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Abstract

The market distribution function is a probabilistic device that can be used
to model the randomness in dispatch and clearing price that generators in
electricity pool markets must take account of when submitting offers. We
discuss techniques for estimating the market distribution function, and ways
of measuring the quality of these estimators, using both classical statistical
approaches and an expected-foregone-revenue approach.
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1 Introduction

A common form of electricity market structure that has emerged in recent years is
the electricity pool market. Examples are the Pennsylvania-Jersey-Maryland (PJM)
market, the Nordpool, and the electricity markets in New Zealand and Australia. In
electricity pool markets, generators submit offers of generation to a central system
operator, who dispatches some of the offered generation in such a way as to minimize
the total cost of the power generated. Each generation offer takes the form of a
supply function or offer stack, which specifies the price at which a generator is
prepared to offer a certain amount of power to the market. Although the exact form
of the offer stack varies with the market design, typically these can be represented by
non-decreasing piecewise constant functions, consisting of a finite number of tranches
of power.

The prices at which the generated power is offered are at the discretion of the
generator. If the price asked is too high then they are unlikely to be dispatched
and so will earn no revenue. On the other hand, the price should not under nor-
mal circumstances be chosen to be less than the marginal cost of generation. In a
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perfectly competitive environment, in which the choice of offer stack from an indi-
vidual generator has no effect on the price, a stack that offers power at its marginal
cost maximizes the profit of the generator. However, most electricity markets have
a small number of large generating companies whose offers have an effect on the
clearing price and quantity that they are dispatched. In this setting, generators are
faced with the question of what offer stack to submit in order to maximize their
profit.

With perfect information on the demand for electricity, and the offers of other
generators, it is possible for a generator to compute a stack that maximizes its profit.
For some simple cases it is possible to compute Nash equilibria for the one-shot game
where generators each choose an optimal supply function to submit assuming that
the others do not change their (optimal) offers. Although of interest in a theoretical
sense, supply-function equilibria are extremely difficult to compute for all but the
simplest models, and are of limited use in practical hour-by-hour trading operations.

The optimal stacks to submit to the market on an hour-by-hour basis will be
computed with little information on the offers of the other generators, and with
imperfect forecasts of demand. This makes the profit R associated with an offer
stack a function of the random quantity () that the generator is dispatched as well
as the (random) clearing price P. In this circumstance the generator might seek
an offer stack to maximize the expectation of R with respect to some probability
distribution.

An approach to this problem is described in [1], where a market distribution
function U(q, p) is defined as the probability of a generator not being fully dispatched
if it were to offer a single quantity ¢ at price p. In that paper, it is shown that the
expected profit from offering a stack defined by a curve s is

E[R] = /SR(q,p)d‘P(q,p)-

As an aside, we note that the market distribution function is not, as one might
expect from the name, solely a property of the market. Rather, it describes the
market situation faced by a particular generator. Thus, there is a different market
distribution function for each generator.

The market distribution function in [1] is assumed to be continuous. Under
further smoothness assumptions on W it is possible to derive optimality criteria for
s. In [3], the theory is extended to the case of discontinuous W. For this case, the
existence of an optimal offer s is not guaranteed, and e-optimal solutions are sought
instead. The present paper mostly considers this more general case, in which market
distribution functions will not be assumed to have any continuity or smoothness
properties except where this is explicitly stated.

In this paper we develop a methodology based on maximum likelihood estimation
for constructing estimates of W(q,p) from historical dispatch data. The layout of
the paper is as follows. In the next section, we provide an intuitive derivation of the
market distribution function, using an approach that makes the estimation procedure
straightforward. In section 3 we describe the estimation technique, and in section
4 we study the classical statistical properties of this estimator. In particular we
show that our estimator is consistent, asymptotically unbiased, and obeys a central



limit theorem. Some numerical investigation of the performance of the estimator is
conducted in section 5.

2 Market distribution functions

Market distribution functions have been formally defined in [1]. In this paper, we
adopt a slightly different formulation that will provide the structure to make a
statistical analysis more straightforward.

In [1] an offer stack is modelled as a parameterized curve. We will regard an offer
stack s as being defined by a continuous planar offer curve: a connected, totally
ordered (with respect to the order (q1,p1) > (q2,p2) <= @1 > ¢z and p; > po),
subset of the plane. That is, an increasing curve. It will often be convenient, if x
and y are points on the offer curve s, to write x < y if they are so ordered. An offer
stack is an offer curve consisting of a union of horizontal and vertical lines.

For a given offer curve s, the distribution of the point of dispatch (@, P) on s
can be described by its cumulative distribution function Wg. That is, Us(q,p) =
P((Q, P) < (q,p)) for all (q,p) on s. The problem of optimizing expected generator
returns then becomes

maximizes R(s) = /SR(q,p)d\IJs. (1)

Fortunately, in many circumstances, including the setting of (a single trading period
in) an electricity market, it is possible to simplify the description of the dispatch
distribution by specifying a single function ¥, defined on the whole (g,p) plane,
such that Wg(q,p) = ¥(q,p) for every s and (g,p) on s. This is clearly desirable as
it would simplify the optimization problem (1) to

maximizes R(s) = /SR(q,p)d\If. (2)

The function V¥ is easily recognized to be the market distribution function of [1].

The extension of Wy to the whole (¢, p) plane is made possible by the following
argument. Suppose the market chooses points of dispatch in the following way.
First, a random non-increasing right-continuous function U(q) is generated. The
point of dispatch (@, P) chosen for any offer curve s will then be the point where s
intersects the graph of p = U(q). (The total order on s allows us to write this more
precisely as

(Q, P) = argmin{(q, p) on s|U(q) < p}.

The minimum is achieved since {(¢,p)|U(¢q) < p} is a closed set. This takes care
of cases where the intersection is not a unique point, or does not exist.) U may
be thought of as a marginal utility function, giving the market’s willingness to pay
for each additional unit of quantity from this producer. The actual construction
of U will depend on market structure, but U is ultimately a representation of the
consumer demand function and competing offers from other producers.

Note that this construction occurs when the point of dispatch arises as the solu-
tion to a convex optimization problem which is (implicitly or explicitly) solved by



the market. This occurs in a pool-type electricity market — see [1] — in which case
U is referred to as a “residual demand function”.

Proposition. Suppose the market chooses points of dispatch in the way de-
scribed above. Then for any point (¢, p), ¥s(g, p) takes a common value ¥(q, p) for
all offer curves s passing through (¢, p). The function ¥ is non-decreasing in both ¢
and p.

Proof. For any point (g, p) on an offer curve s, P((Q, P) < (¢,p)) = P(U(q) <
p). This quantity is clearly non-decreasing in both ¢ and p and independent of the
offer curve s. 1

It is worth noting that the distribution of the residual demand function U, as
a random function in a function space, contains much more information than is
contained in W. Part of the appeal of the market distribution function is that it
contains just enough (i.e. mnecessary and sufficient) information to formulate the
offer curve optimization problem.

An important special case is that of a price-taker: a generator too small to
influence the market price by any action it might take. For a price-taker, ¥(q,p)
is a function of p only. However, the methods in the present paper are intended to
apply to the general (price-making) case, where ¥(q, p) may depend on both ¢ and
.

It is also worth noting that the function ¥ need not, in general, be continuous.
If, for example, the distribution of the random function U were partly discrete, the
resulting ¥ would have discontinuities at all points along the graph of any function
w with P (U =u) > 0. In many real electricity markets, it is observed that some
generators often choose their offers at “favourite” prices. This will give rise to a ¥
function with discontinuities at those prices. In particular, the rules of the Australian
electricity market — with variable quantities, but offer prices for each generator that
are fixed throughout the day — make this behaviour almost universal. All that can
be said about ¥ in general is that it is a monotone increasing function of each of
its variables. This is sufficient for the line integral in (2) to be well-defined, and to
coincide with the expected return.

3 Estimation of U

In this section we are concerned with the statistical problem of estimating a mar-
ket distribution (¥) function from dispatches which have occurred under similar
conditions in the past.

A traditional statistical approach to the estimation problem might begin with a
parametric model for ¥, and attempt to estimate the parameters using the maximum
likelihood (or another) technique. Since observations on the dispatch are being
obtained in every trading period, it is natural to use these in a Bayesian approach
to update a prior belief about W. One way of doing this using a smooth parametric
model is described in [2].

However, smooth parametric models are not easy to adapt to the discontinuous
market distribution functions that we wish to consider. One of the main difficulties
lies in constructing a natural model that can cogently be defended. It is known



that a market distribution function ¥ must be a monotone function in both its
variables, but it is unclear how to introduce any model structure beyond this. Only
if the approximate form of the ¥ function (along with its discontinuities) is already
known or estimated does the parametric approach become reasonable.

Our approach is to estimate the form of ¥ using non-parametric maximum like-
lihood methods. Given a sample of outcomes in historical trading periods, we will
choose ¥ from among the monotone functions taking values in [0, 1] in such a way
as to maximize the probability of having observed the sample.

Suppose that a sample of past points of dispatch, perhaps arising from several
different offer curves, is available for the generator in question. More precisely, we
assume that the data have been collected in the following way.

1. The offer stack associated with each point of dispatch has the standard step-
function form required by the market, starting at (0, 0) (or some other standard
point) and finishing at some (qas, par) where gy, denotes the maximum produc-
tion quantity and py; denotes the maximum price (which could be py; = 00).

2. For the ith sample point we record (g;,p;,r;), where ¢;,p; are the dispatch
quantity and clearing price, and r; € {h,v} indicates whether the point of
dispatch (g;, p;) occurred on a horizontal (r; = h) or a vertical (r; = v) segment
of the offer stack.

3. The dispatch observations are independent and have been generated with the
same underlying market distribution function W.

The indicator r; is not public information in most markets, but may be assumed
to be available to a generator considering its own historical offers.

The independence assumption may be questionable in practice, and it is pertinent
to consider the potential effect of possible dependence on estimators constructed
under such an assumption. While the estimate of W itself might be little affected,
the standard error of such an estimate (which we do not consider in the present
paper) might well be rather different if the underlying data were dependent. This
ought to be borne in mind in future work.

Let (g,p,h) be an observed sample point occurring on a horizontal segment of
its associated offer stack. Then the probability of having observed this particular
point is

p(V,q,p, h) = lim(¥(q +€,p) — (g —€p)).

This quantity is well-defined for any possible function W, although it could, of course,
be zero. Similarly, for the observed sample point (¢, p,v) on a vertical segment of
its associated offer stack,

p(\IJ7Q7p7 U) = ll_I}I%\I/((Lp—}- 6) - W(va - 6))

Therefore, in order to maximize the likelihood of the observed sample, it is sufficient
to choose the estimate ¥ to maximize

n

11 p(U, q;,pi, i), or equivalently Zlog(vcg — V) (3)
i=1 =1



where v = lim._q \i/(qZ +¢,p;) and v = lim._g \i/(% —¢€,p;) if r; = h, and vp =
lim,_o ¥(q, p; + €) and v = lime_ U(q, p; — €) if ; = v. The problem of selecting

a monotone ¥ that maximizes the probability of having observed the sample thus
reduces to selecting a finite number of values v, and v, that maximize (3) and

satisfy some monotonicity constraints placed on them by the requirement that ¥ be
monotone.

It is easy to see that the restriction of ¥ to piecewise constant monotone functions
will not alter the objective value of the maximum likelihood problem (3) as long as
sufficiently many cells (pieces) are available to enable Ve 5 Ve, Ul - -5 Ul 0 be
all distinct. We will construct an estimator of this kind in which the pieces are given
by a rectangular grid of cells.

Definition of the grid estimator. In the (¢,p) plane, draw a vertical line
through each point (g;,p;) with 7, = h and a horizontal line through each point
(gi, pi) with r; = v. This divides the plane into a number of rectangular cells. We
will take ¥ to be constant on each cell, and denote the value of ¥ on cell ¢ by v.. In a
natural extension of the notation above, the cells adjacent to the sample points can

then be denoted ¢?, ..., and c},...,c.. (See Figure 1.) The maximum likelihood

Y nc

grid estimator of ¥ is found by solving

max YL log(ver — veo) (4)
s/t v.<wg whenc<d
0<v. <1 Ve

The optimum of (4) will not usually be unique. (Some cell values do not appear
in the objective, so are determined only by the monotonicity constraints.) In order
to make an essentially arbitrary choice among optimal solutions, we suggest the
following rule. For each cell ¢, let

[A., B.] = {t : 3 an optimal point of (4) with v, = t},

and let the preferred solution be the one with v. = (A, + B.)/2 for each c.

One advantage of this rule is that it is easy to implement. Observe that the value
of any cell which appears in the objective of (4) is uniquely determined by (4). For
any other cell c,

A, =max {vg : d < ¢ and d appears in the objective of (4)},
where d < ¢ indicates that d is below and/or to the left of ¢. Similarly,
B, =min{v, : d > ¢ and d appears in the objective of (4)}.

We may therefore proceed as follows: after an optimal solution to (4) has been
found, identify those cells which do not appear in the objective of (4), and set their
values according to the above rule.
Note that the solution so found clearly satisfies the monotonicity constraints,
and so is itself an optimal solution of (4).
The grid estimator as defined above may not maximize the likelihood among all
0 1

monotone functions, since there is no guarantee that the cells ,...,c%cl ... ¢}
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will be all distinct. This deficiency is overcome by a minor modification: the en-
hanced grid estimator. This is defined the same way as above, except that during
the subdivision into cells, extra horizontal and vertical lines are added according
to the following convention. Wherever two sample points lie on the boundary of a
common cell, an extra line is added through the midpoint of each line segment of the
shorter path along the boundary between them. If three or more points lie on the
boundary of a common cell, extra lines are similarly introduced between each suc-
cessive pair. These extra lines create sufficiently small cells that ¢,...,c%cl, ... c}
are all distinct.

The construction of the grid estimator is illustrated in Figure 1.

4 Theoretical properties of the grid estimator

In this section we examine the quality of our estimator from a theoretical point of
view. We begin with the classical statistical approach: bias, consistency and central
limit behaviour.

Theorem 4.1. Let ¥ be a market distribution function. Suppose that the set
U=A{(¢g,p) : 0 < ¥(q,p) < 1} is bounded and that on U, ¥ is continuous and strictly
monotone (i.e. (q1,p1) < (q2,p2) and ¥(q1, p1) = V(g2, p2) only if (q1,p1) = (2, p2))-
Let s1,...sn, be fixed offer stacks. Suppose a sample of n = 377", N; independent
points of dispatch is obtained, by presenting each stack s; to the market N; times,
and let ¥ be the grid estimator (or the enhanced grid estimator) derived from this
sample. Then ¥ has the following behaviour on S = ULy s

e U is uniformly asymptotically unbiased (i.e. sup,.g )E [\if(l’)} — \Il(x)‘ — 0);

e U is uniformly consistent (i.e. sup,cg [¥(z) — \Il(x)‘ — 0 in probability);

e a central limit theorem: Yz € S, /n(¥(x) — ¥(z)) 2B N(0,02) for some o,

as min; N; — 00.
Remark. The requirement that min;N; — oo means that these asymptotic prop-

erties hold (naturally enough) only at points (¢, p) belonging to stacks which are
sampled infinitely often.

In order to establish these properties, it will be helpful to consider a simplified
version of the estimator.

Suppose we have stacks si,...,S,, as in the theorem. The intersection of any
two stacks is a union of isolated points and piecewise linear curves. We refer to
these isolated points, and the endpoints of the piecewise linear curves, as crossing
points. (See Figure 2.) Let C' denote the (finite) set of all crossing points that arise
from pairwise intersections among s, ..., s,. Let A denote the set of (disjoint) arcs
which connect the crossing points, each arc being a subset of one or more of the
stacks. For a € A, let a° € C and a! € C be the endpoints of a, with a°® < a'.



Note that if we wish to find a maximum-likelihood estimate of ¥ on C', we can
take the function ¢ : C'— |0, 1] solving

max  Yaea nalog(d(a’) — ¢(a’))
st o(c) < o(d) for all c <d

where n, is the number of dispatch points in the sample which fall on a.

Having done this, we can extend ¢ to S = UJjL, s; as follows. If x = (¢,p) is a
point on a € A, let n,(x) be the number of dispatch points in the sample which fall
on a between a® and x. Then let

o) = 2210 + (1o = ()l

if n, > 0, and

(W(a') = ¥(x))¢(a’) + (¥(x) — ¥(a®))p(a’)

o) = T(al) — W(a0)

if ng =0.

It should be noted that, although theoretically sound, the above construction
(which we will refer to as the simplified estimator) has some unsatisfactory features
as a practical statistic. For one thing, a (small) part of its definition involves the
very V¥ it is intended to estimate. More seriously, it may not be monotone: we may
have (g1,p1) < (g2,p2) but ¢(qi,p1) > &(g2,p2), if (¢1,p1) and (g2, p2) belong to
different stacks. Our grid estimator may be thought of as a modified version of the
simplified estimator that corrects these defects. The price to be paid for this is the
introduction of a little (asymptotically vanishing) bias.

Lemma 4.2. The simplified estimator ¢ discussed above has the following prop-
erties:

e Uniform asymptotic unbiasedness: sup,cq|E [¢(z)] — ¥(z)| — 0;
e Uniform (strong) consistency: sup,cg |¢(z) — ¥(z)| — 0 with probability 1;
e A central limit theorem: for each x € S, /n(¢(z)—¥(x)) £ N(0,02) for some

Oyg,
as min; N; — 00.

Proof of Lemma 4.2. The standard theory of maximum likelihood estimators (see
e.g. [7]) gives the required results for each fixed x € C, since here we are considering
only a parametric estimation problem with finitely many parameters. We have only
to extend the results to all z € S.

Let x be a point on the arc a € A. Note that

Bx) = (x) = (1—p)(6(a®) — U(a") + pu((a) — (a))
£ Loso(é(a) = 6la)) (”““’) - px) | (5)

Ng
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where p, = (¥(z) — ¥(a®)/(¥(a') — ¥(a")).

For the unbiasedness, let the o-field G = o {n, : r € A}. Note that ¢(c) € G
for all ¢ € C, while E [n,(z)|G] = pzng. (The sample may be thought of as being
generated by first generating the arc counts n,, and then (independently) generating
the exact locations of the dispatch points on each arc.) Hence from (5) we obtain

El¢(x) — W(z)|G] = (1 = po)(6(a") — (a")) + pa((a’) — ¥(a')).

It follows by taking a further expectation that

E[p(x) = ¥(2)] = (1 = p.)(E [¢(a”)| = W(a")) + pu(E [¢(a")] = W(a")),

and so
sup |E [¢(z)] — W(x)| < sup |[E[¢(x)] — V().

€S zeC

The result then follows from the finiteness of C'.
For the uniform consistency, note from (5) that

ne(7)

Ng

sup |¢(z) — W(x)] < maxeec [¢(c) — V(c)| + maxoeasup

For each a € A, we have sup,, n( 2) _ pz| — 0 a.s. by the Glivenko-Cantelli
theorem [6, p. 59]. Also, ¢(c) — ¥(c) a.s. for each ¢ € C. Since A and C are finite
sets, the result follows.
For the central limit theorem, note that
o(a%) — W(a)
vn ( ¢(a! . U(a') ) B N(0,%)
e P

- Mz

for a suitable 3 x 3 matrix X. Hence

V(1 = pa)(@(a°) = W(a®)) + pa(g(a') — U(a))
+(W(at) = w(a%)) ("= —p,)) B N(0,02)

for a suitable number o,. The result then follows by (5) and the converging-together
lemma [6, p. 91]. 1

Lemma 4.3. Let
Z =A{(z,y): Fi,j,z with x € s;,y € sj,z€ s5;,Nsj,x < z<y}
and
K={(z,y):z,ye SNnU,z <y, (z,y) ¢ Z}
Then
inf (U(y)— Y(x)) > 0.
Jint (W(y) ~ ()

Proof. Suppose the contrary: that a sequence of pairs (z,,y,) € K has U(y,) —
U(z,) — 0. By passing to subsequences if necessary, we may assume that x, — x,

9



Yn — y where z,y € S and = < y. Also, since S consists of a finite union of line
segments, we may assume (passing to further subsequences if necessary) that x,, € L
and y,, € M, where L and M are horizontal or vertical closed line segments of finite
length. We have z € L and y € M, and the condition (x,,y,) € K implies that L
and M are disjoint. Hence = # y and so W(y) > W(x). The continuity of ¥ then
provides a contradiction. 1

Proof of Theorem 4.1. Let D; be the event that each cell in the grid either
contains exactly one crossing point of C, or intersects exactly one arc of A, or does
not intersect any arc. For either the grid estimator or the enhanced grid estimator,
the strict monotonicity condition on ¥ implies that P (D;) — 1 as min;N; — oo.

Supposing the event D; to have occurred, consider the problem 4, which is solved
to determine the values of the grid estimator. Suppose we relax (i.e. ignore) all the
monotonicity constraints v. < v4, except for those where cells ¢ and d intersect a
common arc a € A. Note that the values assigned to cells which do not intersect
any arc are now completely free; these cells will be ignored from now on. Also, for
each arc a, those cells which intersect only a form a “chain” subproblem of the form

max Sierlog(v; — vi—1)
st. a=yp << <y =0

the optimum of which determines values for these cells independently of the rest
of the problem. Here I C {1,...,k} represents those cell-cell boundaries where a
dispatch point of the sample occurs on the arc a, and o and 3 are the cell values at
the endpoints of the arc, which for the purposes of the subproblem may be assumed
to be fixed. It is straightforward to see that the optimum of this subproblem is given
by v; = |[IN{1,...,i}|/|I| (where |I| denotes the cardinality of the set I, i.e. take
equal-sized steps at each dispatch point), and the optimal value is |I|log((6—a)/|1]).
That is, we can express the optimal cell values for all cells along an arc in terms of the
optimal values for cells at the endpoints. Taking this into account, the main problem
simplifies to one in which only the values for cells containing crossing points need to
be found. This simplified problem is identical (apart from an additional constant in
the objective) to that used to construct the “simplified estimator” above. It follows
that the optimum of our relaxed problem agrees with the simplified estimator ¢ on
any arc containing at least one dispatch point.

Let D5 be the event that each arc contains at least one dispatch point. It is clear
from the strict monotonicity of ¥ that P (D) — 1 as min;N; — oo.

Let D3 be the event that the optimum of the relaxed problem also satisfies
the constraints that were relaxed (and, therefore, agrees with the optimum of the
problem as originally stated). We have

inf (6(y) — o(x)) = inf(d(y) — U(y)) + inf (U(y) - V() + nf(¥(z) - d(z)),

(zy)eK yeSs (z,y)eK z€S

where K is as in Lemma 4.3. Hence by Lemmas 4.2 and 4.3,

lim inf (6(y) — 6()) > inf ((y) — U(x)) > 0.

n (z,y)eK (z,y)eK



Since ¢ is monotone on each individual stack s;, we see that if (z,y) belongs to the
set Z defined in Lemma 4.3, then ¢(y) > ¢(x). It thus follows that

inf  (¢(y)) —o(z)) >0 eventually, with probability 1,

z,yeSNU, z<y
and hence that P (D3) — 1 as min;N; — oo.
It is now clear that P (\f!(x) = ¢(z) Vx € S) > P(DiNDyNDs) — 1. From

this (together with the fact that ‘\if — ¢’ < 1), all the conclusions of the theorem
follow:
The uniform asymptotic unbiasedness follows as

sup | E [¥(x)] — U (x)| < sup|E [¥(2)] - E[g(x)]| + sup | E[¢(x)] — ¥(x)].

zeSs zeS zeSs

The second term is covered by Lemma 4.2, while the first can be estimated as follows:

sup| B [¥(a)] = Blp@)]] < sup B [[¥(x) - o(x)]]
< sup P (U(x) # ¢(x))
zeS
< P (\il(x) # ¢(x) for some x € S) :

The uniform consistency follows as

sup

1p | ¥ (2) = W(a)] < sup |6(x) = (@) + La 2000 for some aes 20

The central limit theorem follows as
Va(¥(a) = () = Vi(é(x) = U(2) + V(¥ (z) - ¢(x)) B N(0,02),
by the converging-together lemma. 1

Theorem 4.1 shows that our estimator has some desirable properties at points
(¢, p) which belong to stacks that appear frequently in the data. But at points which
are far from any such stack, there is no such guarantee. In order to obtain good
behaviour uniformly in the plane, it is (reasonably enough) necessary to have a data
set which explores the whole plane. This is formalized in the following result.

Theorem 4.4. Let s1, sg,... be a sequence of offer stacks such that U2 s; is
dense in the bounded set U = {(g,p) : 0 < ¥(q,p) < 1}. Suppose ¥ is continuous
and strictly monotone on U. Let U,, be the estimator of ¥ derived from a sample of
n =27, N; points, with N; points from stack s; for each j = 1,...,m. Then there
exists a sequence (v,,) of integers such that when minj’, N; > v,,, the corresponding
U,, are uniformly asymptotically unbiased and consistent over the whole plane. That

is,

® SUPgze([0,00)2

E {\i/m(a:)} — \I/(x)’ — 0;
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U, (z) — \If(x)‘ — 0 in probability

® SUpP,c [0,00)2

as m — Q.

Remark. Theorem 4.4 extends the asymptotic properties of ¥ to all points of
the (g, p)-plane, including those which do not belong to any stack (c¢f. the remark
following Theorem 4.1).

Proof. For each z = (¢q,p) € U, let x;} and z;, denote the closest points to x
in (U s; U {x: ¥(x) = 1}) N ([g,0) x [p,00)), and (UL, s; U {x : ¥(z) = 0}) N
(10, q] x [0,p]) respectively. For x € [0,00)*\ U, let x;} =z, = x. We first establish
that our hypotheses are sufficient to imply

sup (\If(:v+) — \If(x_)) — 0 as m — 00.

m m
x€[0,00)2

For this, note that if [0,00)? is covered with a grid of spacing §, then each grid
cell Eiyj = [id, (i 4+ 1)d] x [§6, (j + 1)d] with Ej; N U # ) must intersect U2, s, so
there is some finite m such that Uj.; s; intersects each of the finitely many such
Eij. For this m, we have sup,c(g ooy2 |7, — 7, || < 36. Since § > 0 was arbitrary,
it follows that sup,c(p o0z [|7;, — 7, — 0 as m — oo. Moreover, our continuity
assumption on ¥ actually implies that ¥ is uniformly continuous on [0, 00)?; hence
SUD,c(0.00)2 (Y(77,) — ¥(77,)) — 0 as m — oo.

Now, for each fixed m, choose (by Theorem 4.1) v,, such that when minjZ; N; >
Vm, We have

sup ‘E [\i/m(x)} — \I/(x)’ <1/m

:BEU;n:l Sj
and
Pl sup ‘\ifm(x) — \I/(x)‘ >1/m| <1/m.
CEEU;”:l Sj
Henceforth, we assume that minj’; N; > vy,.
We can establish the unbiasedness result by observing that

E[Wn(x)| = ¥(2) < E [U(a))] = V() < 1/m+ () - U(z,)

m

and

A

U(z) = E V(@) < () = B [Un(2,)] < U()) = U(x,) +1/m.

m

A

(Note that when U (z) =0 or 1, V,,(z) = ¥(z) with probability 1.) Hence

E [\ilm(:c)] — \I/(a:)‘ <lim sup (\IJ(:(;Jr) — \I/(:c;n)) =0.

lim sup m
™ 2€[0,00)2

™ 2€[0,00)2

For the consistency result, let €, = 25up,¢(p o0y2 (Y(z},) — ¥(z,)). Then

m

P < sup |0, () — \If(x)‘ > 2 + em>

z€[0,00)2
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. . 2
< P| sup (me; —U(x,)) + (¥(z})) — U, (x,, >>+em>
(s (nten) = wem)) + (9 = e, ) >
. - 2
< Pl sup (Up(zh)—9(z})) + sup (¥(z,,)— V.n(z,, >>
()36 ()i, > 2
A 1 A 1
< 2 (s onten) - vl > L)+ p (s [0 - o) > 1)
z€[0,00)2 m z€[0,00)2 m
— 0 as m — oo.

4.1 Expected foregone revenue

Although it is important and in itself interesting to measure the quality of the grid
estimator U in classical statistical terms, it is perhaps more important to measure
its performance in the context of optimization. The theory of stochastic optimiza-
tion provides a standard way to do this, which we outline below. (For a more
comprehensive treatment, see [11, 10].)

Suppose the market has market distribution function W. For any offer curve s,
let

Fis) = [ Rig.p) dv.

Let s* be a maximizer of F', i.e. an optimal offer curve. One of the main uses of any
estimate W of W is to give us an estimate s of s*, found by solving

maximizesF'(s) := /R(q,p) AU (6)

The quality of §, and hence of ¥, can be gauged by the quantity F(s*) — F(8), the
loss in objective value that will be experienced when using these estimates in place
of the true ¥ and s*. This loss in the objective value is termed foregone revenue.
In the present context, U is a random object, since it is constructed from a random
sample as in the previous section. Similarly, 8 is random, and so F(s*) — F'(8) is
a non-negative valued random variable. Its expectation ¢ = F(s*) — F [F(S8)] may
be used as a figure of merit for the estimation process. We will refer to ¢ as the
expected foregone revenue; this is essentially the same thing as the “expected excess
cost” (for minimization problems) in [9]. The following theorem shows that if ¥
is the grid estimator constructed based on the hypotheses of theorem 4.4 then the
expected excess cost diminishes to zero as the estimator improves.

Theorem 4.5. Let s1, sg,... be a sequence of offer stacks such that U2 s; is
dense in the bounded set U = {(¢,p) : 0 < ¥(q,p) < 1}. Suppose ¥ is continuous
and strictly monotone on U. Let U be the estimator of ¥ derived from a sample of
n =37, N; points, with N; points from stack s; for each j = 1,...,m. Let R be a
bounded function of p and g which is increasing in p as well as ¢q. Also let s* and § be
maximizers of F and F, as defined above, respectively. Then F(s*) — E [F(8)] — 0.

Proof Note that

F(s) < F(s)+|[F = Fllw
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F(é)_f—”F_FUoo
F(8) +2|[F — F|o. (7)

VARVAN

Furthermore,
IF — Bl = sup\/Rd\If—/Rd\ify
= sup\/Rd(\I!—\iJ)\

Now U and its estimate ¥ both take on the value 0 at the origin, which is the start
of the curve s, and they evaluate to 1 at the end of s. Using this and integrating by
parts we obtain

sup|/Rd(\p—xif)| sup|/(\If—\i/)dR|
1~ ¥llcsup [ dR

< 2| — ¥l [Rloo (8)

IN

From (7) and (8) together we derive that
F(s7) = F(8) < 4/|R||oo||¥ — ¥|].

Theorem 4.4 states that U constructed as described here will uniformly converge to
¥ in probability, therefore we obtain

F(s*) — F(8) — 0 in probability as m — oc.
Furthermore, the random variables F'(§) are bounded as R is bounded. Therefore

F(s*) — E[F(8)] — 0 as m — oc.

5 Numerical example: the three-node network

In this section, we use our method to estimate a market distribution function from
synthetic (simulated) data. We use an example system which is sufficiently small
for all quantities to be computed analytically.

Consider the three-node network shown in Figure 3. The network represents a
(very small) power system operated according to a nodal pool power market. In this
system, “we” are the only generator large enough to influence prices, and we have the
ability to generate power at no marginal cost. A competitive fringe comprising many
smaller generators provides additional supply “G1” and “G2”; which is offered to the
market via fixed aggregated offer curves. For simplicity, assume that these take the
forms g = (1p and ¢ = (Bop at nodes 1 and 2 respectively, with §; = 3 = 1. Demand
D is located at node 3 and is random, with a probability distribution function F'; we
will use a uniform distribution on [180,300] for this. There are no line losses, and
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no line capacity constraints other than the 100 megawatt limit on the line between
nodes 2 and 3. The three lines have equal admittances. (The significance of this last
point is that 1/3 of any power injected at node 1, and 2/3 of any power injected at
node 2, must flow via the limited-capacity line to reach the load.)

The system is simple enough to admit a simple closed-form expression for ¥(q, p).
Indeed, ¥ turns out to be piecewise linear. There are only two regimes: either the
transmission constraint between nodes 2 and 3 is binding, or it is not. If it is
not, the price p of electricity will be the same at all nodes; this is possible when
(q+ Bip)/3 + 2Psp/3 < 100, i.e. g+ 3p < 300 (where ¢ is our own generation). The
total generation from all sources is then ¢ + (51 + (2)p, and so

V(g,p) = F(q+2p) = 1;0(q +2p — 180) .

If ¢+ 3p > 300, then the line between nodes 2 and 3 must be at capacity, and there
will be a different price at each node. Let p be the price at our node, and p; be the
price faced by the generators G2. The line constraint requires (g+/51p)/3+202p2/3 =
100, and so py = 150 — (¢ + p)/2. To maintain ps > 0 requires ¢ + p < 300. (Note
that no solution is possible for ¢+ p > 300, since then the generation at node 1 alone
would be greater than the transmission network could handle.) The total generation
from all sources is ¢ + B1p + (2p2 = 150 + (¢ + p)/2. Hence

U(q,p) = F(150 + (¢ + p)/2) = 210@ +p — 60).

To summarize:

0 aif9+2p§180
U(q,p) = (¢ +2p—180)/120 ,if g+ 2p > 180 and g + 3p < 300 (region I) (9)
) (¢ +p — 60)/240 , if ¢+ 3p > 300 and ¢ + p < 300 (region II)
1 ,if g+ p > 300 .

The regions corresponding to the different linear pieces of ¥ are indicated by the
dashed lines in Figure 4.

Suppose we wish to maximize our gross revenue R(q,p) = gp. Our optimal offer
curve s* can be found using the technique of [1]. According to that technique, the
optimal curve must at each point be either horizontal, vertical, or a solution of

OROV  OROV

dq dp  dp 0q
For this problem, the latter equation reduces to ¢ = 2p in region I, and ¢ = p in
region II. This gives us two non-intersecting line segments; to produce an offer curve
which is monotone increasing in both ¢ and p, they must be joined by a vertical

line segment at some fixed quantity go. The value of gy should be chosen so as to
maximize

1

Rav— ["CL gui [ et apr [ Lo [Tt
[ Rav= % 260 q+/qo/2 PG P Jioo—aoss 220 p*/qo T 120 “
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the expected gross revenue. Elementary calculus suffices to show that this is achieved
for gy = 100 giving an optimal expected revenue of 10127%. The resulting optimal
curve s* is shown in Figure 4.

We now describe the results of a number of numericalexperiments that investigate
the behaviour of our V-estimator when it is computed from
(a) dispatch points simulated from a single “good” stack;

(b) dispatch points simulated from each of six stacks; and

(c) dispatch points simulated from a single “bad” stack.

The stacks used are shown in Figure 5. Note that the “good” stack used for (a) is
quite close to optimal, but the “bad” stack used for (c) is rather far from the optimal
stack. Both the “good” and the “bad” stacks are among the six used for (b).

In each experiment the following procedure was followed. For the set of stacks
corresponding to the experiment a set of dispatch points was calculated by sampling
from W defined by (9). In each experiment sample sizes of 60 and 240 dispatch points
were chosen. For each sample the non-parametric maximum likelihood procedure
was followed to produce an estimate U of U. The computation time required to
produce ¥ increased from a few minutes to over an hour, roughly a 20-fold increase,
as the sample size quadrupled.

To assess the quality of the estimator we repeated each experiment 100 times
to obtain 100 estimates of W. These estimates are plotted on the graphs shown in
Figures 6, 7, 8, 9, 10 and 11. These figures depict the true value of ¥ as shown
by the piecewise linear curve, compared with the 100 sampled estimates. (The
horizontal axis on these graphs represents the parameter ¢ as (q(t), p(t)) moves along
the optimal stack from (90, 45) where ¥ = 0 to (150, 150) where ¥ = 1.)

Figures derived from a sample size of 60 depict very similar results (in terms of
bias of the estimators) to that depicted in the sample size of 240. The only thing
different is that the spread decreases as the sample size is increased.

The differences between cases (a), (b), and (c) are most obvious in the lower left
corners of Figures 6 to 11. In case (c) there is a clear bias, in case (a) the bias is
much smaller, and no bias is noticeable in case (b). This suggests that bias reduction
may be an advantage of more diverse data.

In each of the experiments we computed the estimate s of the optimal offer stack
s* by solving (6) using U rather than W. Since VU is piecewise constant on the
cells of a rectangular grid, the line integral reduces to a finite sum, with one term
arising each time the curve s crosses a boundary between cells. Furthermore, if R
is increasing in both components (as is usually the case, e.g. R(q,p) = gp here),
then the optimal curve will have each such boundary crossing as near as possible to
the upper or right-hand end of the edge. (Note that the optimal value of (6) may
not actually be attained, but must be understood as the supremum of all possible
values.) These considerations reduce (6) to a simple, finite problem.

Figure 12 shows estimates of the optimal offer stack § (for clarity we show only
the first 25 of these). Note that for experiments (a) and (c), where the dispatches
come from a single offer stack, the estimated optimal offer stacks seem to have almost
converged even with a sample size of 60. However the limit to which they converge
is not necessarily the optimal offer stack. This is particularly the case for (c), where
the limit is quite far from the optimal offer stack. In (b), convergence is slower, but
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Table 1: Average expected returns of estimated offer stacks.

’ H sample size 60 ‘ sample size 240 ‘

(a). “good” stack 9291.63 9184.07
(b).siz stacks 9743.01 9874.59
(c). “bad” stack 7542.69 7718.66

the limit is closer to the optimal offer stack.

The performance of each s was then evaluated under the true market distribution
function to give an expected revenue F'(§). Table 1 provides the sample average of
these values over the 100 experiments. The difference between these values and
the optimal expected revenue is an estimate of the expected forgone revenue. For
(¢), the performance of the estimated stacks is poor, and Figure 12 suggests that
increasing the sample size is not likely to improve the returns significantly. This
is consistent with the theoretical results - the increased sample size improves the
resulting estimator \il, but only on the offer stacks that the dispatch points came
from. The estimator here gets closer to the true W on the single “bad” stack, but
remains far from the true ¥ everywhere else, including in the vicinity of s*.

The returns from (a) are better, but Figure 12 again indicates that increasing
the sample size will not result in further improvement. The six stacks in (b) produce
the best returns. This illustrates the value of data diversity - sampling from many
parts of the plane produces better results than the same number of observations
confined to a single curve. Here Figure 12 suggests that increasing the sample size
might produce better results still.

6 Future directions

The results above demonstrate that in order to improve on a “current” offer stack,
it is necessary to know the value of ¥ not only on that stack, but also elsewhere
in the plane. A relevant question would be how much revenue would be lost (or
gained) by submitting a variety of offers in order to garner more information on
the market distribution function. This is a “multi-armed bandit” problem, of the
kind described in [4]. The loss or gain must be defined relative to the strategy of
repeatedly submitting the same “current” stack, and so depends very much on how
good that stack was to begin with. If the original stack was close to optimal, then it
is likely that a loss will be incurred by varying it. Furthermore, the eventual gains
resulting from a better knowledge of ¥ are likely to be small. If, on the other hand,
the original stack was poor, then it is likely that experimenting with other stacks
will result in an immediate gain, with further gains in prospect once ¥ is better
understood.

In a real electricity market, a generator must be thought of as facing not a
single ¥ function, but many ¥ functions corresponding to different times of day,
hydrological conditions, etc. Thus the generator may have available data relating
to U functions other than — but perhaps similar to — the one being estimated. A
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valuable extension of the techniques presented in this paper would be to make use
of the additional data in some way.

Market distribution functions, as described in this paper, are intended to apply
to a single-period market clearing. They are not applicable to market dynamics in a
repeated gaming situation. An extension to such a situation would have to consider
how ¥ might vary in future periods in response to offers made now.
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1. Original data

3. Cell values giving ¥

Figure 1: Example showing the construction of the (enhanced) grid estimator from
a sample of five points of dispatch. First, the plane is subdivided into rectangular
cells (the extra lines of the enhanced estimator are shown dashed). Then cell values
are determined (the contours of U are shown as heavy lines). In this example, only
one cell’s value is not completely determined by (4); it has been given a value of
0.3 in accordance with the convention described in the text, although any value in
[0,0.6] would give the maximum likelihood.
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Figure 2: A typical example with m = 3 distinct stacks and a total of n = 20
dispatch points in the sample.
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Figure 3: A three-node network.
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Figure 4: The (¢, p) plane for the three-node network problem, with optimal offer
curve shown.
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Figure 5: Stacks used for obtaining simulated data in the three-node network.
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Figure 6: Values of the estimated ¥ computed from 60 dispatch points on the single

“good” stack.
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Figure 7: Values of the estimated ¥ computed from 60 dispatch points on all six
stacks.
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Figure 8: Values of the estimated ¥ computed from 60 dispatch points on the single
“bad” stack.
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Figure 9: Values of the estimated ¥ computed from 240 dispatch points on the single
“good” stack.
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Figure 10: Values of the estimated ¥ computed from 240 dispatch points on all six
stacks.
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Figure 11: Values of the estimated ¥ computed from 240 dispatch points on the
single “bad” stack.
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Figure 12: Estimated optimal offer stacks

28



