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1. Introduction. Multistage stochastic programs with recourse are well known in the stochastic programming
community and are becoming more common in applications. We are motivated in this paper by applications in
which the stage costs are nonlinear convex functions of the decisions. Production functions are often modelled as
nonlinear concave functions of allocated resources. For example, Finardi and da Silva [4] use this approach to
model hydroelectricity production as a concave function of water flow. Smooth nonlinear value functions also arise
when one maximizes profit with linear demand functions (see, e.g., Philpott and Guan [12]), giving a concave
quadratic objective, or when coherent risk measures are defined by continuous distributions in multistage problems
(Shapiro [15]).

Having general convex stage costs does not preclude the use of cutting plane algorithms to attack these problems.
Kelley’s cutting plane method (Kelley [7]) was originally devised for general convex objective functions, and can
be shown to converge to an optimal solution (see, e.g., Ruszczyński [14, Theorem 7.7]), although on some
instances this convergence might be very slow (Nesterov [9]). Our goal in this paper is to extend the convergence
result of Ruszczyński [14] to the setting of multistage stochastic convex programming.

The most well-known application of cutting planes in multistage stochastic programming is the stochastic dual
dynamic programming (SDDP) algorithm of Pereira and Pinto [10]. This algorithm constructs feasible dynamic
programming (DP) policies using an outer approximation of a (convex) future cost function that is computed using
Benders cuts. The policies defined by these cuts can be evaluated using simulation and their performance measured
against a lower bound on their expected cost. This provides a convergence criterion that may be applied to
terminate the algorithm when the estimated cost of the candidate policy is close enough to its lower bound.
The SDDP algorithm has led to a number of related methods (Chen and Powell [1], Donohue [2], Donohue and
Birge [3], Hindsberger and Philpott [6], Philpott and Guan [11]) that are based on the same essential idea but that
seek to improve the method by exploiting the structure of particular applications. We call these methods DOASA
(dynamic outer-approximation sampling algorithms), but they are now generically named SDDP methods.

SDDP methods are known to converge almost surely on a finite scenario tree when the stage problems are linear
programs. The first formal proof of such a result was published by Chen and Powell [1], who derived this for their
cutting-plane and partial-sampling (CUPPS) algorithm. This proof was extended by Linowsky and Philpott [8] to
cover other SDDP algorithms. The convergence proofs in Chen and Powell [1] and Linowsky and Philpott [8]
make use of an unstated assumption regarding the independence of sampled random variables and convergent
subsequences of algorithm iterates. This assumption was identified by Philpott and Guan [11], who gave a simpler
proof of almost sure convergence of SDDP methods based on the finite convergence of the nested decomposition
algorithm (see Donohue [2]). This does not require the unstated assumption, but exploits the fact that the collection
of subproblems to be solved have polyhedral value functions, and so a finite number of dual extreme points. This

1

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

21
6.

22
1.

6]
 o

n 
08

 J
an

ua
ry

 2
01

5,
 a

t 1
4:

53
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

mailto:pierre.girardau@artelys.com
mailto:vincent.leclere@cermics.enpc.fr
mailto:a.philpott@auckland.ac.nz


Girardeau, Leclere, and Philpott: Decomposition of Multi-Stage Stochastic Convex Programs
2 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2014 INFORMS

begs the question of whether SDDP methods will converge almost surely for general convex stage problems, where
the value functions might not be polyhedral.

In this paper we propose a different approach from the one in Chen and Powell [1] and Linowsky and
Philpott [8] and show how a proof of convergence for sampling-based nested decomposition algorithms on finite
scenario trees can be established for models with convex subproblems (which may not have polyhedral value
functions). Our result is proved for a general class of methods, including all the variations discussed in the
literature (Chen and Powell [1], Donohue [2], Donohue and Birge [3], Hindsberger and Philpott [6], Pereira
and Pinto [10], Philpott and Guan [11]). The proof establishes convergence with probability 1 as long as the
sampling in the forward pass is independent of previous realisations. Our proof relies heavily on the independence
assumption and makes use of the Strong Law of Large Numbers.

The result we prove works in the space of state variables expressed as random variables adapted to the filtration
defined by the scenario tree. Because this tree has a finite number of nodes, this space is compact, so we may
extract convergent subsequences for any infinite sequence of states. Unlike the arguments in Chen and Powell [1]
and Linowsky and Philpott [8], these subsequences are not explicitly constructed, so we escape the need to assume
properties of them that we wish to be inherited from independent sampling. More precisely, Lemma A.3 gives us
the required independence.

Although the value functions we construct admit an infinite number of subgradients, our results do require an
assumption that serves to bound the norms of the subgradients used. This assumption is an extension of relatively
complete recourse that ensures that some infeasible candidate solutions to any stage problem can be forced to be
feasible by a suitable control. Since we are working in the realm of nonlinear programming, some constraint
qualification of this form will be needed to ensure that we can extract subgradients. In practice, SDDP models use
penalties on constraint violations to ensure feasibility, which implicitly bounds the subgradients of the Bellman
functions. Our recourse assumptions are arguably weaker, since we do not have a result that shows that they enable
an equivalent formulation with an exact penalization of infeasibility.

The paper is laid out as follows. We first consider a deterministic multistage problem, in which the proof is
easily understandable. This is then extended in §3 to a stochastic problem formulated in a scenario tree. We close
with some remarks about the convergence of sampling algorithms.

2. The deterministic case. Our convergence proofs are based around showing that a sequence of outer
approximations formed by cutting planes converges to the true Bellman function in the neighbourhood of the
optimal state trajectories. We begin by providing a proof that Kelley’s cutting plane method (Kelley [7]) converges
when applied to the optimization problem:

W ∗ 2= min
u∈U

W4u51

where U is a nonempty convex subset of �m and W is a convex finite function on �m. The result we prove is not
directly used in the more complex results that follow, but the main ideas on which the proofs rely are the same.
We believe the reader will find it convenient to already have the scheme of the proof in mind when studying the
more important results.

Kelley’s method generates a sequence of iterates 4uj5j∈� by solving, at each iteration, a piecewise linear model
of the original problem. The model is then enhanced by adding a cutting plane based on the value W4uj5 and
subgradient gj of W at uj . The model at iteration k is denoted by

W k4u5 2= max
1≤j≤k

{

W4uj5+ �gj1 u− uj
�
}

1

and �k 2= minu∈UW k4u5=W k4uk+15. We have the following result.

Lemma 2.1. If W is convex and U is compact then

lim
k→+�

W4uk5=W ∗0

Proof. This proof is taken from Ruszczyński [14, Theorem 7.7] (see also Ruszczyński [13]). Let � be an
arbitrary positive number and let K� be the set of indices k such that W ∗ +� <W4uk5 <+�. The proof consists in
showing that K� is finite.

Suppose k11 k2 ∈K� and k1 are strictly smaller than k2. We have that W4uk15 >W ∗ + � and that W ∗ ≥ �k1 . Since
a new cut is generated at uk1 , we have

W4uk15+ �gk11 u− uk1� ≤W k14u5≤W k2−14u51 ∀u ∈U1
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where gk1 is an element of ¡W4uk15. In particular, choosing u= uk2 gives

W4uk15+ �gk11 uk2 − uk1� ≤W k14uk25≤W k2−14uk25= �k2−1
≤W ∗0

But �<W4uk25−W ∗, so
�<W4uk25−W4uk15− �gk11 uk2 − uk1�1

and as gk2 ∈ ¡W4uk25, the subgradient inequality for u= uk1 yields

W4uk25−W4uk15≤ �gk21 uk2 − uk1�0

Since W is finite valued, it has uniformly bounded subgradients on U, so there exists �> 0 such that

�< 2��uk2 − uk1�1 ∀k11 k2 ∈K�1 k1 6= k20

Because U is compact, K� has to be finite. Otherwise there would exist a convergent subsequence of 8uk9k∈K�
, and

this last inequality could not hold for sufficiently large indices within K�. This proves the lemma. �
Note that Lemma 2.1 does not imply that the sequence of iterates 4uk5k∈� converges.1 For instance, if the

minimum of W is attained on a “flat” part (if W is not strictly convex), then the sequence of iterates may not
converge. However, the lemma shows that the sequence of W values at these iterates will converge.

We now consider the multistage case. Let T be a positive integer. We first consider the following deterministic
optimal control problem:

min
x1u

T−1
∑

t=0

Ct4xt1 ut5+VT 4xT 5 (1a)

s.t. xt+1 = ft4xt1 ut51 ∀ t = 01 : : : 1 T − 11 (1b)

x0 is given1 (1c)

xt ∈Xt1 ∀ t = 01 : : : 1 T 1 (1d)

ut ∈Ut4xt51 ∀ t = 01 : : : 1 T − 10 (1e)

In what follows, we let Aff4X5 denote the affine hull of X, and define

Bt4�5= 8y ∈ Aff4Xt5 � �y�<�90

We make the following assumptions 4H15:
1. For t = 01 : : : 1 T , � 6=Xt ⊆�n.
2. For t = 01 : : : 1 T − 1, multifunctions Ut2 �

n ⇒�m are assumed to be convex2 and nonempty compact valued.
3. The final cost function VT is a convex lower semicontinuous proper function. The cost functions Ct4x1u5,

t = 01 : : : 1 T are assumed to be convex lower semicontinuous proper functions of x and u.
4. For t = 01 : : : 1 T − 1, functions ft are affine, namely ft4xt5=Atxt +Btut + bt0
5. The final cost function VT is finite-valued and Lipschitz-continuous on XT .
6. For t = 01 : : : 1 T − 1, there exists �t > 0, defining X′

t 2=Xt +Bt4�t5, such that
(a) ∀x ∈X′

t , ∀u ∈Ut4x5, Ct4x1u5 <�

(b) for every x ∈X′
t ,

ft4x1Ut4x55∩Xt+1 6= �0

Assumptions 4H1415− 4555 are made to guarantee that problem (1) is a convex optimization problem. Since this
problem is in general nonlinear, it also requires a constraint qualification to ensure the existence of subgradients.
This is the purpose of Assumption 4H14655. This assumption means that we can always move from Xt a distance
of �t/2 in any direction and stay in X′

t , which is a form of recourse assumption that we call extended relatively
complete recourse (ERCR). We note that this is less stringent than imposing complete recourse, which would
require X′

t =�n. Finally, we note that we never need to evaluate Ct4x1 u5 with x ∈X′
t\Xt , so we may only assume

that there exists a convex function, finite on X′
t , that coincides with Ct on Xt . Of course, not all convex cost

functions satisfy such a property; e.g., x 7→ x log4x5 cannot be extended below x = 0 while maintaining convexity.

1 Even though because U is compact, there exists a convergent subsequence.
2 Recall that a multifunction U on convex set X is called convex if 41 −�5U4x5+�U4y5⊆U441 −�5x+�y5 for every x1 y ∈X and � ∈ 40115.
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We are now in a position to describe an algorithm for the deterministic control problem (1). The DP equation
associated with (1) is as follows. For all t = 01 : : : 1 T − 1, let

Vt4xt5=











min
ut∈Ut4xt5

8Ct4xt1 ut5+Vt+14ft4xt1 ut559
︸ ︷︷ ︸

2=Wt4xt 1 ut5

1 xt ∈Xt1

+�1 otherwise.

(2)

Here the quantity Wt4xt1 ut5 is the future optimal cost starting at time t from state xt and choosing decision ut , so
that Vt4xt5= minu∈Ut4xt5

Wt4xt1 u5. By virtue of H1, the functions Vt4xt5 defined by (2) are convex.
The cutting plane method works as follows. At iteration 0, define functions V 0

t , t = 01 : : : 1 T − 1, to be
identically equal to −�. At time T , since we know exactly the end value function, we impose V k

T = VT for all
iterations k ∈�. At each iteration k, the process is the following:

Starting with xk
0 = x0, at any time stage t, solve

�k
t = min

ut 1 x

{

Ct4x1ut5+V k−1
t+1 � ft4x1ut5

}

1 (3a)

s.t. x = xk
t 6�k

t 71 (3b)

ft4x1ut5 ∈Xt+11 (3c)

ut ∈Ut4x50 (3d)

Observe that although they appear as variables in the objective function, by virtue of (3b), x = xk
t are given

parameters of the problem (3), which has an optimal value �k
t that varies with xk

t ∈ Aff4Xt5. We denote this
optimal value function by V̂ k

t 4x
k
t 5. We define �k

t ∈ Aff4Xt5 to be a vector of Lagrange multipliers for the constraint
x = xk

t . So
�k
t ∈ ¡4V̂ k

t �Aff4Xt5
54xk

t 50 (4)

(When �k
t is not uniquely defined, we make an arbitrary choice, say by selecting �k

t with minimum norm.)
The assumption that xk

t and �k
t both lie in Aff4Xt5 loses no essential generality. In practice, we would expect

Aff4Xt5 to be the same dimension for every t. If this dimension happened to be d strictly less than n, then we
might change the formulation (by a transformation of variables) so that Aff4Xt5=�d.

We denote a minimizer of (3) by ukt . Its existence is guaranteed by ERCR. Note that constraint (3c) can be seen
as an induced constraint on ut . Thus, we can define the multifunctions Ũt2 �

n ⇒�m by, for all x ∈�n,

Ũt4x5 2=
{

u ∈Ut4x5 � ft4x1ut5 ∈Xt+1

}

0 (5)

We can easily check that Ũt is convex (by linearity of ft and convexity of Ut) and so convex compact valued (as
the intersection of a compact set and a closed set). Moreover, ERCR guarantees that Ũt4x5 6= � for any x ∈Xt .
Thus, (3) can be written as

�k
t = min

ut∈Ũt4x5
x∈Aff4Xt5

{

Ct4x1ut5+V k−1
t+1 � ft4x1ut5

}

1 (6a)

s.t. x = xk
t 6�k

t 70 (6b)

Now define, for any x ∈ Aff4Xt5:

V k
t 4x5 2= max

{

V k−1
t 4x51 �k

t + ��k
t 1 x− xk

t �
}

(7)

and move on to the next time stage t + 1 by defining xk
t+1 = ft4x

k
t 1 u

k
t 5.

Observe that our algorithm uses V k−1
t+1 when solving the two-stage problem (3) at stage t, although most

implementations of SDDP and related algorithms proceed backwards and are thus able to use the freshly updated
V k
t+1 (although see, e.g., Chen and Powell [1] for a similar approach to the one proposed here). In the stochastic

case we present a general framework that encompasses backward passes.
Note that only the last future cost function VT is known exactly at any iteration. All the other ones are lower

approximations consisting of the maximum of k affine functions at iteration k. We naturally have the same lower
approximation for function Wt . Thus, we define for any x ∈ Aff4Xt5, u ∈�m

W k
t 4x1u5 2=Ct4x1u5+V k

t+1 � ft4x1u51 (8)
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x

Value
Vt(x)

xt
k

Wt(xt
k, ut

k)

�t
k = Wt

k – 1(xt
k, ut

k)

Vt
k – 1(x)

Vt(xt
k)

�t
k + 〈�t

k, x – xt
k〉

Figure 1. Relation between the values at a given iteration.

and recall
Wt4x1u5 2=Ct4x1u5+Vt+1 � ft4x1u50 (9)

Using this notation we have
�k
t = min

u∈Ũt4x
k
t 5
W k−1

t 4xk
t 1 u5=W k−1

t 4xk
t 1 u

k
t 50 (10)

Since by (7)
V k
t 4x

k
t 5= max

k′≤k
8�k′

t + ��k′

t 1 x
k
t − xk′

t �91

it follows that
V k
t 4x

k
t 5≥W k−1

t 4xk
t 1 u

k
t 50 (11)

Figure 1 gives a view of the relations between all these values at a given iteration.

2.1. Proof of convergence in the deterministic case. Recall the approximate value function V̂ k
t defined by

the optimal value of (3) (equivalently (6)). We begin by showing some regularity and monotonicity results for this
and the value functions V k

t and Vt .
Under assumptions 4H15, we define for t = 01 : : : 1 T − 1, and for all x ∈ Aff4Xt5, the extended value function

Ṽt4x5= inf
u∈Ut4x5

{

Ct4x1u5+Vt+1 � ft4x1u5
}

0 (12)

Note that the infimum could be taken on Ũt4x5⊆Ut4x5, as Vt+1 = � when ft4x1 u5yXt+1. It is convenient to
extend the definition to t = T by defining ṼT = VT . We also observe that Ṽt ≤ Vt as these are identical on the
domain of Vt .

Lemma 2.2. For t = 01 : : : 1 T − 1,
(i) the value function Vt is convex and Lipschitz continuous on Xt .

(ii) V k
t ≤ Ṽt ≤ Vt , and at all points in Xt , ¡4V̂

k
t �Aff4Xt5

5 6= �.
(iii) the sequences 4�k

t 5k∈� are bounded.

Proof. (i) We first show the convexity and Lipschitz continuity of Vt on Xt . We proceed by induction
backward in time. By assumption, VT is convex and Lipschitz continuous on XT . Assume the result is true
for Vt+1. First, since it is the infimum over u of a sum of convex functions of x and u, the function Ṽt4x5 is
convex. Now by ERCR, for any x ∈X′

t , Ũt4x5 6= �. This implies that, for x ∈X′
t , for u ∈ Ũt4x5,

Ṽt4x5≤Ct4x1u5+Vt+1 � ft4x1u5 <+�0
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By 4H14355 and the induction hypothesis, for any x ∈X′
t ,

u 7→Ct4x1u5+Vt+1 � ft4x1u5

is lower semicontinuous, and so the compactness of Ut4x5 ensures that the infimum in the definition of Ṽt4x5 is
attained, and therefore Ṽt4x5 >−�. Ṽt is Lipschitz continuous on Xt , as Xt is a compact subset of the relative
interior of its domain. Finally remarking that Vt4x5= Ṽt4x5 if x ∈Xt gives the conclusion.

(ii) As observed, the inequality Ṽt ≤ Vt is immediate, as the two functions are identical on the domain of Vt .
To show V k

t ≤ Ṽt let us proceed by induction forward in k. Assume that for all t = 01 : : : 1 T − 1, �k−1
t is defined

and V k−1
t ≤ Ṽt . Note that

−� = V 0
t ≤ Ṽt1

so this is true for k = 1 (�0
t is never used). Recall that for all t = 01 : : : 1 T − 1 and all x ∈ Aff4Xt5, that

V̂ k
t 4x5= min

u∈Ũt4x5

{

Ct4x1u5+V k−1
t+1 � ft4x1u5

}

0

The properties of Ũt guarantee that V̂ k
t is convex and finite on X′

t which strictly contains Xt . Thus, V̂ k
t restricted

to Aff4Xt5 is subdifferentiable at any point of Xt , giving ¡4V̂ k
t �Aff4Xt5

5 6= � at every point in Xt . By the induction
hypothesis and inequality Ṽt+1 ≤ Vt+1 we have that

V k−1
t+1 � ft ≤ Vt+1 � ft0

Thus, the definitions of V̂ k
t and Ṽt yield

V̂ k
t ≤ Ṽt0 (13)

we have by (4) that
�k
t + ��k

t 1 x− xk
t � ≤ V̂ k

t 4x5≤ Ṽt4x5 (14)

by (13). The definition of V k
t in (7) gives

V k
t 4x5= max

{

V k−1
t 4x51 �k

t + ��k
t 1 x− xk

t �
}

1

which shows V k
t 4x5≤ Ṽt4x5 by (14) and the induction hypothesis. Thus, (ii) follows for all k by induction.

(iii) Finally, we show the boundedness of 4�k
t 5k∈�. By the definition of �k

t we have for all y ∈ Aff4Xt5

V k4y5≥ V k4xk
t 5+ ��k

t 1 y− xk
t �0 (15)

Recall that X′
t =Xt +Bt4�t5, so substituting y = xk

t + 4�t�
k
t 5/42��k

t �5 in (15) whenever �k
t 6= 0 yields

��k
t � ≤

2
�t

[

V k
t

(

xk
t +

�t

2
�k
t

��k
t �

)

−V k
t 4x

k
t 5

]

0

We define the compact subset X′′
t of dom Ṽt as X′′

t 2=Xt+Bt4�t/25. As xk
t ∈Xt we have that xk

t + 4�t/25 ·

4�k
t /��

k
t �5 ∈X′′

t . Consequently, by (ii),

V k
t

(

xk
t +

�t

2
�k
t

��k
t �

)

≤ max
x∈X′′

t

Ṽt4x5 <+�0

Moreover, by construction the sequence of functions 4V k
t 5k∈� is increasing; thus,

V k
t 4x

k
t 5≥ V 1

t 4x
k
t 5≥ min

x∈Xt

V 1
t 4x5 >−�0

Thus we have that, for all k ∈�∗ and t = 01 : : : 1 T − 1,

��k
t � ≤

2
�t

[

max
x∈X′′

t

Ṽt4x5− min
x∈Xt

V 1
t 4x5

]

0 (16)

This completes the proof. �
Corollary 2.1. Under assumptions 4H15, the functions V k

t , t = 0111 : : : 1 T − 1, are �-Lipschtiz for some
constant � for all k ∈�∗.
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Proof. By (7) and (16) the subgradients of V k
t are bounded by

�= max
t=0111 : : : 1T−1

2
�t

[

max
x∈X′′

t

Ṽt − min
x∈Xt

V 1
t 4x5

]

0 �

We now prove that both the upper and lower estimates of Vt converge to the exact value function under
assumptions 4H15.

Theorem 2.1. Consider the sequence of decisions 4uk5k∈� generated by (3) and (7), where each uk is itself a
sequence of decisions in time uk = uk01 : : : 1 u

k
T−1, and consider the corresponding sequence of state values 4xk5k∈�.

Under assumptions 4H15, for any t = 01 : : : 1 T − 1 we have that

lim
k→+�

[

Wt4x
k
t 1 u

k
t 5−Vt4x

k
t 5
]

= 0 and lim
k→+�

[

Vt4x
k
t 5−V k

t 4x
k
t 5
]

= 00

Proof. The demonstration proceeds by induction backward in time. At time t + 1, the induction hypothesis is
the second statement of the theorem. That is,

lim
k→+�

[

Vt+14x
k
t+15−V k

t+14x
k
t+15

]

= 00

In other words, the cuts for the future cost function tend to be exact at xk
t+1, as k tends to �. The induction

hypothesis is clearly true at the last time stage T for which we defined the approximate value function V k
T as equal

to the (known) end value function VT .
We have to show the induction hypothesis, namely

lim
k→+�

[

Vt4x
k
t 5−V k

t 4x
k
t 5
]

= 0

for time t. Recall that (11) gives

V k
t 4x

k
t 5≥W k−1

t 4xk
t 1 u

k
t 5=Ct4x

k
t 1 u

k
t 5+V k−1

t+1 4x
k
t+150

Using the definition (9) of Wt , we can replace Ct4x
k
t 1 u

k
t 5 to get

V k
t 4x

k
t 5≥Wt4x

k
t 1 u

k
t 5+ 4V k−1

t+1 4x
k
t+15−Vt+14x

k
t+1550

Subtracting Vt4x
k
t 5 we obtain

V k
t 4x

k
t 5−Vt4x

k
t 5≥Wt4x

k
t 1 u

k
t 5−Vt4x

k
t 5+ 4V k−1

t+1 4x
k
t+15−Vt+14x

k
t+1550

Now as V k
t is a lower approximation of Vt we have

V k
t 4x

k
t 5−Vt4x

k
t 5≤ 01

and by DP equation (2)
Wt4x

k
t 1 u

k
t 5−Vt4x

k
t 5≥ 00

Moreover, the induction hypothesis at time t + 1 gives

V k
t+14x

k
t+15−Vt+14x

k
t+15

k→�

−−→ 01

which by virtue of Lemma A.1 (with Vt+1 replacing f ) implies3

lim
k→+�

[

Vt+14x
k
t+15−V k−1

t+1 4x
k
t+15

]

= 0

so
V k
t 4x

k
t 5−Vt4x

k
t 5

k→�

−−→ 01

and
Wt4x

k
t 1 u

k
t 5−Vt4x

k
t 5

k→�

−−→ 01

which gives the result. �
Theorem 2.1 indicates that the lower approximation at each iteration tends to be exact on the sequence of

state trajectories generated throughout the algorithm. This does not mean that the future cost function will be
approximated well everywhere in the state space. It only means that the approximation gets better and better in the
neighborhood of an optimal state trajectory.

3 Corollary 2.1 ensures the �-Lipschitz assumption on V k
t+1, and the other assumptions are obviously verified.
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3. The stochastic case with a finite distribution.

3.1. Stochastic multistage problem formulation. We now consider that the cost function and dynamics at
each time t are influenced by a random outcome that has a discrete and finite distribution. We write the problem
on the complete tree induced by this distribution. The set of all nodes is denoted by N, and 809 is the root node.
We denote nodes by m and n. (We trust that the context will dispel any confusion from the use of m and n as
dimensions of variables u and x.) A node n here represents a time interval and a state of the world (which has
probability ên) that pertains over this time interval. We say that a node n is an ascendent of m if it is on the path
from the root node to node m (including m). We denote a4m5 as the set of all ascendents of m, and the depth of
node n is one less than the number of its ascendents. For simplicity we identify this with a time index t, although
the results hold true for scenario trees for which this is not the case. For every node m ∈N\809, p4m5 represents
its parent and r4m5 its set of children nodes. Finally, L is the set of leaf nodes of the tree (i.e., those that have
degree 1).

This gives the following stochastic program:

min
x1u

{

∑

n∈N\8L9

∑

m∈r4n5

êmCm4xn1 um5+
∑

m∈L

êmVm4xm5

}

(17a)

s.t. xm = fm4xp4m51 um51 ∀m ∈N\8091 (17b)

x0 is given1 (17c)

xm ∈Xm1 ∀m ∈N1 (17d)

um ∈Um4xp4m551 ∀m ∈N\8090 (17e)

The reader should note that randomness (that appears in the cost and in the dynamics) is realized before the
decision is taken in this model. Hence the control affecting the stock4 xn is actually indexed by m, a child node
of n. Put differently, the control adapts to randomness: there are as many controls as there are children nodes of n.
Observe that we also now admit the possibility that Xt and Ut4x5 might vary with scenario-tree node, so we
denote them by Xm and Um4xp4m55.

We make the following assumptions 4H25:
1. For all n ∈N, Xn is nonempty convex compact.
2. For all m ∈N\8091 the multifunction Um is nonempty convex and convex compact valued.
3. All functions Cn, n ∈N\L, Vm1 m ∈L, are convex lower semicontinuous proper functions.
4. For all m ∈N\809, the functions fm are affine.
5. For all m ∈L, Vm is Lipschitz-continuous on Xm.
6. There exists �> 0 such that for all nodes n ∈N\L

(a) ∀x ∈Xn +B4�5, ∀m ∈ r4n5, fm4x1Um4x55∩Xm 6= �.
(b) ∀x ∈Xn +B4�5, ∀u ∈Um4x5, Cn4x1u5 <�.

The convex functions Vm define the future cost of having xm remaining in stock at the end of the stage represented
by leaf node m ∈L. Given an optimal control, we can define (applying the DP principle to Problem (17)) a future
cost function Vn recursively for the other nodes n ∈N\L by

Vn4xn5=
∑

m∈r4n5

êm

ên

min
um∈Um4xn5

8Cm4xn1 um5+Vm4fm4xn1 um559
︸ ︷︷ ︸

Wm4xn1 um5

0 (18)

In general, the future cost function at each node can be different from those at other nodes at the same stage.
In the special case where the stochastic process defined by the scenario tree is stagewise independent, the future
cost function is identical at every node at stage t. Some form of stagewise independence is typically assumed in
applications, as that enables cuts to be shared across nodes at the same stage; however, we do not require this for
our proof.

The algorithm that we consider is an extension of the deterministic algorithm of the previous section applied, at
each iteration, to a set of nodes chosen randomly in the tree at which we update estimates of the future cost
function. We assume that all other nodes have null updates, in the sense that they just inherit the future cost
function from the previous iteration.

4 We do not make any stagewise independence assumptions on the random variables that affect the system. Hence, there is no reason why
variable xn should be called a state variable, and we prefer calling it a stock.
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We now describe the algorithm formally. We start the process with �̂0
n = −�, �̂0

n = 0, for each n∈N, and
impose V k

n = Vn for all nodes n ∈L and all k ∈�. We then carry out a sequence of simulations and updates of the
future cost functions as follows.

Simulation. Starting at the root node, generate stocks and decisions for all possible successors (in other words,
visit the whole tree forward) by solving (18) with V k−1 instead of V . Denote the obtained stock variables by 4xkn5n∈N

and the control variables by 4uk
n5n∈N\809. Also, for each node n ∈N, impose �k

n = V k−1
n 4xk

n5 and �k
n ∈ ¡V k−1

n 4xk
n5.

Update. Select nonleaf nodes n11 n21 : : : 1 nI in the tree. For each i, xkni is a random variable that is equal to one
of the xk

n. For each selected node ni, and for every child node m of node ni, solve

�̂k
m = min

um∈�m

x∈Aff4Xni
5

{

Cm4x1um5+V k−1
m � fm4x1um5

}

(19a)

s.t. x = xk
ni

6�̂k
m71 (19b)

um ∈Um4x51 (19c)

fm4x1um5 ∈Xm0 (19d)

As before, we define �̂k
m ∈ Aff4Xk

ni
5 to be a vector of Lagrange multipliers for the constraint x = xk

ni
. We also

define the multifunctions
Ũm2 x 7→

{

u ∈Um4x5 � fm4x1um5 ∈Xm

}

0

For each selected node ni, replace the values �k
ni

and �k
ni

obtained during the simulation with

�k
ni

=
∑

m∈r4ni5

êm

êni

�̂k
m

and
�k
ni

=
∑

m∈r4ni5

êm

êni

�̂m0

Finally, we update all future cost functions. For every node n, and any x ∈Xt ,

V k
n 4x5 2= max

{

V k−1
n 4x51 �k

n + ��k
n1 x− xk

n�
}

= max
k′≤k

{

�k
n + ��k

n1 x− xk
n�
}

0 (20)

We will make use of the following definitions, where m ∈ r4n5

Wm4xn1 um5 2=Cm4xn1 um5+Vm4fm4xn1 um55 (21)

W k
m4xn1 um5 2=Cm4xn1 um5+V k

m4fm4xn1 um550 (22)

In the case where node n ∈N is selected at iteration k—in other words, n= ni—these definitions then give

�̂k
m = min

u∈Ũm4x
k
n5
W k−1

m 4xk
n1 u5=W k−1

m 4xk
n1 u

k
m50

This leads to
V k
n 4x

k
n5≥

∑

m∈r4n5

êm

ên

W k−1
m 4xk

n1 u
k
m50 (23)

Note that we actually only update future cost functions on the selected nodes. Since the cuts we add at all other
nodes are binding on the current model (by construction in the simulation), there is no point in storing them.
Therefore, in practice, one does not need to sample the whole scenario tree but just enough to attain all selected
nodes. In our proof, we need to look at what happens even on the nodes that are not selected.

The way we select nodes at which to compute cuts varies with the particular algorithm implementation.
For example, DOASA uses a single forward pass to select nodes and then computes cuts in a backward pass.
We represent these selections of nodes using a selection random variable yk = 4ykn5n∈N that is equal to 1 if node n
is selected at iteration k and 0 otherwise. This gives a selection stochastic process 4yk5k∈�, taking values in
80119�N\L�, that describes a set of nodes in the tree at which we will compute new cuts in iteration k. We let
4Fk5k∈� denote the filtration generated by 4yk5k∈�.

To encompass algorithms such as DOASA and SDDP the selection stochastic process can be viewed as
consisting of infinitely many finite subsequences, each consisting of � > 0 selections (consisting, e.g., of a sequence
of selections of nodes in a backward pass). This cannot be done arbitrarily, and the way that 4yk5k∈� is constructed
must satisfy some independence conditions from one iteration to the next.
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Definition 1. Let � be a positive integer. The process 4yk5k∈� is called a �-admissible selection process if
(i) ∀m ∈N\L, ∀k ∈�, ∀� ∈ 801 : : : 1 � − 191

yk�+�
m = 1 =⇒ ∀n ∈ a4m51 yk�n = yk�+1

n = · · · = yk�+�−1
n = 03

and the process defined by
ỹkn 2= max

{

yk�n 1 yk�+1
n 1 yk�+2

n 1 : : : 1 yk�+�−1
n

}

(24)

satisfies
(ii) for all m ∈N\L, 4ỹkm5k∈� is i.i.d. and for all k ∈�, and all m ∈N\L, ỹkm is independent of Fk�−1.

(iii) ∀n ∈N\L, �4ỹkn = 15 > 0.

Property (i) guarantees that when � > 1, the updating of cutting planes is done backwards between steps k� and
4k+ 15� . This means that if the linear approximation of the value function Vn is updated at step k� +�, then
neither it nor any approximation at any ascendant node has been updated since step k� − 1. This implies, as shown
in Lemma A.2, that xk�+� has not changed since the step k�; i.e., if yk�+�

n = 1, then xk�+� = xk� . We explain
in §3.3 how the selection processes of CUPPS (with � = 1) and SDDP (with � = T − 1) are �-admissible.

Property (ii) provides the independence of the selections that we will use to prove convergence, and property (iii)
guarantees that all nodes are selected with positive probability. Without any independence assumption it would be
easy to create a case in which the future cost function at a given node is updated only when the current stock
variable on this node is in a given region, for instance. In such a case, the future cost function could not gather any
information about the other parts of the space that the stock variable might visit. In other words, this independence
assumption ensures that the values that are optimal can be attained an infinite number of times. We remark that
there is no independence assumption over the nodes n for 4ykn5n∈N\L at k fixed. Thus the selection process could be
forced to select whole branches of the tree, for example, as it would for the CUPPS algorithm. More generally,
we have independence when for fixed � , 4yk�5k∈� is i.i.d and the next � − 1 selection values are determined
deterministically from yk� , more precisely, if for all � ∈ 801 : : : 1 � − 19, there is a deterministic function �� such
that yk�+� =��4y

k�5. Yet we also have independence when the selection subsequence 4yk� 1 yk�+11 : : : 1 yk�+�−15k∈�
is i.i.d.

3.2. Proof of convergence in the stochastic case. For every n ∈N\L we can define under assumptions 4H25
the extended value function

Ṽn4x5=
∑

m∈r4n5

êm

ên

inf
u∈Ũm4x5

{

Cm4x1u5+Vm � fm4x1u5
}

1

and we note that Ṽn is finite on X′
n. We now state a lemma analogous to Lemma 2.2.

Lemma 3.1. For every n ∈N,
(i) The value function Vn is convex and Lipschitz-continuous on Xt .

(ii) V k
n ≤ Ṽn ≤ Vn1 and �k

n is defined.
(iii) The sequences 4�k

n5k∈� are bounded, thus there is �n such that V k
n is �n-Lipschitz.

Proof. We give only a sketch of the proof, as it follows exactly the proof of its deterministic counterpart
Lemma 2.2.

(i) By induction, backward on the tree, Ṽn is convex and finite valued on X′
n as the positive sum of convex

finite valued functions, and thus Lipschitz continuous on Xn leading to the result as Ṽn = Vn on Xn.
(ii) Assume that for all n ∈N\L we have V k−1

n ≤ Ṽn. We define, for a node n ∈N\L x ∈�n,

V̂ k
n 4x5=

∑

m∈r4n5

êm

ên

min
u∈Ũn4x5

{

Cm4x1u5+V k−1
m � fm4x1u5

}

0

By hypothesis on Ũm1 V̂
k
n is convex and finite on X′

t , thus, its restriction on Aff4Xt5 is subdifferentiable on Xt .
By definition, �̂k

m ∈ ¡V̂ k
n 4x

k
m5, thus, �̂k

m is defined. By the induction hypothesis and inequality Ṽm ≤ Vm we have that

∀m ∈ r4n51 V̂ k−1
m � fm ≤ Vm � fm0

Thus, definitions of V̂ k
n and Ṽn yield V̂ k

n ≤ Ṽn. By definition of �k
n and construction of V k

n we have that V k
n ≤ Ṽn.

Induction leads to inequality (ii).
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(iii) Finally, we show the boundedness of 4�k
n5k∈�. As �k

n is an element of ¡V k4xk
n5, we have

V k4y5≥ V k4xk
n5+ ��k

n1 y− xk
n�0 (25)

so substituting, if �k
n 6= 0, y = xk

n + 4��k
n5/42��k

n�5 in (25) yields

��k
n� ≤

2
�

[

V k
n

(

xk
n +

�

2
�k
n

��k
n�

)

−V k
n 4x

k
n5

]

0

Thus, we have that, for all k ∈� and n ∈N,

��k
n� ≤

2
�

[

max
x∈Xn+B4�/25

Ṽn4x5− min
x∈Xn

V 1
n 4x5

]

1 (26)

which completes the proof. �

Theorem 3.1. Consider the sequence of decisions 4uk5k∈� generated by the above procedure under assump-
tions 4H25, where each uk is a set of decisions on the complete tree, and consider the corresponding sequence of
state values 4xk5k∈�. Assume that the selection process is �-admissible for some integer � > 0. Then we have for
every node n that �-almost surely

lim
k→+�

[

∑

m∈r4n5

êm

ên

Wm4x
k�
n 1 uk�

m 5−Vn4x
k�
n 5

]

= 0

and
lim

k→+�

[

Vn4x
k�
n 5−V k�

n 4xk�
n 5
]

= 00

Proof. Because the selection process for nodes in the update step is stochastic, decision variables as well as
approximate future cost functions are stochastic throughout the course of the algorithm. Thus, during the whole
proof, all equalities or inequalities are taken �-almost surely.

The demonstration follows the same approach as the proof of Theorem 2.1. Let T be the maximum depth of the
tree. We procede by backward induction on nodes of fixed depth. The induction hypothesis is

lim
k→+�

[

Vm4x
k�
m 5−V k�

m 4xk�
m 5
]

= 0

for each node m of depth t + 1. Since for every leaf of the tree those two quantities are equal, by definition, the
induction hypothesis is true for every node n ∈L.

We start by proving the result for iterations k� such that n is selected in the next � − 1 steps, i.e., such that
ỹkn = 1. Define �k ∈ 801 : : : 1 � − 19 such that yk�+�k = 1. Recall that by Lemma A.2 we have xk�+�k

n = xk�
n .

We have by (23)

V k�+�k
n 4xk�

n 5 = V k�+�k
n 4xk�+�k

n 5

≥
∑

m∈r4n5

êm

ên

min
um∈Ũm4x

k�
n 5

{

W k�+�k−1
m 4xk�

n 1 um5
}

≥
∑

m∈r4n5

êm

ên

min
um∈Ũm4x

k�
n 5

{

W k�−1
m 4xk�

n 1 um5
}

=
∑

m∈r4n5

êm

ên

W k�−1
m 4xk�

n 1 uk�
m 51

which implies

V k�+�k
n 4xk�

n 5 ≥
∑

m∈r4n5

êm

ên

[

Cm4x
k�
n 1 uk�

m 5+V k�−1
m 4xk�

m 5
]

1

=
∑

m∈r4n5

êm

ên

[

Wm4x
k�
n 1 uk�

m 5+
(

V k�−1
m 4xk�

m 5−Vm4x
k�
m 5
)]

0
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Thus,

V k�+�k
n 4xk�

n 5−Vn4x
k�
n 5 ≥

∑

m∈r4n5

(

êm

ên

Wm4x
k�
n 1 uk�

m 5

)

−Vn4x
k�
n 5

+
∑

m∈r4n5

êm

ên

4V k�−1
m 4xk�

m 5−Vm4x
k�
m 550

Note that, as V k�+�k
n is a lower approximation of Vn, we know that

V k�+�k
n 4xk�

n 5−Vn4x
k�
n 5≤ 01

and, by DP equation (18), that
∑

m∈r4n5

(

êm

ên

Wm4x
k�
n 1 uk�

m 5

)

−Vn4x
k�
n 5≥ 00

The induction hypothesis
lim

k→+�

[

Vm4x
k�
m 5−V k�

m 4xk�
m 5
]

= 0

and Lemma A.1 (with Vm replacing f )5 imply

lim
k→+�

[

Vm4x
k�
m 5−V k�−1

m 4xk�
m 5
]

= 00

Thus,

Vn4x
k�
n 5−V k�+�k

n 4xk�
n 5

k→�

−−→
ỹkn=1

01

and
∑

m∈r4n5

(

êm

ên

Wm4x
k�
n 1 uk�

m 5

)

−Vn4x
k�
n 5

k→�

−−→
ỹkn=1

00

Thus, Lemma A.1 applied with �= � gives

Vn4x
k�
n 5−V k�+�k−�

n 4xk�
n 5

k→�

−−→
ỹkn=1

01

and by monotonicity we have V k�+�k−�
n ≤ V k�

n ≤ Vn, which finally yields

Vn4x
k�
n 5−V k�

n 4xk�
n 5

k→�

−−→
ỹkn=1

00 (27)

Now we prove that the values also converge for the iterations k such that ỹkn = 0, i.e., the iterations for which
node n is not selected between step k� and step 4k+ 15� − 1. By contradiction, suppose the values do not
converge. Then by Lemma A.1 we have that Vn4x

k�
n 5−V k�−1

n 4xk�n 5 does not converge to 0. It follows that there is
some �> 0 such that K� is infinite where

K� 2=
{

k ∈� � Vn4x
k�
n 5−V k�−1

n 4xk�
n 5≥ �

}

0 (28)

Let zj denote the jth element of the set 8yk�n � k ∈K�9. Note that the random variables V k�−1 and xk�
n are

measurable with respect to Fk�−1 2= �44yk
′

5k′<k�5, and thus so is 1k∈K�
, from which ỹkn is independent. Moreover,

the �-algebra generated by the past realisations of ỹkn is included in Fk�−1. This implies by Lemma A.3 that
random variables 4zj5j∈� are i.i.d. and share the same probability law as ỹ0

n.
According to the Strong Law of Large Numbers (Grimmett and Stirzaker [5, p. 294]) applied to the random

sequence 4zj5j∈�, we should then have

1
N

N
∑

j=1

zj
N→+�

−−−−→ Ɛ4z15= Ɛ4ỹ0
n5=�4ỹ0

n = 15 > 00

5 Lemma 3.1(iii) provides a Lipschitz condition on V k
m.
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However, K� ∩ 8ỹkn = 19 is finite because of (27); thus, we know that there is only a finite number of indices j
such that zj = 1, the rest being equal to 0. So

1
N

N
∑

j=1

zj
N→+�

−−−−→ 01

which is a contradiction. This shows that

Vn4x
k�
n 5−V k�−1

n 4xk�
n 5

k→�

−−→
ỹkn=0

01

and monotonicity shows that

Vn4x
k�
n 5−V k�

n 4xk�
n 5

k→�

−−→
ỹkn=0

01

which completes the induction. �

3.3. Application to known algorithms. To illustrate our result we will apply it to two well-known algorithms.
For simplicity we will assume that the tree represents a T -step stochastic decision problem in which every leaf of
the tree is of depth T .

We first define the CUPPS algorithm (Chen and Powell [1]) in this setting. Here at each major iteration we
choose a T − 1-step scenario and compute the optimal trajectory while at the same time updating the value
function for each node of the branch. In our setting, this uses a 1-admissible selection process 4yk5k∈� defined by
an i.i.d. sequence of random variables, with y0 selecting a single branch of the tree. Theorem 3.1 shows that for
every node n the upper and lower bound converges, that is

lim
k→+�

[

∑

m∈r4n5

(

êm

ên

Wm4x
k
n1 u

k
m5

)

−Vn4x
k
n5

]

= 0

and
lim

k→+�

[

Vn4x
k
n5−V k

n 4x
k
n5
]

= 00

We now place the SDDP algorithm (Pereira and Pinto [10]) and DOASA algorithm (Philpott and Guan [11]) in
our framework. There are two phases in each major iteration of the SDDP algorithm—namely a forward pass
and a backward pass of T − 1 steps. Given a current polyhedral outer approximation of the Bellman function
4V k̃−1

n 5n∈N\L, a major iteration k̃ of the SDDP algorithm consists in:
• Selecting uniformly a number N of scenarios (N = 1 for DOASA).
• Simulating the optimal strategy for the problem, that is solving problem (19) to determine a trajectory (for

each scenario) 4xk̃
nt
5t∈801 : : : 1T−19 where 4nt5t∈801 : : : 1T−19 defines one of the selected scenarios.

• For t = T − 1 down to t = 0, for each scenario solving problem (19) with V k̃
m instead of V k̃−1

m ,
and defining

V k̃
nt
4x5= max

{

V k̃−1
nt

4x51 �k̃
nt

+ ��k̃
nt
1 x− xk̃

nt
�
}

0

SDDP fits into our framework as follows. Given N , we define the T −1-admissible selection process, 4y4T−15k5k∈�
by an i.i.d. sequence of random variables with y0 selecting uniformly a set of N preleaves (i.e., nodes whose
children are leaves) of the tree. Then for � ∈ 811 : : : 1 T − 29, k ∈�, n ∈N\L, we define

yk4T−15+�
n 2=

{

1 if there exist m ∈ r4n5 such that yk4T−15+�−1
m = 11

0 otherwise.

This algorithm is the same as SDDP with N randomly sampled forward passes per stage, but without the cut
sharing feature used when random variables are stagewise independent. Since for every node n of the tree (except
the leaves) there is a � such that �4yk4T−15+�

n = 15 > 0, Theorem 3.1 guarantees the convergence of the lower
bound for every node. This remains true when cuts are shared, since the proof of almost-sure convergence is
unaffected by the addition of extra valid cutting planes at any point during the course of the algorithm. The proof
of Theorem 3.1 gives

Vn4x
k�
n 5−V k�

n 4xk�
n 5

k→�

−−→
ỹkn=0

01
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and with shared cuts we obtain an improved value function V̆ k�
n satisfying

V k�
n 4xk�

n 5≤ V̆ k�
n 4xk�

n 5≤ Vn4x
k�
n 5

that must satisfy

Vn4x
k�
n 5− V̆ k�

n 4xk�
n 5

k→�

−−→
ỹkn=0

00

4. Discussion. The convergence result we have proved assumes that we compute new cuts at scenario tree
nodes that are selected independently from the history of the algorithm. This enables us to use the Strong Law of
Large Numbers in the proof. Previous results for multistage stochastic linear programming (Philpott and Guan [11])
require a selection process that visits each node in the tree infinitely often, which is a weaker condition than
independence, since it follows from the Borel-Cantelli lemma (Grimmett and Stirzaker [5, p. 288]). An example
would be the deterministic round robin selection mentioned in Philpott and Guan [11]. We do not have a proof of
convergence for such a process in the nonlinear case. It is important to observe that the polyhedral form of Vt that
was exploited in the proof of Philpott and Guan [11] is absent in our problem, and this difference could prove to
be critical.

The convergence result is proved for a general scenario tree. In SDDP algorithms, the random variables are
usually assumed to be stagewise independent (or made so by adding state variables). This means that the future
cost functions Vm4x5 are the same at each node m at depth t. This allows cutting planes in the approximations to
be shared across these nodes. As we have shown above, the convergence result we have shown here applies to this
situation as a special case. It is worth noting that the class of algorithms covered by our result is larger than the
examples presented in the literature. For example, an algorithm where we randomly select a node on the whole
tree and then update backwards from there is proven to converge. One could also combine SDDP and CUPPS
algorithms.

In the case where one would want to add cuts at different nodes in the tree in the update step of our procedure,
the solving of the subproblems can be done in parallel. This is the case in CUPPS, where a whole branch of the
tree is selected at each iteration. It also allows us to consider different selection strategies, where nodes at a given
iteration could be selected throughout the tree depending on some criteria defined by the user. In the first few
iterations, this could highly increase efficiency of the approximation and, because the solving of the subproblems
can be parallelized, would not be very time consuming. One should bear in mind, however, that, at some point,
the algorithm has to come back to an appropriate selection procedure, i.e., one that satisfies the independence
assumption, to ensure convergence of the algorithm.

Acknowledgments. The authors wish to thank Kengy Barty and Vincent Guigues for useful discussions on earlier versions
of this paper and the associate editor and anonymous referees for helpful comments. The first and third authors acknowledge
the support of the University of Ackland–EDF research [Contract DA1000355078]. The second author acknowledges the
financial support of the Conseil Français de l’Energie, French member of the World Energy Council.

Appendix. Technical lemmas.

Lemma A.1. Suppose f is convex and X is compact, and suppose for any integer �, the sequence of �-Lipschitz convex
functions f k, k ∈� satisfies

f k−�4x5≤ f k4x5≤ f 4x51 for all x ∈X0

Then for any infinite sequence xk ∈X

lim
k→+�

[

f 4xk5− f k4xk5
]

= 0 ⇐⇒ lim
k→+�

[

f 4xk5− f k−�4xk5
]

= 00

Proof. If limk→+�6f 4x
k5− f k−�4xk57= 0 then pointwise monotonicity of f k shows that limk→+�6f 4x

k5− f k4xk57= 0.
For the converse, suppose that the result is not true. Then there is some subsequence 4f k4l55l∈� and xk4l5 ∈X with

lim
k→+�

[

f 4xk4l55− f k4l54xk4l55
]

= 0 (29)

and �> 01L ∈� with
f 4xk4l55− f k4l5−�4xk4l55 > �

for every l > L. Since X is compact, we may assume (by taking a further subsequence) that 4xk4l55l∈� converges to x∗ ∈X. For
sufficiently large l, the Lipschitz continuity of f k4l5 and f k4l5−� gives

∣

∣f k4l54x∗5− f k4l54xk4l55
∣

∣≤ ��xk4l5 − x∗
�<

�

4
1

∣

∣f k4l5−�4xk4l55− f k4l5−�4x∗5
∣

∣≤ ��xk4l5 − x∗
�<

�

4
1
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and (29) implies that for sufficiently large l

f 4xk4l55− f k4l54xk4l55 <
�

4
0

It follows that

f k4l54x∗5− f k4l5−�4x∗5 = f k4l54x∗5− f k4l54xk4l55

+ f k4l54xk4l55− f 4xk4l55

+ f 4xk4l55− f k4l5−�4xk4l55

+ f k4l5−�4xk4l55− f k4l5−�4x∗5

>
�

4
1

since f 4xk4l55− f k4l5−�4xk4l55 is greater than �, and the other three terms each have an absolute value smaller than �/4.
Consequently, f k4l54x∗5 > f k4l5−�4x∗5+ �/4, for infinitely many l, which contradicts the fact that f k4x∗5 is bounded above
by f 4x∗5. �

Lemma A.2. If 4yk5k∈� is a �-admissible selection process, then for all k ∈�, � ∈ 801 : : : 1 � − 19, and all n ∈N\L
we have

yk�+�
n = 1 =⇒

{

xk�+�
n = xk�n 1

V k�+�−1
n = V k�−1

n if k ≥ 10

Proof. Let n, k, and � be such that yk�+�
n = 1. Let a4n5 2= 4n01 n11 : : : 1 nt5 be the sequence of ascendents of nt 2= n—i.e.,

n0 is the root node—and for all t′ < t, nt′ = p4nt′+15. Define the hypothesis H4t1�5:
(a) xk�+�

nt
= xk�nt .

(b) V k�+�−1
nt

= V k�−1
nt

, if t ≥ 1.
Let �′ <� and assume that for �′ and all t′ ≤ t, H4t′1�′5 holds true. This is satisfied for �′ = 0. Let t′ < t and assume

H4t′1 �′ + 15 is true. Since x0 is fixed, this is satisfied for t′ = 0. By definition of uk�+�′+1
nt+1

we have

uk�+�′+1
nt′+1

∈ arg min
u∈Ũ4xk�+�′+1

nt′
5

{

Cnt′+1
4xk�+�′+1

nt′
1 u5+V k�+�′

nt′+1
� fnt′+1

4xk�+�′+1
nt′

1 u5
}

3

Thus, by H4t′1 �′ + 15 (a) we have

uk�+�′+1
nt′+1

∈ arg min
u∈Ũ4xk�nt′

5

{

Cnt+1
4xk�nt′ 1 u5+V k�+�′

nt′+1
� fnt+1

4xk�nt′ 1 u5
}

0

As nt′+1 is an ascendent of n and �′ < � by property (i) of Definition 1, we have that the representation of Vnt′+1
is not updated

at iteration �′; i.e.,
V k�+�′

nt′+1
= V k�+�′−1

nt′+1
0

And thus H4t′ + 11 �′5 (b) gives H4t′ + 11 �′ + 15 (b); i.e.,

V k�+�′

nt′+1
= V k�−1

nt′+1
0

Therefore
uk�+�′+1
nt′+1

∈ arg min
u∈Ũ4xk�nt′

5

{

Cnt+1
4xk�nt′ 1 u5+V k�−1

nt′+1
� fnt+1

4xk�nt′ 1 u5
}

1

and consequently6

uk�+�′+1
nt′+1

= uk�
nt′+1

1

which gives by definition H4t′ + 11 �′ + 15 (a). Induction on t′ gives H4t′1 �′ + 15 for all t′ ≤ t, and induction on �′ establishes
H4t1�5 for all � ∈ 80111 : : : 1 �9. �

Lemma A.3. Let 4wk5k∈� be a stochastic process with value in 80119 adapted to a filtration 4Fk5k∈�, such that the
number of terms that are nonzero is almost surely infinite. Let 4yk5k∈� be a sequence of i.i.d discrete random variables. Define
the filtration Bk 2= �4Fk ∪�4y11 : : : 1 yk−155 and assume that for all k ∈�, yk is independent of Bk. Let k4j5 denote the jth
integer such that wk = 1—i.e., k405= 0—and for all j > 0,

k4j5 2= min8l > k4j − 15 �wl
= 190

Finally, we define for all j > 0 the jth value of 4yk5 such that wk = 1; i.e.,

zj 2= yk4j50

Then 4zk5k∈� is a sequence of i.i.d. random variables equal in law to y0.

6 This requires that the choice of optimal control among the set of minimizers is deterministic (say that with minimum norm).
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Proof. Let Y denote the support of y0. We start with z1. For i ∈ Y ,

�4z1
= i5 =

�
∑

l=1

�
(

8∀ l′ < l1 wl′
= 09∩ 8wl

= 19∩ 8yl = i9
)

by 80119 definition

=

�
∑

l=1

�48yl = i95�
(

8∀ l′ < l1 wl′
= 09∩ 8wl

= 19
)

by independence

= �48y0
= i95

�
∑

l=1

�
(

8∀ l′ < l1 wl′
= 09∩ 8wl

= 19
)

as 4yl5 is i.i.d.

= �48y0
= i95

as the sequence 4wk5k∈� must contain a 1 almost surely. Thus z1 is equal in law to y0.
Now suppose that z = 4z11 : : : 1 zm5 is a sequence of i.i.d. random variables. Let k11 : : : 1 km be m ordered integers, and fix

b ∈ 80119n and i ∈ Y . We have

�
(

8z = b9∩ 8zm+1
= i9∩ 8k415= k11 : : : 1 k4m5= km9

)

=

�
∑

�=0

�
(

8z = b9∩ 8k415= k11 : : : 1 k4m5= km9∩ 8y� = i9∩ 8� = k4m+ 159
)

=

�
∑

�=0

�
(

y� = i
)

�48z = b9∩ 8k415= k11 : : : 1 k4m5= km9∩ 8� = k4m+ 1595

=�4y0
= i5�

(

8z = b9∩ 8k415= k11 : : : 1 k4m5= km9
)

0

For the last equality we have used the fact that 4yk5 is i.i.d. and the fact that k4m+ 15 is almost surely finite and thus
48� = k4m+ 1595�∈� is a partition of the set of events.

Summing over the possible realisations of k4151 : : : 1 k4m5, we obtain

�
(

8z = b9∩ 8zm+1
= i9

)

=�4z = b5�4y0 = i50

Now summing over the possible realisations of b shows that zm+1 is equal in law to y0. Thus

�
(

8z = b9∩ 8zm+1
= i9

)

= �
(

8z = b9∩ 8y0
= i9

)

= �4z = b5�4y0
= i5

= �4z = b5�4zm+1
= i5

which shows that zm+1 is independent of z and equal in law to y0. Induction over m completes the proof. �
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