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1 Introduction

Electricity pool markets based on nodal pricing have emerged in a number of
regions of North and South America, Australia, New Zealand, and the Nordic
countries. In an electricty pool with a single node, all market participants trade
(at any one point in time) at a single system marginal price. In a full nodal
pricing model, the price depends on location. In the absence of constraints
and losses the price at every node is identical to the system marginal price. In
practice thermal constraints on the power flow in the lines, and power losses
due to line impedance, result in a set of prices that varies with location. The
variation of electricity spot prices with location in these markets has resulted
in the development of market instruments to hedge the volatility in these price
differences.

Financial Transmission Rights (FTRs) are one approach to solving this prob-
lem. An FTR is a financial instrument held by a market participant that pays
an income stream based on the nodal prices observed in the transmission system
over the course of the contract. An FTR can be specified by a vector of nodal
loads and injections (where the loads are taken as positive) and the coupon
payment at any time is equal to the inner product of the nodal price vector
with the FTR. (In practice most FTRs involve only two nodes.) FTRs were
first proposed by Hogan [8], and have received a lot of attention in the litera-
ture under various names (they are called fixed transmission rights in the PJM
market, transmission congestion contracts or TCCs in New York, and financial
congestion contracts, or FCCs in new England.)

Our purpose in this paper is to provide an overview of some of the features
of these contracts, as they apply to markets that are dispatched as DC-load flow
networks with constraints and convex line losses. We shall review some of the
important theoretical contributions in this area, generalising them where pos-
sible, and examine using examples some of the effects on participant behaviour
that one might expect to see in the presence of these contracts.



One approach to investigating these effects is to model electricity markets as
a Nash-Cournot game in which each generator offers a single quantity of energy
assuming zero conjectural variations. It is possible to construct Nash equilibria
for these models, and use these to investigate the effects of FTRs on agent be-
haviour. By restricting attention to single offers facing a known elastic demand
function, the Nash-Cournot model has some deficiencies in representing the true
situation, in that generators in most pool markets typically offer supply func-
tions rather than single offers, and demand is uncertain. One approach to reflect
the first of these features of pool markets is to optimize over a parametrized fam-
ily of supply functions (see [7] for a linear supply function model of this type.)
However, as observed in [3] the real advantage of supply function offers in prac-
tice comes from their ability to optimize over a range of uncertain demands,
and this flexibility will only be represented for high-dimensional parametriza-
tions resulting in considerable computational effort. On the other hand the
construction of general supply-function equilibria in a network setting seems to
be very difficult.

A compromise is to use the market distribution approach of Anderson and
Philpott [4], which treats competitors as if they offered supply functions drawn
from a suitable probability distribution, called the market distribution. Since
demand shocks can be modelled as vertical shifts in a competitor’s supply func-
tion, the market distribution can be constructed so that it also incorporates
uncertainty in demand. We present several examples to illustrate the power of
the market distribution approach in evaluating the effects of FTRs on competi-
tor behaviour.

The paper is laid out as follows. In the next section we extend the revenue
adequacy result proved by Hogan for smooth problem data to a general convex
programming setting. This admits as a special case convex dispatch models
with convex piecewise linear losses and piecewise linear benefit functions, as
used in the New Zealand dispatch software SPD (see e.g. [4]). We show by
example how revenue adequacy can fail for models that are not convex. Section
3 discusses the effect of FTRs on generators who already have some degree
of market power. We show by example that FTRs may encourage the use
of this power or discourage it depending on the location of the generator in
the network. These examples mirror those described by Joskow and Tirole [11].
Section 4 discusses the potential of FTRs to encourage or discourage investments
in the transmission network. We conclude the paper with a general discussion
in Section 5.

2 Revenue Adequacy

In this section we discuss the funding of FTRs from rentals accrued by the In-
dependent System Operator (the ISO) in a wholesale pool electricity market. A
well-known result proved by Hogan states that such revenue adequacy is guar-
anteed by the FTRs being simultaneously feasible for the network constraints,
in the sense that they can be dispatched through the network without exceeding



capacities. This result is was first proved by Hogan [8] for lossless networks, ex-
tended to quadratic losses by Bushnell and Stoft [5], and further generalised to
smooth nonlinear constraints by Hogan [9]. The result is a general consequence
of the convexity of the dispatch problem.

We formulate the dispatch problem as the following convex optimisation
problem in a transmission network with n nodes.

P:  minimise > 2 jeo) CiTi
subject to gi(f)JijeO(i) rj—z = d;, i=1,2,....n
Z > 0, 1=12,...,n
x e X
f e U

Here d; is the demand at node ¢, and the first set of constraints represent conser-
vation of flow at the nodes. We assume here that the problems associated with
negative prices in situations of low demand do not occur, and so that at opti-
mality the flow balance constraints are satisfied as equations. This means that
we can represent the flow balance equations as inequalities, without losing any
physical realism. (See below for further comment on this.) In the formulation
x; is the level of dispatch of tranche j € O(i) where O(3) is the set of tranches
offered at node ¢, and each tranche j € O(7) is offered at price ¢;. We require
that x lies in the convex set X, which defines the tranche levels. Although the
problem P assumes (as in most electricity pool markets) that generators offer
supply curves that are step functions in what follows the analysis will hold for
any increasing supply function.

In the model P f is a vector of branch flows. The function g;(f) is a general
concave function giving the amount of power flow entering node ¢ when the
link flows are f. Approximations based on DC load flow define g;(f) to be a
concave quadratic function, meaning that branch losses are a quadratic function
of power flow. Alternatively a linear programming representation of P treats
g:(f) as a concave piecewise linear function. Both of these models (as well as
a model without losses) are special cases of the general framework we use. We
require the vector of flows f to lie in the convex set U, which represents any flow
bounds on f as well as any electrical constraints (such as loop flow constraints)
that the flows must satisfy.

Now suppose that (z*, f*, z2*) solves P and that P satisfies a constraint qual-
ification (e.g. P has a feasible solution with z; > 0). Since P is a convex
program it satisfies the Lagrangian Duality Theorem (see e.g [12]). This states
that there is a set of optimal Lagrange multipliers 7 (the nodal prices for the
optimal dispatch) such that (a*, f*, 2*) minimises the Lagrangian

Ll fz) = > czyty mldi—alf)— > wj+z)
i jEO(d) @ J€O(4)

over z >0, z € X, f € U. We use this to prove the following lemmas.



Lemma 1 7; > 0 and 7;(g;(f*) + Zjeo(i) Tt — d;) =0

Proof. If m; < 0, then for any feasible z, m;2; < 0, and so L(x, f,2) is
unbounded below over z > 0. Since £(z, f, z) has a minimum by the Lagrangian
Duality Theorem, it follows that m; > 0. Now the minimising choice of z} must
make ;27 = 0. But since by feasibility

=g+ Y i —d,

JEO(3)
this entails the result. m

Lemma 2 The rental earned by the ISO is Y, m;g;(f*)

Proof. The ISO rental is equal to the difference between what it is paid by
loads and what the ISO pays generators. Formally this is

S owidi =Y m Yy wi=> migi(f*)
i ) 5

z JEO(
by virtue of Lemma 1. m

Lemma 3 For every f € U, ¥, mgi(f%) > X, mai(f)

Proof. Since (z*, f*, 2*) minimises L(z, f,z), f* should be chosen in U to
minimise — > m;g;(f) (this is the only term in £(z, f, z) that contains f). So
forall feU,

Zm‘gi(f*) 2 Zﬂigi(f)'

|

Now let us consider a situation in which there are A extant FTR contracts
described by vectors h(a) for « = 1,...,A. The contract with vector h{a)
pays its holder ). m;h;(«) once the dispatch problem has been solved. (This
is a fairly general notion of FTR; it includes the common “balanced" FTR
(in which there are nodes i1,i2 with h;, (o) = —h;, () and hj(a) = 0 for all
J ¢ {i1,12}) and “spot" FTR (in which there is a node 41 with h;(a) = 0 for all
J # i1) as well as other types.) Suppose that these are simultaneously feasible
in the sense that there exist y, z with

SF: gily)—z = Y hila), i=12,....,n
2 > 0, i1=1,2,...,n
Y c U.

That is, Y~ h(a) represents a vector of injections and offtakes which may be
“dispatched through the grid". Note that it is permissible to shed power at
nodes (i.e. to have z; > 0).



Theorem 4 When the extant FTR contracts are simultaneously feasible as
above, the rentals earned by the ISO are sufficient to fund the coupon payments
to the FTR holders.

Proof. The total coupon payment to be made is >, 7; Y, hi(a), which for
some y, z may be written

ZWZZhZ(Oé) = Zﬂ'z(gz(y)_zl)
< Zm‘gi(y%

since z; > 0, and 7; > 0. Now by virtue of Lemma 3, since y € U, the right-hand
side is bounded above by the rental from the actual dispatch, giving

Zﬂ'i thi(a) < Zﬂzgz(f*)

|

Lemmas 1-4, while mathematically true, have practical significance only
when 2* = 0, since only then does the optimum (z*, f*,2*) of P correspond
to a physically implementable solution. In situations where z* # 0, we must
consider the true dispatch problem:

NP: minimise > Zjeo(i) cix;

subject to gi(f)+2jeo(i)$j = d;, i=12,...,n
x c X
f e U

This is the same as problem P, except that we have forced all z; = 0. It is the
“true" dispatch problem in the sense that it represents the problem of finding
the best (in the economic sense) course of action from among all physically
realisable courses of action.

Problem P is a relaxation of NP; allowing z; > 0 adds some physically
unrealisable dispatches to the feasible set. The key difference is that P is a
convex optimization problem, while NP is in general non-convex.

It is common to replace NP by P, which being convex is computationally
much easier to solve. However, it should be emphasized that whenever the
optima of P and NP differ, it is the optimum of NP that is the correct one
(while the optimum of P will not even be physically implementable). Such
situations are associated with negative nodal prices.

Note, however, that there is no “non-convex” counterpart to the simultane-
ous feasibility condition SF. If the optimum (z*, f*, 2*) of P happens to have
z* = 0 (or equivalently, if the optimum of NP also happens to be optimal for
P) then by Lemma 4 the corresponding ISO rentals will be adequate to fund
any collection of FTRs that are simultaneously feasible in the sense of SF. But
if this is not the case, then there is no simple condition (in the knowledge of



these authors) on the FTRs that will imply revenue adequacy. In particular,
the condition that there exists y with

NSEF: gy) = > hila), i=12,...,n
Y € U.

(i.e. >, () may be “dispatched through the grid", with no power shed at
nodes) is insufficient to imply revenue adequacy when z* £ 0. This is explored
in the following subsection, which presents examples where z* # 0.

2.1 Revenue inadequacy caused by negative nodal prices

This section demonstrates that simultaneous feasibility may fail to guarantee
revenue adequacy for FTRs if a situation arises where nodal prices become
negative, due either to negatively-priced offers or to transmission constraints.

Example 5 Revenue inadequacy created by negative offer prices

Consider a network of two nodes joined by a single transmission line of
capacity 1 and quadratic loss coefficient > O (so that if an amount f of power
is injected at one end of the line, f —r f2 may be extracted from the other). This
network can support (in the sense of simultaneous feasibility) one unbalanced
FTR with injection 1 at one end of the line and offtake 1 — r at the other.

Now suppose that when the dispatch problem NP is solved, we have a gener-
ator G1 offering to inject quantity 1 at a negative price p; at one node (node A,
say), while another generator G2 offers to inject quantity 1 at a negative price
p2 at node B. Suppose p1 < p2 < 0, and that there is a load of 1 at node B.

It is not hard to see that in the optimal dispatch, G1 generates 1 while G2
generates 7. The nodal prices are w4 = po(l — 2r) and 75 = py, while the
rental earned by the ISO is (1 —r)rp — ma = rpe. (Note that this is negative,
a situation possible only with negative nodal prices.)

However, if we have awarded the FTR with injection 1 at node B and offtake
1—r at node A, then the coupon payment owing is (1 —r)ws — 715 = —p2(3r —
2r2). This is a positive amount, even though there are no rentals (negative
rentals, in fact) to fund it with.

Example 6 Revenue inadequacy created by a transmission constraint, with only
positive offer prices.

Consider the following four-node network:



All lines have unlimited capacity (except for the line shown with capacity
1) and are lossless (except for the line shown with quadratic loss coefficient
r = 0.1). That is, the functions g;(f) in problem NP are

— p _ Jfiz—fu ,f2a 20

91(f) = —fiz — fi3 g2(f) o ot <0
g2

93(f) = fi3 — fau ga(f) = Joa —7rfia+ faa ,f2420

foa + fa4  f2a <0

In order to keep the loop flow constraint simple, we will suppose that the
four lines have the same admittance, i.e. that the loop flow constraint is

f34 — foa — fi2 + f13 = 0.

This network can support (in the sense of simultaneous feasibility) one un-
balanced FTR with injection 1.34109 at node 4 and offtake 1.32946 at node
3.

Now suppose that generation is offered (in unlimited quantity) at a price
p1 = 3 at node 1 and at a price po = 1 at node 2. The only load is 3 at node 3.
Solving problem NP yields the following optimal dispatch:



1.127

Note that the loop flow constraint has created a negative nodal price at node
4. The rental earned by the ISO is 8.127, which is less than the payment owing
on the FTR of 8.379.

3 FTRs and Market Power

This section explores the consequences of awarding financial transmission rights
to electricity market participants large enough to influence market prices.

It is well-understood that a generator with market power (i.e. a “price-
maker”) will engage in strategic offering in order to maximize its profit. In
general, this means offering supply at a price above marginal cost, or withholding
some supply, or both, in order to increase the price at which electricity can be
sold.

Intuitively, it is clear that ownership of FTRs by a price-maker will modify
this behaviour, by increasing or decreasing the incentive to force up the price
at the local node. Very simple economic models such as those to be found in
[11] confirm that when an FTR over a line from an “upstream” location to a
“downstream” one is awarded to a price-maker generator:

e If the generator is in the downstream location, its strategy will tend to
become more “aggressive” (i.e. even further removed from the competitive
strategy of offering all available supply at its marginal cost), as there is
now even more incentive to force up the local price.

e If the generator is in the upstream location, its strategy will tend to be-
come less aggressive — there is now less incentive to force up the local
price.

In a network with loop flow, either of the above effects is possible depending
on the locations of the generator and the FTR. Finally, all of the above effects
will be reversed if the FTR goes in the “wrong” direction (e.g. from a down-
stream node to an upstream one). (Such an FTR may seem unlikely, but could



arise if the FTR-holder made a wrong guess as to the direction of the flow on
the line. For example, the line between the two islands of New Zealand usually
carries the South Island’s abundant hydro-power northwards, but in a dry year
may find itself constrained in the opposite direction.)

In the remainder of this section, we present two examples which illustrate in
more detail how the problem of optimizing a price-maker’s offer curve is affected
by the presence of FTRs. We use the market distribution function methodology
of [4], wherein a general theory is presented for constructing a legal (i.e. mono-
tone increasing) offer curve in response to uncertain demand and competitor
behaviour. The uncertainty — and hence the need to consider complete offer
curves rather than single offers — are important, since one motivation for the
existence of FTRs is to allow uncertain price differences to be hedged.

Example 7 FTR mitigating the effects of market power.

Consider a two-node grid in which “we” are the only generator with market
power.

us limit L G2
O 04
G1 D

A competitive fringe consisting of many smaller generators and demand-
side participants provides additional supply “G1” and “G2”; which is offered
to the market via fixed aggregated offer curves. For simplicity, assume that
these take the forms ¢ = Byp and ¢ = Byp (with 3; > 0, 85, > 0) at nodes
1 and 2 respectively. Demand D is located at node 2 and is random, with
a probability density function f. The transmission line is lossless, but has a
maximum capacity L. Suppose that we can generate power at no marginal cost,
and that we own a balanced FTR for quantity ¢y from node 1 to node 2.

The FTR means that we are effectively selling part of our output (a quantity
gr) at the node 2 price po, rather than the node 1 price p;. Since we have less
direct influence over py than over p;, one might intuitively expect that the FTR
will reduce our natural desire to force up p; by withholding supply. One might
also expect that the line capacity constraint will be more likely to be reached,
since our ownership of the FTR incentivizes us to create this very outcome.
Both of these things turn out to be the case, as the following analysis shows.

We may be dispatched at a point (g, p) on the offer curve, with the line not
at capacity, whenever ¢ + 8;p < L. This will be achieved for demand level
D =g+ (81 + B)p, since the two nodal prices will be equal. Alternatively, we
may be dispatched at (g, p), with the line at capacity, if ¢ + 8,p = L. This will
require D > L + 3,p, and the price at node 2 will then be py = 35 (D — L). A
dispatch with ¢ + 8,p > L is clearly not possible.
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Letting ¥(q, p) denote the probability that we are dispatched at a point on
our offer curve below (g,p) (as in [4]), we have for ¢ + 81p < L

%—f(q,p) = flg+ (81 +B2)p)

S@p) = fla+ G+ BP0 5

The expected revenue generated by an offer curve 7' with endpoint (gp, pr) is
thus

p(T) = /quf(q + (81 + B2)p)(dg + (81 + B2)dp)
= (1)
+ / (arpr + g7 (85 (x — L) —pr)) f(z) de

7+(81+82)pr

The optimum curve T may be determined as follows. Fix the endpoint (g7, pr),
and consider variations to the rest of 7. Since the second term in (1) is now
constant, the arguments of [4] show that the optimum curve must at each point
either be horizontal or vertical, or satisfy the equation Z = 0, where

Z = p(0¥ [dp) — q(0¥/0q) = ((B1 + B2)p — @) f(q + (B1 + B2)p).

>From this it is not hard to see that the optimum 7" must resemble one of the
two solid curves in the diagram below.

p
L/Br

10



(Note the role being played here by the requirement that the offer curve be
monotone increasing in both p and ¢. If it were not for this constraint, the solu-
tion would be to choose T to be the curve g = (3; + 85)p, then discontinuously
jump to whatever endpoint (gp, pr) would optimize the second term of (1).)

Assuming this form for T, it is possible to write the first integral in (1)
as a function of (g7, pr). It then remains only to perform a one-dimensional
optimization over (gr,pr) to determine the optimal T. The particular point
(g1, pr) which turns out to be optimal will, in general, depend on f, i.e. on the
demand distribution, as well as on gy.

The effect of the FTR on this offer curve can easily be seen. The effect of
gr on p(T) is to contribute the term

©0 z—L
as /L . ( 5 —m) f(x) dx

which for gy > 0 is a decreasing function of pp. (Its derivative with respect to
pr is —qsP(D > L + 3ypr).) The optimum curve when ¢ > 0 will therefore
have smaller pr than when ¢y = 0.

In other words, our natural tendency to offer aggressively (withholding sup-
ply) will be reduced in the presence of the FTR. Observe, too, that this has
the effects of reducing the expected price paid by consumers at node 2, and
increasing the probability that the line constraint will become active.

If our FTR went in the other direction (from node 2 to node 1) it would
instead lead to a more aggressive strategy. This can be seen by considering
negative values of ¢y.

For a numerical example, suppose that L = 100MW and 8, = 3, =
IMW?/$, while the demand D has a normal distribution with mean 150MW
and standard deviation 20MW. Optimal offer curves for several values of gy
are depicted below. When ¢y = 100MW (i.e. the full capacity of the line) the
optimal curve has pr =$0.30/MW, which makes it hardly distinguishable from
the ¢ axis. In this case our strategy has been almost reduced to the competitive
one, which is to offer at zero price.

p (8/MW)
100
AN
AN
N
N g5 = —100
ar =0
= gy =50
. =715
[
0 100 ¢ (MW)

An interesting variant of this problem can be obtained by removing the
competitive fringe at node 1. The dashed line is then replaced by a vertical one,

11



so the monotonicity constraint allows a jump discontinuity at the endpoint of
T. Tt turns out that in this case, the FTR does not affect our behaviour. A
similar problem (though without the full supply curve) is worked out in [11].

Example 8 FTR exacerbating the effects of market power.

Consider a three-node grid in which “we” are the only generator large enough
to influence prices.

us

G2
Gl

100MW limit

D

A competitive fringe consisting of many smaller generators provides addi-
tional supply “G1” and “G2”; which is offered to the market via fixed aggre-
gated offer curves. For simplicity, assume that these take the forms ¢ = 3;p and
q = [yp at nodes 1 and 2 respectively. Demand D is located at node 3 and is
random, with a probability density function f. There are no line losses, and no
line capacity constraints other than the 100MW limit on the line between nodes
2 and 3. The three lines have equal admittances. (The significance of this last
point is that 1/3 of any power injected at node 1, and 2/3 of any power injected
at node 2, must flow via the limited-capacity line to reach the load.) Suppose
that we can generate power at no marginal cost, and that we own a balanced
FTIR for ¢; megawatts from node 1 to node 3.

What supply curve should we offer, and how is this affected by the presence
of the FTR? An analysis of the dispatch problem shows that the nodal prices
p1, P2, and pg will always satisfy pg — p1 = p1 — p2. Thus, for a given value of
P2, increasing p; will also increase the difference ps — p; and hence the revenue
from the FTR. This suggests that the price-maker’s usual incentive to force up
the local price by withholding supply will be reinforced by the presence of the
FTR. The following analysis shows that this is indeed the case.

Consider a point (g, p) through which our supply curve may pass. It may be
that we are dispatched at the point (g, p) without constraining the line between
nodes 2 and 3; this is possible if and only if

3

since in this case the price will be p at every node. The level of load which
achieves this is D = g+ (81 + 89)p.

Now consider a point (q,p) with ¢ + (8 + 2685)p > 300. It may still be
possible to be dispatched at such a point, but only in a situation where the line

1 9
(g + Bip) + gﬁgp < 100

12



between nodes 2 and 3 is at capacity, and the nodal prices are unequal. This
requires

%(q + Byp1) + %/32;02 = 100
q+Bp1+Bop2 = D
P =P
p3—p1 = pP1—p2.

Solving, we find that D = 150 + (¢ + 5,p)/2 and ps = (300 — ¢ — 3,p)/28,
(hence p3 — p1 = p1 —p2 = (¢ + (B + 206,)p — 300)/2(3,). Note that this is
positive. (In this model, every possible dispatch has p; > py and so our revenue
from the FTR will never be negative.) Such a dispatch is possible for any (g, p)
with ¢+ B,1p < 300. For g+ 3,p > 300, the above equations are invalid, as they
give po < 0, and in that case the generation at node 2 should be 0 rather than
Bap2.

In fact, it is never possible for us to be dispatched at a point (gq,p) with
g+ B1p > 300, since in that case the generation at node 1 alone will already be
enough to violate the line capacity constraint between nodes 2 and 3.

P
300/61

300/(8:1 + 262 1

1
0 300 ¢

Our offer curve T must therefore pass through two distinct regions, labelled
I and IT on the diagram. In region II, the line between nodes 2 and 3 will be at
capacity; in region I, it will not.

Following [4], let W(q, p) denote the probability that we are dispatched at a
point below (g, p) on our offer curve. (Here (g, p) is assumed to be a point on
that curve.) The above remarks imply that for (g, p) in region I,

%—f(q,p) = flg+ (81 + B2)p)

%—i(q,p) = fla+ (81 + B2)p)(B1 + Ba),

13



while for (¢,p) in region II,

Z_j(q,p) = f(150+ (¢ + 51p)/2)/2
Z_‘i(q,p) = F(150 + (g + 51p)/2)5, /2.

If we are dispatched at (g, p), our total revenue is

R(g,p) = qpi+qs(ps —p1)
_ qp in region I
qp + qs(q + (B1 + 2B3)p — 300) /23,  in region 11

According to [4], the optimal offer curve must at each point either be horizontal
or vertical, or satisfy the equation Z = 0, where

OROY OROY

dq Op dp Jq

_ (B + B2)p —q) f(qg + (81 + B2)p) in region I
(Bip—q—ar)5f(1504 (¢ + B,p)/2) in region II

7 =

The Z = 0 contour is thus ¢ = (8, + 5,)p in region I and ¢ = 3,p — ¢y in region
II, independently of f. From this, it is not hard to see that the best offer curve
must resemble the upper curve in the diagram below. (The value of g7 will in
general depend on f.)

p
300/8
N
AN
N
N
7] g >0
N
ar =
/s N
300/(8; + 284 N
£ AN
— N
~ - N
i -~ - N
BN
1 I
0 ar 300 ¢

For comparison, the lower curve in the diagram shows the offer curve we
would submit if we did not own the FTR. Ownership of the FTR thus requires
more aggressive strategic offering (with respect to both quantity and price) on
our part. As a result of this, the line capacity constraint between nodes 2 and
3 is more likely to come into play, and the expected price ps paid by consumers
at node 3 is increased.

14



4 Allocating Rights by Auction

In this section we consider the design of the auction mechanism by which the
ISO creates FTRs and distributes them to market participants.

Note that there are many more possible types of FTRs (e.g. a balanced
FTR between any pair of nodes in the network) than are likely to be needed in
practice. The ISO must thus make two decisions: (i) which FTRs should exist;
and (ii) who should own them. In an auction framework, both decisions are
driven by the bids received, subject only to the requirement that all the FTRs
created must be simultaneously feasible in the sense discussed in section 2.

This line of thinking leads directly to an auction of the following kind. Sup-
pose A bids are received, with bid a (o = 1,...,A) offering F,, dollars in
exchange for an FTR contract described by a vector h(«) (i.e. one which pays
>, mihi(a)). Then the auction is cleared by accepting a fraction r, of each bid
« in such a way as to maximize the resulting revenue to the ISO. Formally, the
auctioneer solves:

AP: maximize } Fara

subject to  gi(y) — 2z = Y., rohi(a), i=1,2,...,n
To € [0,1] a=1,2,... A
z > 0, 1=1,2, , M
y € U,

where g;, U are as in section 2. Note that this is a linear program, and therefore
relatively easy to solve. The prices actually paid by the bidders are determined
from the dual problem. This type of auction is discussed further by Hogan in
[10].

However, this auction design may fail to capture all of the revenue oppor-
tunities available to the ISO when there are bidders who have market power in
the electricity market. To see why, we must consider what an FTR is worth to
such a bidder.

Suppose a large generator is such that when it chooses an offer curve 7', the
resulting nodal price at node i has expectation 7;(T). (Cf. the examples in the
previous section.) To this generator, the value of a fraction r of an FTR that

pays > . h;m; is

T

F(r) = max <p(T) +r Z hm(T)> — max p(T),

where p(T') represents the value generated by all activities other than this frac-
tion of this FTR (including energy trading, other FTRs, and perhaps a fixed
further fraction r¢ of this same FTR). If maxyp(T) is attained for T = T, then
we have

F(r) = p(T*) +r Zhﬁi(T*) = p(T7) = Tzhﬁi(T*)
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>From this it follows that F' is a convex function, and linear only when the m;
do not depend on T

As an example, consider the large upstream generator in (the numerical
specialisation of) Example 7. If this generator owns ¢y megawatts of the FTR
over the line, then its expected total revenue may be found from equation (1).

FTR value ($)
3000

2000

1000

I
|
I
|
I
|
|
|
I
|
0 T i
0 50 100 g5 (MW)

Note that the derivative of this function is at every point equal to the “in-
vestment” value of a unit FTR, i.e. E[mo(T*)—m1(T™)], where T* is the optimal
offer curve for the given value of ¢;.

The market for FTRs in the presence of such a strategic bidder is thus not
dissimilar to the market for a public company’s shares in the presence of a
strategic buyer to whom a large block of shares would have an enhanced value
associated with control. To the strategic bidder, a small additional holding
of FTRs has the same value as it would to anyone else, but a higher price
can be paid for a large block. (One difference is that a shareholder’s control
over a public company increases discontinuously at a shareholding level of 50%,
while the value-enhancement possible with FTRs increases continuously with
the quantity held.) This analogy was first made by Joskow and Tirole in [11].

In a simple auction of the type discussed above, the strategic bidder faces a
difficult problem. If it bids F, for an FTR h(«), the bid will be scaled back by
some factor r, — which is unknown at the time the bid is made — so that the
actual FTR purchased is r,h(«), for an amount r, F,,. The bidder will therefore
not want to set F,, to be the full amount that it perceives h(«) to be worth,
since this is likely to result in it overpaying for the FTR eventually received.
This will be especially so in a complex network, where the bid must compete
against other participants’ bids for FTRs between many other pairs of nodes in
order to maintain simultaneous feasibility overall, and the value of r, is thus
especially uncertain in advance.

A possible modification of the auction which would accomodate the strategic
bidders (and therefore enhance the ISO’s likely revenue) would be to allow some
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bids to be conditional on others being fully accepted. A strategic bidder could
then offer a higher price for further FTRs bought after a significant holding
had already been acquired. However, this would make the auctioneer’s problem
more complex — instead of a linear program, it would become a mixed-integer
linear program.

In the light of the previous section, it could be argued that the fundamental
objective of the auction — to maximize the ISO’s revenue — should be sacrificed
in an effort to prevent strategic players from obtaining large blocks of FTRs, and
the consequent effects on the energy market. Counter-arguments would be: (i)
Awarding large blocks of FTRs to price-makers need not be a bad thing; it can
be very beneficial, as Example 7 shows; (ii) even if the auction were designed so
as to thwart the strategic bidders, they might still be able get the FTRs they
wanted during post-auction secondary trading. The additional amount strategic
bidders are prepared to pay for FTRs would then be captured by intermediaries,
instead of by the ISO.

5 Grid Investment

In this section we investigate some of the advantages that F'TRs provide in sup-
porting investment in transmission assets. It is well-known (see e.g. [13]) that
electricity transmission networks support Braess-type paradoxes, in which the
addition of transmission capacity (or admittance) results in a loss in producer
and consumer surplus. If the addition of this capacity were to benefit a sin-
gle market participant at the expense of others then it should be discouraged in
some way. We show by example how FTRs can be used to provide a disincentive
for detrimental network expansions.

It is important to be precise here about what is meant by a detrimental
network expansion. Recall the dispatch problem

P:  minimize Do 2 jeo) CiTi
subject to gi(f)+2j60(i) xj—z = di, t=1,2,...,n
z > 0, 1=1,2 ;N
x e X
f e U

When the offer price c; is the marginal cost of generation the objective function
of problem P is the cost of meeting an inelastic demand. If one assumes for each
node 4 that all marginal demand below the level d; is worth a very high fixed
price ¢ to the consumer, and worth zero above d; then minimizing the cost of
dispatch by solving P is equivalent to maximizing the consumer and producer

benefit defined by

B = Z(Edl — Z Cjﬂ?j).

i JEO(3)
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Given an optimal dispatch and corresponding shadow prices m we can rewrite
the consumer and producer benefit as

B:Z(E—m)di—i-Zm(di— Z xj)—i-z Z (ms — ¢j)z;.
i i )

i€0() i jeo

The three terms in this expression are the consumer surplus, the constraint
rentals, and the producer surplus. Thus, given any optimal dispatch the profit
is split amongst purchasers, the ISO, and generators according to the formula
above. We say an expansion (or contraction) of the transmission network is
detrimental if it decreases the consumer and producer benefit. Note that this is
not the same as decreasing the total consumer and producer surplus since the
consumer and producer benefit includes the constraint rentals.

Example 9 Detrimental network expansions and contractions

The following three node example is based on that of Bushnell and Stoft [6].

D1 D2

Gl
6MW limit

6MW limit

G3

Before expansion the transmission lines have 6MW capacities and the nodes
have demands of D1=20MW and D2=2MW. The generator G3 offers power in
unlimited quantities at $10 per MWHr and G1 offers unlimited quantities at
$15 per MWHr. The optimal dispatch sends 6MW to node 1 from node 3 and
2MW from node 3 to node 2. The nodal prices are $15, $10, and $10 for nodes
1, 2, and 3 respectively. If we let ¢ = 20, then the consumer surplus is $120, the
producer surplus is $0, and the ISO surplus = $30.

D1 1MW limit D2

Gl
6MW limit 6MW limit

G3
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As an example of a detrimental expansion of the network consider the same
transmission system after a 1MW line is added between node 1 and node 2,
where we assume that all lines have the same admittance. The optimal dispatch
isnow f31 =4, f32 = 3, and fo; = 1, and the nodal prices are 7, = $15, 75 = $5,
and w3 = $10. Still assuming ¢ = 20, we obtain a consumer surplus of $130, a
producer surplus of $0, and an ISO surplus of $15, giving a decrease in consumer
and producer benefit from $150 to $145. This is an interesting example since
the consumers would prefer the expansion, the generators would be indifferent,
and the ISO would lose from the expansion.

The above example is also of interest since it illustrates that removing the
1MW line from 1 to 2 would increase the ISO’s line rentals and yet make no
other market participants better off - indeed the consumers at node 2 would
be worse off. The generation cost decreases to $295, but generators continue
to make zero profit. The removal of this line would not be detrimental since it
would result in an improvement in the consumer and producer benefit.

As discussed by Bushnell and Stoft [5] it is possible to discourage detrimental
investments using FTRs. Consider the set of FTRs

{ha)y={[6 0 6]",[0 2 21"}

for the network before expansion. These match the dispatch in the network.
It is easy to show that this set of FTRs is no longer simultaneously feasi-
ble for the network with the additional line. Consider now adding the FTR
{[-1 01 ]T} to {h(e)}. This now gives a simultaneously feasible set of
FTRs. The coupon payment for this FTR from the optimal dispatch after the
network expansion is -$5, which exactly matches the loss in consumer and pro-
ducer benefit (from $150 to $145). Thus the (negative) coupon payment {rom
the FTR allocated to the investor in the detrimental line will cover the losses
experienced by the market participants.

This example illustrates a general result due to Bushnell and Stoft [5] for
networks with quadratic losses, and proved below for general convex dispatch
problems. This states that if FTRs match dispatch then any addition of trans-
mission capacity that results in a loss in producer and consumer benefit will be
assigned an FTR that transfers at least that loss to the holder of the FTR.

Formally, suppose that (z*, f*, 2*) solves P for a network with z > 0, z € X,
f € U, under a given demand d. Suppose >__ r*h¥(«) is a set of FTRs that are

[A 2N e 2

held by market participants that match («*, f*,2*). That is

Zr(’;hf(a) =d; — Z x;

o JeO(4)

Now suppose an agent with no other interest in the network were to build a new
set of lines so that now f € U’, and by virtue of this investment it is granted an
FTR 3~ (A+ 1) for the lifetime of the assets. This must be simultaneously
feasible with existing FTRs. Suppose (2/, f/, 2’) solves P for a network with
2> 0,z e X, feU’, under a given demand d, and yields nodal prices 7’.
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Theorem 10 Suppose for some A >0, 37,5 o0y ¢G5 =222 jeco@) GT; T
A. Then any new FTR allocated to the builder of the new lme will have a value
no more than —A.

Proof. Recall that there is a set of optimal Lagrange multipliers 7’ such
that (', f’, 2') minimizes the Lagrangian

ZZCJJJ+Z7T Zx+z

i FEO(i) F€O(3

over 2/ > 0, 2’ € X, f € U'. Observe that this entails that 37, >, 5 ¢;2; —

22i T 2 jeo() ¥ is minimized over all 2’ € X, and so since 2 € X,
2 IR NP VT 2p oL eSS O o
t jE€0(i z JEO(4) i FEO(z) i Fj€0(%
giving
Z’TK’ Z:z:fZW Z:pgg (2)
4 FEO(1) i FEO(3)
Now by assumption
Zr y=d; — Z T
FEO(2)
so 2 implies that
ng(di —Zr(’;h Zﬂ' Z x < — (3)
% a P FEO(2)

Now observe that the FTR auction after the expansion give a rights allocation
], satisfying
D rhhi(a)) =) rihi(a) £ i hi(A+ D),
and Theorem 5 implies that
PIEDNVLTED DETED Bl DR
1 F€O(2)

giving

Zﬂgrz_i_lhf(AJrl) = Z Zr Rl (a Z Zr hi(a
Zﬂd—ZW Zasfz Zrh* )

% 7€0(q

IA

—A.

IA
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Theorem 10 provides some assurance that detrimental investments in trans-
mission lines can be discouraged. Of course the theorem is conditional on the
premise that the FTRs held before expansion match the dispatch, and it is not
obvious what the extent of the FTR disincentive will be in the case when the
dispatch deviates from this. A second remark worth making is that the FTR
allocated to the investor represents an obligation rather than an option. We can
illustrate why this is necessary by considering a final example.

Example 11 FTRs need to be obligations

Consider the following three-node transmission network.

D1 G2

Gl

6MW limit 6MW limit

Before expansion the transmission lines have 6MW capacities and node 1
has a demand of D1=5MW. The generator G1 offers unlimited quantities at $2
per MWHr, and G2 offers unlimited quantities at $1 per MWHr. The optimal
dispatch sends 5MW to node 1 from node 2 via node 3. The nodal prices are
$1 at every node.

Now suppose that G1 invests in a transmission line of 2 MW between nodes
1 and 2, where as before all lines have equal admittance. After the expansion
the shadow price at node 1 is $2. Prior to investment the maximum possible
simultaneously feasible FTR between nodes 2 and 1 is [ 6 —6 0 ]T‘ After in-
vestment the maximum possible FTR between nodes 2 and 1 is [ 3 3 0 ]T‘
The difference between these FTRs is a new FTR of [ -3 3 0 ]T that is of-
fered to G1. The coupon payment for this FTR is -$3. If G1 declines this (as it
should if given the option) then the consumer and producer benefit decreases,
while G1 is dispatched at $2 and so is better off.

6 Conclusion

As instruments for hedging nodal price differences, FTRs provide a valuable tool
for market participants to use. This paper has illuminated some of the incentives
that these instruments provide to market participants to enhance their profit.
Like contracts for differences, FTRs may mitigate the market power of those
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holding them. However they may also enhance this market power (just as a
generator buying a contract for differences will have an incentive to set high
spot prices). The increasing marginal value of FTRs poses problems for the
auction mechanism, which implicity treats this as constant for any level of the
FTR held. To maximize the auction revenue, the auction might need to be run
as a mixed integer program.

Revenue adequacy is a key property desired of FTRs. The simultaneous
feasibility condition will guarantee this as long as the network is unaffected by
outages, and there are no negative nodal prices. It should be noted that the
presence of FTRs might serve as an incentive to produce negative prices, so some
methodology of dealing with these needs to be in place, in case they become a
lot more frequent.

FTRs play a key role in allocating (at least part of) the costs and benefits of
new investment to the investors. It is important that this allocation procedure
be well understood. In particular investors should be obliged to accept FTRs
in the event that their investment is detrimental.
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