect

agents in them to arrive at an equilibrium using policies that maximize risk-adjusted social welfare.

In other words, Theorem 3 and Corollary 1 provide a perfectly competitive benchmark against

which real markets might be measured. In the real world, where markets are imperfect, the optimal

value of a social planning model provides an upper bound on what might be achieved in welfare

terms by reducing market imperfections.

It is worth remarking that the welfare results we establish suffer from some restrictive assump-

tions. Markets are not perfectly competitive, and nearly always incomplete. The assumption of

a complete set of priced Arrow-Debreu securities to cover every possible random event is clearly

impossible. A number of authors (see e.g. de Maere d’Aertrycke and Smeers (2013), Abada et al.

(2017), Kok et al. (2018)) have explored the effect of replacing this assumption in two-stage models

with a limited set of traded instruments. In some experiments this restriction can significantly
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reduce welfare, while in others it has only a minimal effect on welfare losses compared with out-

comes from a risk-averse social plan. The results in this paper demonstrate that such welfare losses

are an artifact of incompleteness in the risk market rather than some other imperfection, and so

help in identifying potential market interventions that might reduce them.

In summary, the contributions of the paper are as follows:

1. We extend the definition of multistage risked equilibrium given in Philpott et al. (2016) to a

more general model.

2. We provide a simpler proof of our second welfare theorem as applied to multistage risked

equilibrium with risk trading.

3. We state and give a proof of a first welfare theorem (which is new) as applied to multistage

risked equilibrium with risk trading.

4. We illuminate the role that strict monotonicity of risk measures plays in multistage risked

equilibrium.

The paper is laid out as follows. In the next section we describe the underlying model and its

constituent stochastic, dynamic and optimizing agent components, and provide several motivating

examples that can be cast into the framework. Section 3 provides a viewpoint of dynamic risk mea-

sures, with specific examples, introduces the notion of dynamic consistency, determines optimality

conditions for a system optimization problem that incorporates a dynamic risk measure, and links

this to a multistage risked equilibrium problem. Section 4 adds the notion of risk trading to these

equilibria, and provides the main results, providing counterparts of the first and second welfare

theorems in the multistage risked setting. We conclude the paper with a summary of the results

and some suggestions for future research. The proofs of the main results of the paper are given

in the appendices. We have split these into appendices A, B and C containing results related to

coherent risk measures, some technical results linking conditional tree multipliers to unconditional

multipliers, and the proofs of the main results, respectively.
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2. Models

In our model, random events are defined by a discrete-time stochastic process, with a finite set of

events in each stage. Such a process can be modeled using a scenario tree with nodes n ∈N and

leaves in L. The probability of the event represented by node n is denoted φ(n). By convention we

number the root node n= 0. The unique predecessor of node n 6= 0 is denoted by n−. We denote the

set of children of node n∈N \L by n+, and denote its cardinality by |n+|. The set of predecessors

of node n on the path from n to node 0 is denoted P(n) (so P(n) = {n,n−, n−−, . . . ,0}), where we

use the natural definitions for n−−. The set of successors of node n is S(n) = {n}∪n+∪n++∪ . . . .}

where n++ is defined in the obvious way. The depth δ(n) of node n is the number of nodes on the

path to node 0, so δ(0) = 1 and we assume that every leaf node has the same depth, say δL. The

depth of a node can be interpreted as a time index t= 1,2, . . . , T = δL. A pictorial representation

of a scenario tree with four time stages is given in Figure 1.

We assume that there are a number of agents in the model, indexed by a ∈ A. At each node

n in the scenario tree, the agents observe a realization of random parameters, and seek optimal

actions ua(n) to minimize their current and risk-adjusted future disbenefit. The current disbenefit

of agent a in node n consists of a cost Can(ua(n)), and expenses and rewards from trading with

other agents. Ignoring these wealth transfers, the current system disbenefit in node n is the total

cost
∑

a∈ACan(ua(n)). Here for producer a, Can measures production cost, and for consumer a, Can

measures consumption disbenefit that increases as (negative) ua increases towards 0. We assume

that each Can is convex.

Each producing agent a consumes resources at node n that come from a vector xa(n−) of storages

that are released at rates defined by the vector ua(n) yielding total production gan(ua(n)). The

storage is replenished by agent actions (such as charging a battery with purchased electricity) or

by (possibly) random supplies (such as inflows or photovoltaic input). Denoting the latter by ωa(n)

gives a stochastic process defined by

xa(n)≤ xa(n−) +
∑
b∈A

Tabub(n) +ωa(n).
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Figure 1 A scenario tree with nodes N = {1,2, . . . ,17}, and T = 4

Note that the matrix Tab in the dynamics allows for a network of connections between storage

devices controlled by different agents, and the inequality allows for free disposal (or spilling) at the

storage device. The dynamics could be expressed a little more generally using a diagonal matrix

Sa for gains or losses and making S and T dependent on node as

xa(n)≤ Sa(n)xa(n−) +
∑
b∈A

Tab(n)ub(n) +ωa(n),

but since this does not change the subsequent analysis in any substantive way, we assume Sa(n)≡ I

and Tab(n)≡ Tab in what follows. The actions ua and storages xa are constrained to lie in respective

sets Ua and Xa. Finally for each leaf node n ∈ L, we define Van(xa(n)) to represent the value of

residual storage xa(n) held by agent a at node n.
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Figure 2 Small network example with production at node 1, consumption at node 4 and storage at nodes 2, 3

Given a scenario tree we can now formulate a risk-neutral model that seeks to minimize total

expected social disbenefit.

SO: min
u,x

∑
n∈N

φ(n)
∑
a∈A

Can(ua(n))−
∑
n∈L

φ(n)
∑
a∈A

Van(xa(n))

s.t. xa(n)≤ xa(n−) +
∑
b∈A

Tabub(n) +ωa(n), n∈N , a∈A, (1)

∑
a∈A

gan(ua(n))≥ 0 n∈N , (2)

ua(n)∈ Ua, xa(n)∈Xa, n∈N , a∈A.

We now outline several examples that fit into this framework, and demonstrate the interplay

between production units and storage devices, and the agents that own and operate them.

Example 1. The first example involves a collection of consumers, producers and storage entities.

These are connected via a network, an example of which is given in Figure 2. This network is

encoded into a matrix T whose rows correspond to locations, and columns correspond to edges in

the network:
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

a= 1

a= 2

a= 3

a= 4





1 −1 −1 −1

1 −1 −1 1

1 1 −1 −1

1 1 1 −1


This example assumes ownership of a single entity (at the given location) by an agent a ∈ A

and operates only on a single good that can be produced, stored or consumed at a location,

and transported from one location to another. Thus agents a ∈ A index the rows of the matrix

(corresponding to the network nodes), with x(n)∈R|A|. Column 1 of T corresponds to production

occurring at location 1, while column 9 corresponds to a consumer at location 4, and we will call

these edges production or consumption edges respectively. The other columns correspond to arcs in

Figure 2. Each agent controls the flows along the arcs emanating from the node that she controls.

For example agent a = 2 controls flows in arcs (2,3) and (2,4), so ua(n) has two components

corresponding to columns 5 and 6 of T . The net flow into node a is
∑

b∈A Tabub(n), so when a= 2

we have Ta1 = [0 1 0 0], Ta2 = [−1 − 1], Ta3 = [1 0], and Ta4 = [0]. In total, u(n) ∈ R|E|

where E is the collection of arcs in the network. Constraints (such as capacities or operational

considerations) on flows and storage are captured by the sets Ua and Xa. Treating the variables x

and u in vectorized form, this gives a stochastic process defined by

x(n)≤ x(n−) +Tu(n) +ω(n),

where the inequality allows for free disposal of the good. It is possible to generalize T to account

for transport gains/losses, and to add a diagonal matrix S to account for storage inefficiencies as

mentioned above.

In this example, the functions gan(uk(n)) are uk(n) if arc k emanates from location a and −uk(n)

otherwise and thus they are separable over ua(n), a ∈A. The cost functions are production cost,

consumption disbenefit, and 0 for storage devices, while Van(xa(n)) captures the value of residual

storage xa(n) at any leaf node of the scenario tree. Situations that are covered by this type of
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formulation include a production/distribution network where storage devices are warehouses and

arcs represent transportation links, and also the situation of a distributed system of batteries that

could be used to store energy generated by fossil fuel or renewable energy production systems.

Example 2. The second example generalizes the previous situation to allow agents to be firms

controlling a collection of production, storage and demand facilities in different locations. Thus

a∈A now indexes firms, and xa(n)∈Rm(a) is a vector of storage amounts at the locations controlled

by firm a. The vector ua(n) again represents the flows that occur from nodes that are controlled

by a. Data representing costs, capacities, production and terminal values are suitably extended

from the previous setting. This example allows a modeler to look at the affects of plant ownership

within a competitive equilibrium setting.

Example 3. The above examples do not involve raw materials. The third example extends the

framework to differentiate between raw materials and a finished good. Assume for simplicity at

this time that we do not have a distribution/storage network for the finished good but simply have

given demand for that good at a collection of locations, and ability to produce that good from

raw materials at those locations. (Alternatively, one could model a single demand for the finished

good and assume generation at any location can be used to help satisfy that demand.) We can

think of raw materials as being water flowing along a river network, or fuel stored in stockpile

locations. In the first setting, the river network is modeled by a collection of trees. Water (raw

material) flows through the tree (to a root node) and can be used by a hydro generator situated at

a node to produce electricity (finished good), and that water continues to flow through the river

network to the next reservoir where it could be used for future generation. This fits naturally into

the formulation above where T is now the classical node-arc incidence matrix representing the river

network (without production and consumer arcs), ua(n) are the water releases on a given arc and

xa(n) are the reservoir storages. The function gan(uk(n)) encodes the production of electricity at

the turbines to satisfy demand at that location. Water is not destroyed in this production process

and continues to flow through the river network. Spillage is naturally handled by the inequality in

the dynamics.
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However, if instead we think of the raw resource as being fuel in a given stockpile, then the

network models a transportation network for that fuel. Also, the production process consumes fuel

to generate electricity at the node. Thus, T is no longer just the node-arc incidence matrix of

the fuel transportation network, but has consumption arcs added at each demand location that

consume the fuel to produce electricity. On these arcs the electricity production function becomes

gan(uk(n)), and the cost function represents the cost of using that material and production.

Example 4. The final example extends the above example to capture both a transportation net-

work for the raw materials, and a distribution network for the final good. We assume for simplicity

of exposition that the distribution network is acyclic. Consider the fuel and electricity example,

and construct a network that is the union of the fuel transportation network, and the electricity

distribution network, combined with arcs that join a fuel node at a given location to an electricity

production node at that location. Thus uk(n) represents flow of fuel on arc k of the transportation

network, or flow of electricity along the distribution/storage network or the production of elec-

tricity from fuel on the arcs that join these two networks together. Flow along these arcs convert

fuel into electricity (in a linear fashion or using the slight generalization of gan(uk(n))) that can be

incorporated as a loss or gain multiplier along that arc in the formulation of T . Thus, T contains

the node arc incidence matrix of the both networks, augmented with generalized arcs to represent

the conversion of raw quantities into finished goods. The vector xa(n) has components that corre-

spond to the amount of raw material stored at a node (operated by a) in the fuel transportation

network, or the amount of electricity stored at a node in the electricity distribution network. The

flow around the electricity distribution network satisfies load-flow constraints that represent Kich-

hoff’s Laws, and the consumption arcs in the fuel network and the production arcs in the electricity

distribution network are replaced by conversion arcs linking the two networks. The remainder of

the cost and generation functions are unchanged.

The situation for hydroelectric generation is a little more involved since water is not consumed as

it generates electricity. To model this, we consider the union of the river network and the electricity
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distribution network, augmented by arcs that join a generation location on the water network to a

bus on the distribution network. The river network is effectively modeled as a forest so there is only

one water flow emanating from each node. However, flow out of a hydro production node generates

water flow into the downstream node and an amount of electricity at the bus (determined by the

production function). This can be captured by a generalized column in the matrix T with 3 entries

instead of 2. Apart from this change, the model follows the fuel example.

Pumped storage is an extension of this model that incorporates additional arcs from the electric-

ity distribution network back into the river (or raw material) network. The essential idea is that

energy can be converted back into a raw resource (at a given location) with pumping efficiency

modeled via a multiplier factor on the additional arc.

3. Dynamic risk measures

The agents in our models are risk averse when contemplating a sequence of decisions that have

random future consequences. To model this behavior we consider a single-stage model with finite

sample space indexed by m ∈ M. Each decision maker faced with a random disbenefit Z(m),

m∈M, measures its risk using a coherent risk measure ρ as defined axiomatically by Artzner et al.

(1999). Thus ρ(Z) is a real number representing the risk-adjusted disbenefit of Z.

It is well-known that any coherent risk measure ρ(Z) has a dual representation expressing it as

ρ(Z) = sup
ν∈D

Eν [Z],

where D is a convex subset of probability measures on M (see e.g. Artzner et al. (1999), Heath

and Ku (2004)). D is called the risk set of the coherent risk measure. We use the notation [p]M to

denote any vector {p(m),m ∈M}. So any probability measure ν ∈D can be written [ν]M, where

ν(m) defines the probability of event m. The dual representation using a risk set plays an important

role in the analysis we carry out in this paper. We refer to the case where the risk set is a singleton

as risk neutral.
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A number of examples of coherent risk measures are discussed in Shapiro et al. (2014) including

worst-case and average value at risk (also known as conditional value at risk). Given a random

disbenefit Z the average value at risk of Z at level 1−α is defined as

AVaR1−α(Z) = inf
t
{t+

1

α
E[(Z − t)+]}.

Given a finite sample space indexed by m∈M, with φ(m) the probability of m, AVaR1−α(Z) has

a polyhedral risk set

D= {ν :
∑
m∈M

ν(m) = 1, 0≤ αν(m)≤ φ(m), m∈M}.

The good-deal risk measure originated in the work of Cochrane and Saa-Requejo (2000) and has

been widely applied in capacity planning equilibrium models (see e.g. Abada et al. (2017)). The

risk sets of the good-deal risk measure are not polyhedral. They consist of probability distributions

that are consistent with bounds on Sharpe ratios. Although the risk measure is evaluated using the

worst distribution in D, the distributions in D are constrained by requiring expected payoffs with

these distributions to be no more than a fixed multiple of their standard deviation, thus precluding

outcomes that are too good to be true. Details are provided in Abada et al. (2017).

In the rest of this paper we assume that risk sets are polyhedrons with known extreme points{
[pk]M, k ∈K

}
, where K is a finite index set. This condition is not essential to the theory we derive,

but it simplifies the analysis without losing much generality. Assuming a polyhedral risk set we

write

sup
ν∈D

Eν [Z] = sup
ν∈D

∑
m∈M

ν(m)Z(m) = max
k∈K

∑
m∈M

pk(m)Z(m),

since the maximum of a linear function over D is attained at an extreme point. By a standard

dualization, this gives

sup
ν∈D

∑
m∈M

ν(m)Z(m) =


min θ

s.t. θ≥
∑
m∈M

pk(m)Z(m), k ∈K.
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Lemma 1. Suppose D is a polyhedral risk set with extreme points {[pk]M, k ∈K} and Z(m), m∈M

is given. Then

θ= sup
ν∈D

∑
m∈M

ν(m)Z(m)

if and only if there is some γk, k ∈K, with

∑
k∈K

γk = 1

0≤ γk ⊥ θ−
∑
m∈M

pk(m)Z(m)≥ 0, k ∈K.

Furthermore, ν̄, defined by ν̄(m) =
∑

k∈K γ
kpk(m), is in D and attains the supremum.

By definition, a coherent risk measure is monotone. This means that

Za ≥Zb⇒ ρ(Za)≥ ρ(Zb).

A stronger condition is strict monotonicity. This requires that

Za ≥Zb and Za 6=Zb⇒ ρ(Za)>ρ(Zb).

If strictly monotone coherent risk measures have polyhedral risk sets then these lie strictly inside

the positive orthant.

Lemma 2. Suppose ρ is a coherent risk measure with a polyhedral risk set D. Then D⊂ int(R|M|+ )

if and only if ρ is strictly monotone.

We incorporate the risk measures discussed above into a multistage setting in which agents make

production and consumption decisions over several time stages to minimize risk-adjusted expected

disbenefit.

For a multistage decision problem, we require a dynamic version of risk. The concept of coherent

dynamic risk measures was introduced in Riedel (2004) and is described for general Markov decision

problems in Ruszczyński (2010). Formally one defines a probability space (Ω,F , P ) and a filtration

{∅,Ω}= F1 ⊂F2 . . .⊂FT ⊂F of σ-fields where all data in node 0 is assumed to be deterministic
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and decisions at time t are Ft-measurable random variables (see Ruszczyński (2010)). Working

with finite probability spaces defined by a scenario tree simplifies this description.

Given a tree defined by N , suppose the random sequence of actions {u(n), n ∈ N} results in

a random sequence of disbenefits {Z(n), n ∈ N}. We seek to measure the risk of this disbenefit

sequence when viewed by a decision maker at node 0. At node n the decision maker is endowed

with a one-step risk set D(n) that measures the risk of random risk-adjusted costs accounted for

in m∈ n+. Thus elements of D(n) are finite probability distributions of the form [p]n+ .

The risk-adjusted disbenefit θ(n) of all random future outcomes at node n∈N \L can be defined

recursively. We denote the future risk-adjusted disbenefit in each leaf node n ∈ L by θ̄(n). Then

θ(n) is defined recursively to be

θ(n) =


θ̄(n), n∈L,

sup
ν∈D(n)

∑
m∈n+

ν(m)(Z(m) + θ(m)), n∈N \L.
(3)

When viewed in node n, θ(n) can be interpreted to be the fair one-time charge we would be willing

to incur instead of the sequence of random future costs Z(m) incurred in all successor nodes of n.

In other words the measure θ(n) is a certainty equivalent cost or risk-adjusted expected cost of all

the future costs in the subtree rooted at node n.

Since we assume for n ∈N \L that D(n) is a polyhedron with extreme points {[pk] , k ∈K(n)},

the recursive structure defined by (3) can then be simplified to

sup
ν∈D(n)

∑
m∈n+

ν(m)(Z(m) + θ(m))

=


min θ

s.t. θ≥
∑

m∈n+
pk(m) (Z(m) + θ(m)) , k ∈K(n).

(4)

We now recall the system optimization problem SO, and modify this by adding variables θ so

that it minimizes risk-adjusted system disbenefit using a dynamic risk measure. The risk-averse

system optimization problem is then formulated as follows.
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SO(D): min
u,x,θ

∑
a∈A

Can(ua(0)) + θ(0)

s.t. θ(n)≥
∑
m∈n+

pk(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)
, [γk(n)]

k ∈K(n), n∈N \L, (5)

xa(n)≤ xa(n−) +
∑
b∈A

Tabub(n) +ωa(n), a∈A, n∈N , [αa(n)] (6)

∑
a∈A

gan(ua(n))≥ 0 n∈N , [π(n)] (7)

θ(n) =−
∑
a∈A

Van(xa(n)), n∈L,

ua(n)∈ Ua, xa(n)∈Xa, n∈N , a∈A.

3.1. Dynamic consistency

The solution of SO(D) gives a policy of decisions {ūa(n), n ∈N} and resulting stocks {x̄a(n), n ∈

N}. We digress briefly here to discuss the notion of dynamic consistency as applied to such a

solution. Recall the set of successors S(n) of node n is the maximal subtree in N with root node

n. Following Carpentier et al. (2012) we make the following definition.

Definition 1. An optimal solution {ūa(n), x̄a(n), n ∈N} to SO(D) is called dynamically consis-

tent if for every n̄∈N , {ūa(n), x̄a(n), n∈ S(n̄)} is an optimal solution to SO(D) formulated in S(n̄)

where node 0 is replaced by node n̄ and we choose initial endowments xa(n̄−) = x̄a(n̄−).

Dynamic consistency of solutions to SO(D) is guaranteed under the following assumption.

Assumption 1. For every n∈N \L, D(n)⊂ int(R|
n+|
+ ).

Under this assumption, Lemma 2 ensures that one-step risk measures are strictly monotone. As

shown in Shapiro (2017), this implies that optimal solutions to the tree problem with risk sets

D(n), n ∈N \L correspond to dynamic programming policies that compute optimal solutions by

backwards recursion. In other words the optimal policy for SO(D) will be dynamically consistent.
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To see that Assumption 1 is necessary, observe that if it does not hold then it is possible for

ν̄ ∈ arg max
ν∈D(n)

∑
m∈n+

ν(m)(Z(m) + θ(m)) (8)

to have ν̄(m̄) = 0 for some m̄. If so, then evaluating the risk at node 0 will ignore all disbenefits

in the subtree of nodes in N rooted at m̄. Decisions in these nodes will not affect the overall

risk-adjusted disbenefit in node 0 unless they change nodal disbenefits enough to change ν̄ in (8).

If these decisions are suboptimal given that the decision maker is in the state of the world defined

by m̄, then the policy defined by all the decisions is not dynamically consistent.

Of course it is true that one can construct a dynamically consistent policy (by dynamic pro-

gramming) even though the decision maker assigns zero probability to events in some nodes. We

will show that such policies correspond to optimality conditions defined over the whole scenario

tree. These will be sufficient but may not be necessary conditions for an optimal solution to an

instance of SO(D) that violates Assumption 1.

3.2. Optimality conditions

We now define optimality consitions for the problem SO(D). Recall for any set X we define the

normal cone at x̄ to be

NX (x̄) = {d : d>(x− x̄)≤ 0 for all x∈X},

and recall that x̄ minimizes a convex function f(x) over convex set X if and only if

0∈∇xf(x̄) +NX (x̄).

When the set X has a particular representation in terms of nonlinear functions, these optimality

conditions have a specific form (often termed the KKT conditions) provided that a constraint

qualification holds. To facilitate use of these conditions within our proofs, we will assume that the

following condition is satisfied throughout this paper.

Assumption 2. The nonlinear constraints in SO(D) satisfy a constraint qualification that ensures

that SO(D) is equivalent to its KKT conditions.



Ferris and Philpott: Dynamic risked equilibrium
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The weakest condition Gould and Tolle (1971) that ensures this equivalence is referred to as the

Guinard constraint qualification, and the stronger Slater constraint qualification is often used since

it is easier to verify.

Since SO(D) is a convex optimization problem and the constraint qualification Assumption 2

holds, Assumption 1 implies that the following set of conditions SE(D) are necessary and sufficient

for optimality in SO(D).

SE(D):

0 = 1−
∑

k∈K(n)

γk(n), n∈N \L

0≤ γk(n)⊥ θ(n)−
∑
m∈n+

pk(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)
≥ 0, k ∈K(n), n∈N \L

θ(n) =−
∑
a∈A

Van(xa(n)), n∈L

0∈∇ua(n)

[
Can(ua(n))−π(n)gan(ua(n))−

∑
b∈A

αb(n)Tbaua(n)

]
+NUa(ua(n)), a∈A, n∈N

0∈ αa(n)−
∑
m∈n+

∑
k∈K(n)

γk(n)pk(m)αa(m) +NXa(xa(n)), a∈A, n∈N \L

0∈ αa(n)−∇xa(n)Van(xa(n)) +NXa(xa(n)), a∈A, n∈L

0≤ αa(n)⊥−xa(n) +xa(n−) +
∑
b∈A

Tabub(n) +ωa(n)≥ 0, a∈A, n∈N

0≤ π(n)⊥
∑
a∈A

gan(ua(n))≥ 0, n∈N .

Theorem 1. (i) Any solution to SE(D) provides (u,x, θ) that solves SO(D) and satisfies

θ(n) = max
ν∈D(n)

∑
m∈n+

ν(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)

=
∑
m∈n+

ν̄(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)
,

where ν̄(m) =
∑

k∈K(n) γ
k(n)pk(m).

(ii) Under Assumption 1 any solution to SO(D) satisfies SE(D) for some π, α, γ.
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3.3. Equilibrium

Given a set of agents a∈A we can define a risk-averse competitive equilibrium as follows. We first

define an agent optimization problem that minimizes their risk-adjusted disbenefit at given prices.

Pa(π,α,Da): min
ua,xa,θa

Za(0;u,x) + θa(0)

s.t. θa(n)≥
∑
m∈n+

pka(m)(Za(m;u,x) + θa(m)),

k ∈Ka(n), n∈N \L,

θa(n) =−Van(xa(n)), n∈L,

ua(n)∈ Ua, xa(n)∈Xa, n∈N ,

where we use the shorthand notation

Za(n;u,x) =Can(ua(n))−π(n)gan(ua(n)) +αa(n) (xa(n)−xa(n−)−ωa(n))

−
∑
b∈A

αb(n)Tbaua(n), n∈N . (9)

Here π(n) is the commodity price at node n and αa(n) is the resource price at node n at a’s

location. Recall that agents are assumed throughout this paper to behave as price takers, so prices

will be determined in equilibrium by market clearing rather than anticipated by agents behaving as

Cournot players. This means that αa(n) is the price paid by every agent for resource at a’s location,

rather than individual agent prices that could emerge from a generalized Nash equilibrium in the

Cournot setting.

For a producer, the first two terms in (9) are the production cost minus sales revenue. The

third term is the cost incurred in node n in retaining extra resources for later use, and the final

term
∑

b∈Aαb(n)Tbaua(n) is the payment received from downstream beneficiaries for releases of

resources. Observe that they pay at price αb(n) that will typically be less than αa(n) as agent a

has extracted value from the resource en route to b. In the hydroelectric setting αb(n) is a payment

received for released water from downstream reservoirs. In the case where a single agent owns

both reservoirs (i.e. a and b identify the same agent) the payment can be viewed as the loss in

risk-adjusted expected water value incurred by the release.
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Definition 2. A multistage risked equilibrium RE(DA) is a stochastic process of prices {π(n), n∈

N}, {αa(n), a ∈ A, n ∈ N}, and a corresponding collection of actions {ua(n), n ∈ N} with the

property that (ua, xa, θa) solves the problem Pa(π,α,Da) and

0≤ π(n) ⊥
∑
a∈A

gan(ua(n))≥ 0, n∈N ,

0≤ αa(n) ⊥ −xa(n) +xa(n−) +
∑
b∈A

Tabub(n) +ωa(n)≥ 0, a∈A, n∈N .

In a multistage risked equilibrium, the system clearing agent announces a set of prices {π(n), n∈

N}, {αa(n), a ∈A, n ∈N}, and each agent chooses a sequence of actions adapted to the filtration

defined by the scenario tree that minimizes their risk-adjusted disbenefit with these prices as viewed

in node 0 of the tree. Since agents are price takers they do not anticipate possible responses of

rival agents in later periods when making decicions now, although these responses have an implicit

effect through future market clearing prices.

The existence of multistage risked equilibrium depends on the formulation of each problem

Pa(π,α,Da). Existence proofs for particular formulations typically invoke general results (see e.g.

Rosen (1965) or Arrow and Debreu (1954)) based on fixed-point theorems that require bounds on

the set of actions and convex disbenefit functions. Existence results for risked equilibrium models

for capacity expansion can be found in de Maere d’Aertrycke and Smeers (2013), Abada et al.

(2017), Kok et al. (2018) and Ralph and Smeers (2015).

Uniqueness of risked equilibrium is more problematic. Consider a model with three agents and a

random supply ξ(ω) that takes values 1 and 3 with equal probability. Let each agent be endowed

with the worst case risk measure (denoted F ). This is not strictly monotone. A risked equilibrium

is a set of prices π(ω) and actions x∗, y∗(ω), z∗(ω) satisfying:

x∗ ∈ arg max
x≥0

F[π(ω)x− 1

2
x2]

y∗(ω)∈ arg max
y(ω)≥0

F[π(ω)y(ω)− y(ω)
2
],
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z∗(ω)∈ arg max
z(ω)≥0

F[16z(ω)− z(ω)
2−π(ω)z(ω)],

0≤ x∗+ y∗(ω) + ξ(ω)− z∗(ω)⊥ π(ω)≥ 0, ω ∈Ω.

There are infinitely many equilibria. For example we might choose π(ω1) = 9
2
, π(ω2) = 5

2
, x=

5
2
, y1 = 9

4
, y2 = 5

4
, z1 = 23

4
, z2 = 27

4
. Here x = 5

2
maximizes minω{π(ω)x− 1

2
x2}, yi maximizes

π(ωi)y− y2, and zi maximizes 16z− z2−π(ωi)z. For each agent a, the values of x, y, and z in this

solution solve Pa(π,α,Da). Note that y1 = 9
4

and z2 = 27
4

are both optimal solutions for agents 2

and 3 in scenarios ω1 and ω2, even though the (optimal) outcomes of these actions have no effect

on the risk-adjusted disbenefit of these agents.

A second equilibrium is π(ω1) = 5, π(ω2) = 3, x= 3, y1 = 3
2
, y2 = 3

2
, z1 = 11

2
, z2 = 15

2
. Observe

that x= 3 maximizes minω{π(ω)x− 1
2
x2}, y2 = 3

2
maximizes minω{π(ω)y− y2}, and z1 = 23

4
max-

imizes minω{16z − z2 − π(ω)z}, but y1 and z2 are not optimal for agents 2 and 3 in scenarios ω1

and ω2, but chosen to make markets clear in each supply outcome.

It is tempting to suppose that strict monotonicity of each agent’s risk measure would be sufficient

for uniqueness of equilibrium. This is not true as demonstrated by the counterexample in Gérard

et al. (2018).

4. Risk trading

We now turn our attention to the situation where agents with polyhedral risk sets can trade

financial contracts to reduce their risk. We will show that the system optimal solution to a social

planning problem corresponds to a perfectly competitive equilibrium with risk trading.

We use the notation Za(n), n∈N to denote the disbenefit of agent a, and Da(n) to denote the

risk set of agent a, which is a polyhedral set with extreme points {[pka]n+ , k ∈Ka(n)}. In order to

get some alignment between the objectives of agents and a social planner, we establish a connection

between their risk sets using the following assumption and definitions.

Assumption 3. For n∈N \L ⋂
a∈A

Da(n) 6= ∅.
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Definition 3. For n∈N \L the social planning risk set is

Ds(n) =
⋂
a∈A

Da(n).

The financial instruments that are traded are assumed to take a specific form.

Definition 4. Given any node n∈N \L, an Arrow-Debreu security for node m∈ n+ is a contract

that charges a price µ(m) in node n to receive a payment of 1 in node m ∈ n+, and zero in other

nodes m′ 6=m, m′ ∈ n+.

We shall assume throughout this section that the market for risk is complete. Formally this means

that the set of Arrow-Debreu securities traded at each node n spans the set of possible outcomes

in n+. It is important to emphasize that the trade in these instruments yields a common market

price µ(m) that is paid by all agents in node n for each of the securites indexed by m∈ n+.

Assumption 4. At every node n ∈N \L, there is an Arrow-Debreu security for each child node

m∈ n+ that is traded in node n at an equilibrium price µ(m).

To reduce its risk, suppose that each agent a in node n purchases Wa(m) Arrow-Debreu securities

for node m∈ n+. Each agent a’s optimization problem with risk trading is then formulated as

AOa(π,α,µ,Da):

min
ua,xa,Wa,θa

Za(0;u,x,W ) + θa(0)

s.t. θa(n)≥
∑
m∈n+

pka(m)(Za(m;u,x,W )−Wa(m) + θa(m)),

k ∈Ka(n), n∈N \L,

θa(n) =−Van(xa(n)), n∈L,

ua(n)∈ Ua, xa(n)∈Xa, n∈N ,

where we use the shorthand notation

Za(n;u,x,W ) =Can(ua(n))−π(n)gan(ua(n)) +αa(n) (xa(n)−xa(n−)−ωa(n))

−
∑
b∈A

αb(n)Tbaua(n) +
∑
m∈n+

µ(m)Wa(m), n∈N . (10)



Ferris and Philpott: Dynamic risked equilibrium
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

Here the agent minimizes immediate cost plus the (insurance) cost of the security along with

future costs, in the understanding that the security will pay back in the next period according to

the situation realized. The interpretation of the notation in (10) is the same as in (9), with the

exception of variables Wa(m) that denote the number of Arrow-Debreu securities of type m bought

by agent a at node n. The agent pays a market price µ(m) for each of these. The payoff for security

m only occurs in scenario m as reflected in the first inequality of AOa(π,α,µ,Da). Observe that

Wa(m) can be negative (if the security is sold) and is unbounded in this formulation. In equilibrium

Wa(m) will be traded at an equilibrium price µ(m). We show below that Assumption 3 above

(which is a form of no-arbitrage condition) will ensure that the trade in Arrow-Debreu securities

is bounded at these prices.

We can define a complementarity form of AOa(π,α,µ,Da)as follows.

AEa(π,α,µ,Da):

0 = 1−
∑

k∈Ka(n)

γk(n), n∈N \L (11a)

0≤ γk(n)⊥ θa(n)−
∑
m∈n+

pka(m)
(
Za(m;u,x,W )−Wa(m) + θa(m)

)
≥ 0,

k ∈Ka(n), n∈N \L (11b)

θa(n) =−Van(xa(n)), n∈L (11c)

0∈∇ua(n)Za(n;u,x,W ) +NUa(ua(n)), n∈N (11d)

0∈ αa(n)−
∑
m∈n+

µ(m)αa(m) +NXa(xa(n)), n∈N \L (11e)

0∈ αa(n)−∇xa(n)Van(xa(n)) +NXa(xa(n)), n∈L (11f)

0 = µ(m)−
∑

k∈Ka(n)

γk(n)pka(m), m∈ n+, n∈N \L, (11g)

where Za(n;u,x,W ) is defined by (10).

Theorem 2. (i) Any solution to AEa(π,α,µ,Da) provides a solution (ua, xa,Wa, θa) to the opti-

mization problem AOa(π,α,µ,Da), and satisfies

θa(n) = max
ν∈Da(n)

∑
m∈n+

ν(m) (Za(m;u,x,W )−Wa(m) + θa(m))



Ferris and Philpott: Dynamic risked equilibrium
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

=
∑
m∈n+

µ(m) (Za(m;u,x,W )−Wa(m) + θa(m)) .

(ii) If Assumption 1 holds, then any solution of AOa(π,α,µ,Da) provides a solution to

AEa(π,α,µ,Da) for some γ.

Theorem 2 provides a link between the solution to the optimization problem AO faced by an agent

at node 0 and the optimality conditions AE that a dynamically consistent optimal solution would

satisfy at each node. Any solution to AE will solve AO. The converse is true when Assumption 1

holds.

The remainder of the paper seeks to connect competitive equilibrium in a market where agents

trade risk to the solution of a social optimization problem. We do this by linking system opti-

mization (SO) to a complementarity problem (SE) that is equivalent to a system of variational

inequalities (RTVI). This system is in turn linked to the competitive equilibrium with risk trading

(RTE). A broad outline of our proof strategy is given in Figure 3.

Suppose each agent solves the optimization problem AOa(π,α,µ,Da) taking prices π, α, and µ

as given. If these prices clear the markets for respective quantities, then we have a competitive

equilibrium with risk trading.

Definition 5. A multistage risk-trading equilibrium RTE(DA) is a stochastic process of prices

{π(n), n ∈ N}, {αa(n), a ∈ A, n ∈ N}, {µ(n), n ∈ N \ {0}}, and a corresponding collection of

actions for each a∈A, {(ua(n), xa(n), θa(n)), n∈N},{Wa(n), n∈N \ {0}} with the property that

(ua, xa,Wa, θa) solves the problem AOa(π,α,µ,Da) and

0≤ π(n) ⊥
∑
a∈A

gan(ua(n))≥ 0, n∈N , (12)

0≤ αa(n) ⊥ −xa(n) +xa(n−) +
∑
b∈A

Tabub(n) +ωa(n)≥ 0,

a∈A, n∈N , (13)

0≤ µ(n) ⊥ −
∑
a∈A

Wa(n)≥ 0, n∈N \{0}. (14)
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RTE

AO

RTVI

AE

SE SO

Theorem 4

Theorem 1

Theorem 1 +Assumption 1

Theorem 3

Theorem 2

Theorem 2 +Assumption 1

Corollary 1: RTE + Assumption 1 solves RTVI and hence SO

Corollary 2: SO + Assumption 1 solves RTVI and hence RTE

Figure 3 An outline of the interplay of the main results.

In the absence of Assumption 1, the solution set of AOa(π,α,µ,Da) might strictly contain that

of AEa(π,α,µ,Da). We can then define a constrained form of RTE(DA) as follows.

Definition 6. A multistage risk-trading variational inequality RTVI(DA) is a stochastic process

of prices {π(n), n∈N}, {αa(n), a∈A, n∈N}, {µ(n), n∈N \{0}}, and a corresponding collection

of actions for each a ∈ A, {(ua(n), xa(n), θa(n)), n ∈ N},{Wa(n), n ∈ N \ {0}} with the property

that for some γ, (ua, xa,Wa, θa, γ) solves the problem AEa(π,α,µ,Da) and satisfies (12), (13), and

(14).

Note that RTVI is a more restrictive form of RTE, that is equivalent when Assumption 1 holds.

This difference in models means that we write −
∑

a∈AWa(n)≥ 0 rather than an equation. Since

buying Wa(m) to payoff in scenario m decreases cost in this scenario we require no more securities

Wa(m) to be bought than sold, so at the least
∑

aWa(m)≤ 0. Under Assumption 1, the markets
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for contracts clear with strictly postive prices µ. This ensures that
∑

aWa(m) = 0. If Assumption 1

does not hold then it is possible to have µ= 0 in equilibrium. This could occur e.g. for a worst-case

risk measure as in the two scenario example problem at the end of section 3. It can be shown for

this example that an agent purchasing an Arrow-Debreu security Wa(1)> 0 that pays off in worst

case outcome 1 in order to make 2 the worst outcome, could be matched by a seller who sells more

than Wa(1) at price 0, as long as outcome 1 does not become the seller’s worst-case outcome after

the sale. Thus we might have
∑

aWa(1) < 0 in equilibrium, so more securities are sold than are

bought.

First and second welfare theorems can be derived for RTVI(DA)

Theorem 3. Consider a set of agents a ∈ A, each endowed with polyhedral node-dependent risk

sets Da(n), n ∈ N \ L satisfying Assumption 3. Suppose {π̄(n), n ∈ N}, {ᾱa(n), a ∈ A, n ∈ N},

and {µ̄(n), n ∈N \ {0}} form a multistage risk-trading variational inequality RTVI(DA) in which

agent a solves AEa(π̄, ᾱ, µ̄,Da) with a policy defined by (ūa(·), x̄a(·), θ̄a(·)) together with a policy of

trading Arrow-Debreu securities defined by {W̄a(n), n ∈ N \ {0}}. For every n ∈ N define θ̄(n) =∑
a∈A θ̄a(n). Then

(i) µ̄∈Da for all a∈A, and hence µ̄∈Ds,

(ii)

θ̄(n) =
∑
m∈n+

µ̄(m)

(∑
a∈A

Can(ūa(m)) + θ̄(m)

)
, n∈N \L. (15)

(iii) there exist multipliers γ such that (ū, x̄, θ̄, γ, π̄, ᾱ) is a solution to SE(D0) with D0 = {µ̄},

(iv) there exist multipliers γ such that (ū, x̄, θ̄, γ, π̄, ᾱ) is a solution to SE(Ds)

where µ̄(n) =
∑

k∈Ks(n)
γk(n)pka(m).

We are also able to establish a converse result to Theorem 3, the proof of which is in Appendix C.

Theorem 4. Consider a set of agents a∈A, each endowed with a polyhedral node-dependent risk

set Da(n), n ∈ N \ L satisfying Assumption 3. Now let (u,x, θs, γ, π,α) be a solution to SE(Ds)

with risk sets Ds(n) =
⋂
a∈ADa(n). Let µ be defined by

µ(m) =
∑

k∈K(n)

γk(n)pk(m), m∈ n+, n∈N \L.
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Then there exist {θa(n), a ∈ A, n ∈ N} such that the prices {π(n), n ∈ N}, {αa(n), a ∈ A, n ∈ N},

{µ(n), n ∈ N \ {0}} and actions of each agent a ∈ A {(ua(n), xa(n), θa(n)), n ∈ N}, {Wa(n), n ∈

N \{0}} form a multistage risk-trading variational inequality RTVI(DA).

Under Assumption 1 we can establish versions of the welfare theorems in which each agent solves

a multistage optimization problem AOa(π,α,µ,Da) to yield a risk-trading equilibrium. These are

the following corollaries, the proofs of which are immediate from Theorem 3 and Theorem 4 and

the fact that Assumption 1 gives the equivalence of AEa(π,α,µ,Da) and AOa(π,α,µ,Da), and

SE(Ds) and SO(Ds).

Corollary 1. Suppose Assumption 1 holds. Consider a set of agents a ∈A, each endowed with

a polyhedral node-dependent risk set Da(n), n∈N \L satisfying Assumption 3. Suppose {π̄(n), n∈

N}, {ᾱa(n), a ∈ A, n ∈ N}, and {µ̄(n), n ∈ N \ {0}} form a multistage risk-trading equilibrium

RTE(DA) in which agent a solves AOa(π,α,µ,Da) with a policy defined by (ūa(·), x̄a(·), θ̄a(·))

together with a policy of trading Arrow-Debreu securities defined by {W̄a(n), n ∈ N \ {0}}. Then

(ū, x̄, θ̄) is a solution to SO(Ds) where Ds(n) =
⋂
a∈ADa(n) and θ̄(n) =

∑
a∈A θ̄a(n).

Corollary 2. Suppose Assumption 1 holds. Consider a set of agents a ∈A, each endowed with

a polyhedral node-dependent risk set Da(n), n ∈N \L satisfying Assumption 3. Now let (u,x, θs)

be a solution to SO(Ds) with risk sets Ds(n) =
⋂
a∈ADa(n). Suppose this gives rise to Lagrange

multipliers {π(n), n∈N}, {αa(n), a∈A, n∈N} for constraints (7) and (6) respectively. Then for

some γ

1. (u,x, θs, γ, π,α) satisfies SE(Ds),

2. If µ(m) =
∑

k∈K(n)
γk(n)pk(m), m ∈ n+, n ∈ N \ L then there exist {θa(n), a ∈ A, n ∈ N}

such that the prices {π(n), n ∈ N}, {αa(n), a ∈ A, n ∈ N} and actions for each a ∈ A

{(ua(n), xa(n), θa(n)), n∈N}, {Wa(n), n∈N \{0}} form a multistage risk-trading equilibrium

RTE(DA).
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5. Conclusions

This paper provides a theory for multistage risked equilibria. Its main contributions are threefold.

Firstly, we extend the definition of multistage risked equilibrium given in Philpott et al. (2016)

to a more general model that allows storage and pricing of transfers of shared resources, along

with a number of examples that demonstrate the richness of the equilibrium framework that we

propose.

Secondly, we have established versions of the first and second welfare theorems in a setting where

agents can trade risk. We give a proof of the first welfare theorem (which is new) and a simpler

proof of the second welfare theorem as applied to multistage risked equilibrium with risk trading.

The First Welfare Theorem provides a perfectly competitive benchmark against which real markets

might be measured. In the real world, where markets are imperfect, the optimal value of a social

planning model provides an upper bound on what might be achieved in welfare terms by reducing

market imperfections. The multistage risked equilibrium can be used to determine a competitive

plan in the incomplete case, but we point out the difficulties in this approach related to both

existence and non-uniqueness of solutions. Observe that the welfare results rely on Assumption 3.

The risk sets of the agents must intersect to enable trade to be bounded. In a non-polyhedral setting

we would require the stronger condition that the intersection of the relative interiors of the risk

sets is nonempty (see e.g. Ralph and Smeers (2015)). If one agent believes that the risk-adjusted

price of a given Arrow-Debreu contract strictly exceeds that asked by a prospective seller, then an

infinite trade will result.

Thirdly, we illuminate the role that strict monotonicity of risk measures plays in multistage

risked equilibrium. Our optimization versions of the welfare theorems (Corollaries 1 and 2) rely

on Assumption 1. This is equivalent to the assertion that the one-step risk measure is strictly

monotone, thus guaranteeing a nested risk measure that yields a time-consistent optimal solution.

Competitive equilibrium specifies an optimal action for each agent in every state of the world, even

if this is discounted in equilibrium to have zero risk-adjusted disbenefit. It is therefore necessary
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for a social plan to specify a set of actions for the agents in such states. This can be done either by

constraining it to be time consistent using the formulation SE(Ds) in the absence of Assumption 1,

or by imposing strict monotonicity on each agent’s one-step risk measure.
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Appendices

Appendix A: Coherent risk measures: proofs of lemmas

Proof of Lemma 1. For the forward implication, just choose γk = 1 for the term involv-

ing extreme point k that achieves the supremum. For the reverse implication, since θ ≥∑
m∈M pk(m)Z(m) for each extreme point, it follows that θ ≥

∑
m∈M ν(m)Z(m) for each ν ∈ D

and hence θ≥ supν∈D
∑

m∈M ν(m)Z(m). But complementary slackness shows that

θ=
∑
m∈M

ν̄(m)Z(m),

where ν̄ is defined in the statement of the theorem and is clearly in D so θ ≤

supν∈D
∑

m∈M ν(m)Z(m) and thus equality holds. �

Proof of Lemma 2. Suppose D lies in int(R|M|+ ). To show strict monotonicity, we suppose

Za ≥ Zb and Za(m̄) > Zb(m̄) for some m̄ ∈ M. Let ρ(Za) =
∑

m∈M ν∗a(m)Za(m), and ρ(Zb) =∑
m∈M ν∗b (m)Zb(m). Then strict monotonicity follows from ν∗b (m̄)> 0 since

ρ(Za) =
∑
m∈M

ν∗a(m)Za(m)

≥
∑
m∈M

ν∗b (m)Za(m)
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>
∑
m∈M

ν∗b (m)Zb(m)

= ρ(Zb).

Conversely, suppose D does not lie in int(R|M|+ ), thus containing some point ν̄ with a zero

component, say ν̄(m1) = 0. Choose Z(m) = 0, m = m2,m3, . . . ,m|M|, and Z(m1) < 0. Then ν̄ ∈

arg maxν∈D
∑

m∈M ν(m)Z(m), since
∑

m∈M ν(m)Z(m)≤ 0 for every ν ∈D. Let

Z ′(m) =

{
Z(m1)− 1, m=m1

Z(m), otherwise

so Z ′ ≤Z with Z ′ 6=Z. But ν̄ ∈ arg maxν∈D
∑

m∈M ν(m)Z ′(m), so

ρ(Z ′) =
∑
m∈M

ν̄(m)Z ′(m) =
∑
m∈M

ν̄(m)Z(m) = ρ(Z),

violating the strict monotonicity of ρ. �

Appendix B: Tree multipliers

Consider a scenario tree with polyhedral risk sets D(n), n ∈ N \ L, each having a finite set of

extreme points {[pk]n+ , k ∈K(n)}. Any set of nonnegative numbers of the form {γk(n), k ∈K(n),

n ∈ N \ L} is called a set of tree multipliers. A set of tree multipliers is conditional if for every

n∈N \L,
∑

k∈K(n) γ
k(n) = 1. A set of tree multipliers {λk(n), k ∈K(n), n∈N \L} is unconditional

if

0 = 1−
∑
k∈K(0)

λk(0), (16)

0 = −
∑

k∈K(n)

λk(n) +
∑

j∈K(n−)

λj(n−)pj(n), n∈N \L, n 6= 0. (17)

Observe that any set of conditional tree multipliers γ corresponds to a unique set of unconditional

tree multipliers λ defined recursively by setting λ(0) = γ(0), and defining

λ(n) = γ(n)
∑

j∈K(n−)

λj(n−)pj(n), n∈N \{0}. (18)

Since λ(0) ≥ 0, repeated application of (18) implies λ(n) ≥ 0 for every n ∈ N \ {0}, so λk(n) are

well-defined tree multipliers. These are easily verified to be unconditional since for n∈N \L∑
k∈K(n)

λk(n) =
∑

j∈K(n−)

λj(n−)pj(n),

giving (17) and ∑
k∈K(0)

λk(0) =
∑
k∈K(0)

γk(0) = 1,
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giving (16). Conversely any unconditional set of tree multipliers corresponds to a unique set of

conditional tree multipliers as long as Assumption 1 holds. To see this define γ(0) = λ(0), and

γk(n) = λk(n)/(
∑

`∈K(n−)

λ`(n−)p`(n)) k ∈K(n), n∈N \{0}. (19)

By Assumption 1 every component of pk(m), m ∈ 0+ is strictly positive, and the vector (λ(0))

is nonnegative and nonzero by (16), so γk(m) is well defined by (19) for m ∈ 0+. However, (17)

implies that the vector (λk(m)) is nonnegative and nonzero, and hence recursively that

∑
j∈K(n−)

λj(n−)pj(n)> 0, n∈N \{0}. (20)

Finally (17) and (19) imply
∑

k∈K(n) γ
k(n) = 1, showing that {γk(n), k ∈ K(n), n ∈ N \ L} is

conditional.

To ease notation in what follows, given any unconditional tree multipliers λ we define tree

multipliers σ by

σ(n) =

{
1, n= 0,∑
j∈K(n−)

λj(n−)pj(n), n∈N \{0}. (21)

Observe by (18) that (21) implies

λk(n) = γk(n)σ(n), k ∈K(n), n∈N , (22)

whence multiplying by pk(m) and summing gives

∑
k∈K(n)

λk(n)pk(m) = σ(m) = (
∑

k∈K(n)

γk(n)pk(m))σ(n), m∈ n+, n∈N \L. (23)

Conditional and unconditional multipliers satisfy the following lemma.

Lemma 3. If θ(n), n ∈ N and a conditional set of tree multipliers {γk(n), k ∈ K(n), n ∈ N \ L}

satisfies

0≤ γk(n)⊥ θ(n)−
∑
m∈n+

pk(m) (C(m) + θ(m))≥ 0, k ∈K(n), n∈N \L, (24)

then there exist unconditional multipliers λ satisfying

0≤ λk(n)⊥ θ(n)−
∑
m∈n+

pk(m) (C(m) + θ(m))≥ 0, k ∈K(n), n∈N \L. (25)

Conversely, if (λ, θ) satisfies (16),(17),(25), and Assumption 1 holds, then σ(n) defined by (21)

is strictly positive for every n∈N , and there exists conditional tree multipliers γk(n) = λk(n)

σ(n)
, n∈

N \L satisfying (24).
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Proof. Given a set of conditional tree multipliers γ construct unconditional multipliers λ from

(18) and λ(0) = 1. Given these values, σ≥ 0 is defined by (21), so

0≤ σ(n)γk(n)⊥ θ(n)−
∑
m∈n+

pk(m) (C(m) + θ(m))≥ 0,

yielding (25) via (22). Conversely, Assumption 1 implies (20), so we have σ(n)> 0. The relationship

(24) then follows from (25) by dividing through by σ(n)> 0. �

Appendix C: Proofs of main results

Proof of Theorem 1. The following Karush-Kuhn-Tucker conditions for SO(D) are necessary

and sufficient for optimality in SO(D).

KKT(D):

0 = 1−
∑
k∈K(0)

λk(0),

0 =−
∑

k∈K(n)

λk(n) +
∑

j∈K(n−)

λj(n−)pj(n), n∈N \L, n 6= 0

0≤ λk(n)⊥ θ(n)−
∑
m∈n+

pk(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)
≥ 0, k ∈K(n), n∈N \L

θ(n) =−
∑
a∈A

Van(xa(n)), n∈L

0∈∇ua(0)

[
Can(ua(0))− π̃(0)gan(ua(0))−

∑
b∈A

α̃b(0)Tbaua(0)

]
+NUa(ua(0)), a∈A

0∈∇ua(n)

 ∑
k∈K(n−)

λk(n−)pk(n)Can(ua(n))− π̃(n)gan(ua(n))−
∑
b∈A

α̃b(n)Tbaua(n)


+NUa(ua(n)), a∈A, n∈N \{0}

0∈ α̃a(n)−
∑
m∈n+

α̃a(m) +NXa(xa(n)), a∈A, n∈N \L

0∈ α̃a(n)−
∑

k∈K(n−)

λk(n−)pk(n)∇xa(n)Van(xa(n)) +NXa(xa(n)), a∈A, n∈L

0≤ α̃a(n)⊥−xa(n) +xa(n−) +
∑
b∈A

Tabub(n) +ωa(n)≥ 0, a∈A, n∈N

0≤ π̃(n)⊥
∑
a∈A

gan(ua(n))≥ 0, n∈N .

The proof proceeds to show the equivalence of these conditions to a solution of SE(D) under the

hypotheses of the theorem.

(i) Suppose (u, θ,x, γ,α,π) is a solution of SE(D). Since γ are conditional multipliers, and θ(n) =

−
∑

a∈A Van(xa(n)), n ∈ L, and (θ, γ) satisfies (24), Lemma 3 provides unconditional multipliers
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λ (and therefore σ from (21)) such that (25) holds for C(m) =
∑

a∈ACan(ua(m)). Using these

observations, the problem SE(D) leads to the conditions:

0 = 1−
∑
k∈K(0)

λk(0),

0 =−
∑

k∈K(n)

λk(n) +
∑

j∈K(n−)

λj(n−)pj(n), n∈N \L, n 6= 0

0≤ λk(n)⊥ θ(n)−
∑
m∈n+

pk(m)
∑
a∈A

(Can(ua(m)) + θ(m))≥ 0, k ∈K(n), n∈N \L

θ(n) =−
∑
a∈A

Van(xa(n)), n∈L

0∈∇ua(n)

[
σ(n)Can(ua(n))−σ(n)π(n)gan(ua(n))−σ(n)

∑
b∈A

αb(n)Tbaua(n)

]
+NUa(ua(n)), a∈A, n∈N

0∈ σ(n)αa(n)−
∑
m∈n+

∑
k∈K(n)

λk(n)pk(m)αa(m) +NXa(xa(n)), a∈A, n∈N \L

0∈ σ(n)αa(n)−σ(n)∇xa(n)Van(xa(n)) +NXa(xa(n)), a∈A, n∈L

0≤ σ(n)αa(n)⊥−xa(n) +xa(n−) +
∑
b∈A

Tabub(n) +ωa(n)≥ 0, a∈A, n∈N

0≤ σ(n)π(n)⊥
∑
a∈A

gan(ua(n))≥ 0, n∈N .

The relationships involving normal cones follow from multiplication by σ(n) and (22), while the

complementarity conditions follow from Lemma 3 and multiplication by σ(n). If we let α̃a(n) =

σ(n)αa(n) and π̃(n) = σ(n)π(n) then recalling (21) these conditions yield KKT(D), the KKT

conditions for SO(D). Since any solution of SE(D) satisfies (24) in Lemma 3, (22) and Lemma 1

imply that

θ(n) = sup
ν∈D(n)

∑
m∈n+

ν(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)
is attained by ν̄(m) =

∑
k∈K(n) γ

k(n)pk(m), which gives the last statement of (i).

(ii) For the converse result, suppose that we have a solution (u,x, θ,λ, π̃, α̃) of the KKT conditions

of SO(D) as shown above. Then Assumption 1 and Lemma 3 provide σ(n)> 0 and a conditional

set of multipliers γk(n) = λk(n)/σ(n) satisfying (24) for C(m) =
∑

a∈ACan(ua(m)). Substituting

αa(n) = α̃a(n)/σ(n) and π(n) = π̃(n)/σ(n) into the KKT conditions of SO(D) and using (24) and

(23) leads to

1 =
∑

k∈K(n)

γk(n), n∈N \L

0≤ γk(n)⊥ θ(n)−
∑
m∈n+

pk(m)
∑
a∈A

(Can(ua(m)) + θ(m))≥ 0, k ∈K(n), n∈N \L

θ(n) =−
∑
a∈A

Van(xa(n)), n∈L
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0∈∇ua(n)

[
σ(n)Can(ua(n))−σ(n)π(n)gan(ua(n))−σ(n)

∑
b∈A

αb(n)Tbaua(n)

]
+NUa(ua(n)), a∈A, n∈N

0∈ σ(n)αa(n)−
∑
m∈n+

σ(n)
∑

k∈K(n)

γk(n)pk(m)αa(m) +NXa(xa(n)), a∈A, n∈N \L

0∈ σ(n)αa(n)−σ(n)∇xa(n)Van(xa(n)) +NXa(xa(n)), a∈A, n∈L

0≤ σ(n)αa(n)⊥−xa(n) +xa(n−) +
∑
b∈A

Tabub(n) +ωa(n)≥ 0, a∈A, n∈N

0≤ σ(n)π(n)⊥
∑
a∈A

gan(ua(n))≥ 0, n∈N .

Dividing through by σ(n) appropriately leads to a solution of SE(D) as required. �

Proof of Theorem 2. As we outlined above for the system optimization problem,

AOa(π,α,µ,Da) is equivalent to its KKT conditions, which are derived by applying nonnegative

Lagrange multipliers λk(n) to the inequality constraints. Since θ is unconstrained, λ satisfies

(16) and (17), so they are unconditional tree multipliers. This enables us to substitute σ(n) for∑
j∈Ka(n−) λ

j(n−)pja(n) to give the following KKT conditions for AOa(π,α,µ,Da).

KKTa:

0 = 1−
∑

k∈Ka(0)

λk(0), (26a)

0 =−
∑

k∈Ka(n)

λk(n) +σ(n), n∈N \L, n 6= 0 (26b)

0≤ λk(n)⊥ θa(n)−
∑
m∈n+

pka(m) (Za(m;u,x,W )−Wa(m) + θa(m))≥ 0,

k ∈Ka(n), n∈N \L (26c)

θa(n) =−Van(xa(n)), n∈L. (26d)

0∈∇ua(0)Za(0;u,x,W ) +NUa(ua(0)), (26e)

0∈ σ(n)∇ua(n)Za(n;u,x,W ) +NUa(ua(n)), n∈N \{0} (26f)

0∈ σ(n)αa(n)−
∑
m∈n+

σ(m)αa(m) +NXa(xa(n)), n∈N \L (26g)

0∈ σ(n)αa(n)−σ(n)∇xa(n)Van(xa(n)) +NXa(xa(n)), n∈L (26h)

0 = µ(m)−
∑

k∈Ka(0)

λk(0)pka(m), m∈ 0+ (26i)

0 = σ(q−)µ(q)−σ(q), q ∈ n++ ∩N , n∈N , (26j)

with Za(n;u,x,W ) defined by (10).
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(i) First suppose that (ua, xa,Wa, θa, γ) is a solution of AEa(π,α,µ,Da). Observe that (11b)

implies that

θa(n)≥
∑
m∈n+

ν(m) (Za(m;u,x,W )−Wa(m) + θa(m))

for every ν ∈ Da(n). Summing the complementarity condition (11b) over k and combining with

(11a) gives

θa(n) =
∑

k∈Ka(n)

γk(n)θa(n)

=
∑
m∈n+

∑
k∈Ka(n)

γk(n)pka(m) (Za(m;u,x,W )−Wa(m) + θa(m))

=
∑
m∈n+

µ(m) (Za(m;u,x,W )−Wa(m) + θa(m))

after substituting using (11g). It also follows from Lemma 3 that there exists λ which satisfies (25)

with C(m) = Za(m;u,x,W )−Wa(m) and θa(m) replacing θ(m). Given λ we can define σ using

(21).

Putting these relationships together and substituting into the AEa(π,α,µ,Da) conditions

(observing that σ(n)≥ 0) gives

0 = 1−
∑

k∈Ka(0)

λk(0),

0 =−
∑

k∈Ka(n)

λk(n) +
∑

j∈Ka(n−)

λj(n−)pja(n), n∈N \L, n 6= 0

0≤ λk(n)⊥ θa(n)−
∑
m∈n+

pka(m)
(
Za(m;u,x,W )−Wa(m) + θa(m)

)
≥ 0, k ∈Ka(n), n∈N \L

θa(n) =−Van(xa(n)), n∈L

0∈ σ(n)∇ua(n)Za(n;u,x,W ) +NUa(ua(n)), n∈N

0∈ σ(n)αa(n)−
∑
m∈n+

σ(m)αa(m) +NXa(xa(n)), n∈N \L

0∈ σ(n)αa(n)−σ(n)∇xa(n)Van(xa(n)) +NXa(xa(n)), n∈L

0 = σ(n)µ(m)−
∑

k∈Ka(n)

λk(n)pka(m), m∈ n+, n∈N \L,

with Za(n,u,x,W ) defined by (10).

Clearly we recover (26a)–(26h). It simply remains to show that λ satisfies (26i) and (26j). Since

λk(0) = γk(0), (26i) is immediate from (11g). Since σ(n) =
∑

j∈Ka(n−) λ
j(n−)pja(n), (11g) is equiv-

alent to σ(n)µ(m) = σ(m) for m∈ n+, n∈N \L, which gives (26j) if we identify q with m.

(ii) For the converse, suppose that we have a solution of (26), then Lemma 3 coupled with Assump-

tion 1 provides σ(n) > 0 and conditional multipliers γk(n) = λk(n)/σ(n) that satisfy (24) for
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C(m) =Za(m;u,x,W )−Wa(m) and θ(n) = θa(n). Thus (11a), (11b) and (11c) are satisfied in the

definition of the AEa(π,α,µ,Da) problem. Now (11g) follows by dividing (26j) by σ(q−) and using

(21) and (22). Noting (23) and then dividing (26g) and (26h) by σ(n) then gives (11e) and (11f)

respectively. The relationship (11d) follows from the definition of σ and (26e) and (26f). �

Proof of Theorem 3. (i) If we have a solution of AEa(π̄, ᾱ, µ̄,Da) for each a∈A, it follows from

(11g) that [µ̄]n+ ∈Da(n) for each n and thus µ̄∈Da for all a, and hence µ̄∈Ds by Definition 3.

(ii) For each a∈A it follows from Theorem 2 that for n∈N \L,

θ̄a(n) =
∑
m∈n+

µ̄(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
. (27)

Summing over a∈A and invoking (14) gives

θ̄(n) =
∑
a∈A

θ̄a(n) =
∑
m∈n+

µ̄(m)

(∑
a∈A

Z̄a(m; ū, x̄, W̄ ) + θ̄(m)

)
.

Recalling the definition of Z̄a(m; ū, x̄, W̄ ) from (10), summing over a ∈A, and invoking (12), (13)

and (14) gives (15).

(iii) Suppose D0 = {µ̄}. It follows that K0(n) = {1} for n∈N \L where p10(m) = µ̄(m), for m∈ n+.

Define γ1(n) = 1, n ∈N \L. It then follows that the first, second and fifth conditions of SE(D0)

simplify to

γ1(n) = 1, n∈N \L,

θ(n) =
∑
m∈n+

µ̄(m)

(∑
a∈A

Can(ua(m)) + θ(m)

)
, n∈N \L,

0∈ αa(n)−
∑
m∈n+

µ̄(m)αa(m) +NXa(xa(n)), n∈N \L.

Combining these with the other conditions in (11), (12) and (13) shows that (ū, x̄, θ̄, γ, π,α) solves

SE(D0).

(iv) Suppose (ūa, x̄a, W̄a, θ̄a, γa) solves AEa(π̄, ᾱ, µ̄,Da). Let Z̄a(n; ū, x̄, W̄ ) be defined using (10) so

that it follows from (12), (13) and (14) that∑
a∈A

∑
m∈n+

µ̄(m)
(
Can(ūa(m)) + θ̄a(m)

)
=
∑
a∈A

∑
m∈n+

µ̄(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
,

which by (15)

=
∑
a∈A

θ̄a(n)
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and by (11a) and (11b) and Lemma 1

=
∑
a∈A

sup
ν∈Da(n)

∑
m∈n+

ν(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
so that Assumption 3 and Definition 3 imply

≥
∑
a∈A

sup
ν∈Ds(n)

∑
m∈n+

ν(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
and interchanging supremum and summation

≥ sup
ν∈Ds(n)

∑
m∈n+

ν(m)
∑
a∈A

(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
since feasibility implies −

∑
a∈A W̄a(m)≥ 0

≥ sup
ν∈Ds(n)

∑
m∈n+

ν(m)
∑
a∈A

(
Z̄a(m; ū, x̄, W̄ ) + θ̄a(m)

)
by (12), (13) and (14)

= sup
ν∈Ds(n)

∑
m∈n+

ν(m)
∑
a∈A

(
Can(ūa(m)) + θ̄a(m)

)
by (i)

≥
∑
m∈n+

µ̄(m)
∑
a∈A

(
Can(ūa(m)) + θ̄a(m)

)
.

Hence equality holds throughout and thus [µ̄]n+ solves

sup
ν∈Ds(n)

∑
m∈n+

ν(m)

(∑
a∈A

Can(ūa(m)) + θ̄(m)

)
.

Lemma 1 then shows that these conditions are equivalent to the first two conditions of SE(Ds),

which combined with the other conditions in AEa(π̄, ᾱ, µ̄,Da) gives the remaining conditions of

SE(Ds). �

To prove Theorem 4, we will require a preliminary lemma that uses the following formulations.

For each n ∈ N \ L, suppose Zsa(m), θs(m) and θsa(m) are given for each m ∈ n+ and satisfy

θs(m) =
∑

a∈A θ
s
a(m). Consider the problems:

R(n,Ds): max
ν∈Ds(n)

∑
m∈n+

ν(m)

(∑
a∈A

Zsa(m) + θs(m)

)
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T(n,DA):

min
[[Wa]n+ ]a∈A,θa(n)

∑
a∈A

θa(n)

s.t. θa(n)≥
∑
m∈n+

pka(m) (Zsa(m)−Wa(m) + θsa(m)) , k ∈Ka(n), a∈A

−
∑
a∈A

Wa(m)≥ 0, m∈ n+

TD(n,DA):

max
µ,φ

∑
m∈n+

∑
a∈A

 ∑
k∈Ka(n)

pka(m)φka(n)

 (Zsa(m) + θsa(m))

∑
k∈Ka(n)

φka(n) = 1, a∈A,

µ(m) =
∑

k∈Ka(n)

pka(m)φka(n), m∈ n+, a∈A

µ(m)≥ 0, m∈ n+, φka(n)≥ 0, k ∈Ka(n), a∈A

and

TOC(n,DA):

0 = 1−
∑

k∈Ka(n)

φka(n), a∈A

0 = µ(m)−
∑

k∈Ka(n)

φka(n)pka(m), m∈ n+, a∈A

0≤ φka(n)⊥ θa(n)−
∑
m∈n+

pka(m) (Zsa(m)−Wa(m) + θsa(m)) , k ∈Ka(n), a∈A

0≤ µ(m)⊥−
∑
a∈A

Wa(m)≥ 0, m∈ n+

The formulation R evaluates the one-stage risk of the random disbenefit
∑

a∈AZa using the

coherent risk measure with risk set Ds(n) =
⋂
a∈ADa(n). The problem T on the other hand accumu-

lates the risk measure of each agent a in a setting where they can exchange welfare W (constrained

so that it cannot be created out of nothing). If the model has a variable Wa(m) defined for each

outcome m∈ n+, then the following analysis demonstrates that an exchange exists in node n that

will yield the risk-adjusted value of the total social disbenefit faced by all agents if evaluated with

risk set Ds(n).

Lemma 4. Let n ∈ N and suppose DA satisfies Assumption 3. The problems T, TD, TOC and

R all have optimal solutions with the same optimal value. Any solution to one of these problems

yields a solution to all of the others.
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Proof. Observe that T and TD are dual linear programs, and TOC gives the optimality con-

ditions for T. The constraints of TD entail that µ(m),m ∈ n+ is a finite probability distribution

that is constrained to lie in each Da(n). Definition 3 means that TD is equivalent to R. So any

optimal solution of one of these four formulations yields solutions to all the others. Observe that

the feasible region of TD is compact and and nonempty by Assumption 3, so T, TD, TOC and R

all have optimal solutions with the same optimal value. �

Proof of Theorem 4. Suppose (u,x, θs, γ, π,α) is a solution of SE(Ds). It follows from Theorem 1

that defining µ(m) =
∑

k∈Ks(n)
γk(n)pks(m)∈Ds for each m∈ n+ we have

θs(n) =
∑
m∈n+

µ(m)

(∑
a∈A

(
Can(ua(m))−π(m)gan(ua(m))

+αa(m)
(
xa(m)−xa(m−)−

∑
b∈A

Tabub(m)−ωa(m)
))

+ θs(m)

)

=
∑
m∈n+

µ(m)

(∑
a∈A

(
Can(ua(m))−π(m)gan(ua(m))

+αa(m) (xa(m)−xa(m−)−ωa(m))−
∑
b∈A

αb(m)Tbaua(m)
)

+ θs(m)

)
.

Consider the leaf nodes m∈L. At these nodes θs(m) =−
∑

a∈A Van(xa(m)) so defining θsa(m) =

−Van(xa(m)) for each a∈A we have
∑

a∈A θ
s
a(m) = θs(m). Letting

Zsa(m) =Can(ua(m))−π(m)gan(ua(m))

+αa(m) (xa(m)−xa(m−)−ωa(m))−
∑
b∈A

αb(m)Tbaua(m)

for the given solution values of SE(Ds), Lemma 4 shows that [µ]n+ and values [φka(n)]a∈A,k∈Ka(n),

[[Wa]n+ ]a∈A, θa(n) solves TOC(n,DA) for each node n=m−, and that the solution value of R(n,Ds)

(namely θs(n)) is equal to
∑

a∈A θa(n).

We now recursively apply this argument. For each node n in the penultimate stage, we let

θsa(n) = θa(n), the above computed solution value, so that
∑

a∈A θ
s
a(n) = θs(n). Further, we define

Zsa(n) =Can(ua(n))−π(n)gan(ua(n)) +αa(n) (xa(n)−xa(n−)−ωa(n))

−
∑
b∈A

αb(n)Tbaua(n) +
∑
m∈n+

µ(m)Wa(m)

for the given solution values of SE(Ds) and the previously computed solution values for Wa(m),

m ∈ n+. For each node q = n−, Lemma 4 constructs solution values [µ]q+ , [φka(q)]a∈A,k∈Ka(q),

[θa(q), [Wa]q+ ]a∈A for TOC(q,DA) such that θs(q) =
∑

a∈A θa(q). This argument can then be

repeated until we reach the root node of N .
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This process generates µ and values of (u,x,α,π) that satisfy (11c), (11d), (11e) and (11f) for

every a ∈ A since they are solutions to SE(Ds). Furthermore, for each a ∈ A, extracting γka(n) =

φka(n) and Za(n;u,x,W ) =Zsa(n) from the solutions of TOC(n,DA), it follows from the definition

of TOC(n,DA) that (11a), (11b) and (11g) are also satisfied with γ(n) = γa(n). Thus we have

constructed solutions for each problem AEa(π,α,µ,Da).

Since for each n∈N \L, TOC(n,DA) includes the condition that

0≤ µ(m)⊥−
∑
a∈A

Wa(m)≥ 0, m∈ n+,

it follows that (14) holds. The final conditions (12) and (13) follow as they are part of the original

solution of SE(Ds). �


