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Abstract

The inter-island HVDC line is a major transmission line in New
Zealand, as it is the only link between its two islands. It enables the
transfer of electricity between the South Island and the North Island.
Because these transfers are generally beneficial to both the generators
of the South Island and the consumers of the North Island, South
Island generators are currently charged for the cost of the HVDC
line based on a peak charge. We investigate an alternative scheme
based on auctioning physical flow rights. Using a simplified supply-
function equilibrium model we show that this is welfare optimizing in
a perfectly competitive setting, but can result in inefficient dispatch
and loss of rights revenue if generators bid for capacity strategically.

1 Introduction

The efficiency of electricity generation and transmission has become an im-
portant topic as regions around the world seek to reduce their energy costs.
In pursuit of this goal many countries over the past 20 years have undertaken
a restructuring of their electricity systems by removing the vertical integra-
tion of generation, transmission, distribution and retailing and attempting to
replace it with separate horizontal layers, each made up of several competing
organizations. Such competition has been introduced in the expectation that
it will lead to an increase of efficiency and a decrease in electricity prices.
The hope is also to provide signals for investments and new entry.
In many countries like New Zealand, Australia, Scandanavia, and most

regions of North America the wholesale market for electricity is structured
as a pool, where transmission is managed by a single entity often called the
Independent System Operator (or ISO). Given demands of retail companies
and wholesale purchasers, and offers of electricity at declared prices from
generators, the ISO uses an optimization program to dispatch electricity so
as to minimize the total revealed cost of meeting demand. The program also
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gives the prices of electricity for both generators and purchasers that may
depend on their location. This structure has emerged as that preferred by
the Federal Energy Regulation Commission (FERC) and instituted in many
regions of the United States as the Standard Market Design (SMD) [1].
The transmission pricing regime in New Zealand has followed the basic

principles laid out in the SMD1. In New Zealand, the transmission network is
owned and operated by the ISO (a state-owned company called Transpower)
whereas the generators are owned by a small number of private companies
and state-owned enterprises. The economic dispatch of energy (and its price
at each node) is determined by solving a linear programming model called
SPD. Since the transmission of power is subject to congestion, and incurs
energy losses, the price of energy is generally different from node to node,
a setup known as nodal pricing or locational marginal pricing. A history of
the development of these market arrangements is given in [19].

Figure 1: HVDC Line between the South Island and the North Island

A major component of the New Zealand transmission system is the High-
Voltage Direct Current (HVDC) line joining the South Island to the North
Island (see Figure 1). This was commissioned in 1965 (and upgraded in
1993) with the main purpose of conveying hydro-electric power from the
South Island to the population centres in the North Island. Since the South
Island generators tend to export electricity to the North Island, they decrease
the North Island prices of electricity, but these generally remain higher than
in the South. The benefits for South Island generators based on the higher

1Although its design and implementation predates the publication of the SMD by
several years.
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prices they can earn in the North due to the HVDC line has been estimated
to be around NZ$240 million per year.
In its standard configuration the HVDC line consists of two parallel ca-

bles (or poles) although one of these is currently being repaired. The costs
of maintaining and improving the HVDC line are borne by Transpower, who
recover them by charging the users. These costs are estimated to be approx-
imately NZ$88 million per year. Currently the charge for use is allocated
entirely to South Island generators, in proportion to their last 12 peak gen-
eration periods over the last 4 years. Although it has been in use for some
years, this charging scheme has understandably been unpopular with South
Island generators, who view it as inequitable. Their claims are given some
validity by observing that the HVDC link carries flows from North to South
in winters when the hydro-electric lake levels are low (which has occurred in
four of the last ten years).
In response to dissatisfaction with the current cost allocation scheme

in New Zealand, a number of alternative proposals have been mooted. In
this study we consider one recent candidate pricing scheme proposed by the
NZIER [16]. This proposal which we shall call the HVDC flow right model is
a variation on the flow-based transmission right proposals outlined in [8]. Un-
der the NZIER scheme, generators bid for the use of capacity on the HVDC
in a rights auction. Given an allocation of capacity rights, the power transfer
of the generator from the South Island to the North Island is restricted by its
allocation. Secondary trading of allocation rights is proposed to allow trans-
fer of these to generators who value them the highest, and a spot market is
also proposed in which small quantities of transmission rights can be traded
at the margin at the same time as energy is dispatched by Transpower.
Allocating the cost of electricity transmission is a complicated problem

that has attracted a lot of interest in the economics community, and (as
mentioned above) has resulted in different solutions in different countries.
Charging for the use of transmission must account for several sometimes
conflicting objectives as follows:

1. It must result in an efficient utilization of capacity;

2. It must result in an income stream that is sufficient for expansion;

3. It must provide the correct economic signals for expansion.

In a perfectly competitive market, it is possible to devise transmission
pricing schemes that give the most efficient utilization of existing capacity.
Early descriptions of these are given by Hogan [12] and Chao and Peck [8].
In the FERC standard market design with full nodal pricing, the economic
dispatch optimization (or at least a convex version of it) provides the most
efficient capacity utilization and nodal prices that support this, assuming that
generators do not act strategically. In this setting, point to point financial
transmission rights (FTRs) provide a suitable mechanism for the allocation of
transmission rentals to hedge location risk and support transmission capacity
investment. As shown in [8] the same allocation can in principle be achieved
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with the assignment of physical flowgate rights to generators. In practice,
the administration of markets for these instruments is very different, and
seems to favour FTRs (see [13] and [9] for a discussion of these issues).
In real electricity markets, the returns from selling flowgate rights or

FTRs are insufficient to cover the costs of providing transmission or expand-
ing it. It has been estimated [18],[19] that the rental stream covers at most
30% of total cost. According to some economists2 this missing money can be
partly attributed to an unwillingness of regulators to let price differences be-
tween locations (and shortage probabilities) rise to levels that would support
a transmisson line investment. In practice the extra cost of operating and
expanding transmission assets must be recovered each year by the owner.
In New Zealand this cost recovery takes two forms. The additional costs

of the high voltage AC transmission network in each island are recovered
using a connection charge based on the transmission assets at the grid exit
point of the consumer, and a coincident peak charge, in which each consumer
pays a charge for every MW of power that was consumed in the 100 highest
regional demand periods of the previous year3. The additional costs of the
HVDC link are assigned to South Island generators as described above.
In a perfectly competitive market, the assignment of HVDC costs accord-

ing to historical peak usage does not distort a generator’s incentive to offer
at marginal cost in any trading period4. This means that such charges will
not have an impact on the efficient utilization of existing capacity. On the
other hand, they might affect a generator’s willingness to participate in the
market. For example a small local generator in a remote part of the South
Island might find it economically beneficial to become embedded with its
local demand and avoid the charges, even though the participation of this
generator in the national transmission system provides some benefits.
Cooperative game theory (see Nash [17], Shapley [20], and Aumann [6])

provides cost allocation schemes that encourage participation when it yields
overall welfare benefits. These methods have not received much attention in
the electricity market literature perhaps because of their complexity. Since
the earliest discussion of their application to transmission planning [11] there
have been a number of similar papers e.g. [22], [23], [21], [7], [14] with
application in different jurisdictions. The application of these methodologies
all assume that agents do not behave strategically in the energy market in
response to the allocation of costs. Even if they do not, their exercise of
market power in the energy market makes it difficult to compute the total

2The papers of Hogan generally take this position (see
http://www.hks.harvard.edu/hepg). The argument is similar for investment in gen-
eration capacity, where price caps and probabilities of rationing are chosen at levels below
which new investment in generation capacity would optimally occur.

3The country is divided into four regions. The coincident peak demand for each region
is monitored and the 100 trading periods with highest demand are recorded for the year
September 1 to August 31. Each customer’s share of these peak demands is also recorded
and determines its share of the total interconnection charge for the following year (from
April 1-March 31).

4Since, the capacity choice of a rational generator is not likely to exceed its peak
generation, an historical peak charge can be viewed as a capacity charge.
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costs of different coalitions that are needed to analyze the game (e.g. by
computing a Shapley value).
In this report we examine the HVDC flow right model from several per-

spectives. In the next section we describe the scheme in more detail. We
show by example that a fixed allocation of transmission rights can result in
an inefficient energy dispatch, demonstrating the need for a real-time bal-
ancing market in these instruments. Assuming perfect competition, we show
that such a balancing market can result in a welfare-optimizing allocation
of rights and dispatch. We then study the impact of strategic bidding in a
stylized auction mechanism for allocating transmission rights by constructing
a supply-function equilibrium for a system with two generators. The equi-
librium model assumes that agents are paid a fixed price per MWh in the
energy market, but strategically offer demand functions for HVDC capacity
that limits their output. The computational results from this model show
that the exercise of market power in the capacity auction leads to inefficient
dispatch.

2 The HVDC flow right model

In this section, we present the HVDC flow right model in more detail and
study its properties under an assumption of perfect competition. We shall
also assume for the purposes of this section that there are no line losses. The
HVDC flow right model allocates fractions of the HVDC line to particular
generators. In its most simple form this allocation is fixed and constrains the
dispatch of the ISO. In a pool dispatch of electricity the power flow on the
HVDC cannot be easily split up and attributed to different generators. The
electricity flow on the line does not belong to any particular generator, and
in an optimal pool dispatch generators are indifferent between transporting
it on the line and selling it locally. To determine how much the capacity of
the HVDC line is contributing to each generator’s dispatch the HVDC flow
right model compares the optimal dispatch with one in which there is no
HVDC line (which we call the no-line solution). The difference in dispatch
levels is (if one discounts line losses) the capacity of the HVDC line that the
optimal dispatch is deemed to allocate to each generator.
To establish some notation, let d be the demand in the South Island and

g the demand in the North Island, and qi and rj the dispatch of generators i
and j in South and North Islands respectively. The marginal cost of generator
i is Ci(q) and the marginal cost of generator j is Dj(r). The capacity of the
HVDC line is denoted K, and its flow is f . The optimal dispatch problem
with the line is then defined to be

DP(K): min
P

i

R qi
0
Ci(q)dq +

P
j

R rj
0
Dj(r)drP

i qi − f = d, [π]P
j rj + f = g, [μ]

−K ≤ f ≤ K,
0 ≤ qi ≤ Qi, 0 ≤ ri ≤ Ri.
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Quantities in brackets denote Lagrange multipliers for DP(K). The Karush-
Kuhn-Tucker conditions for a feasible solution (q, r, f) to be optimal for
DP(K) are then

qi.(Ci(qi)− π) ≤ 0, (Qi − qi) .(Ci(qi)− π) ≥ 0 (1)

rj. (Dj(rj)− μ) ≤ 0, (Rj − rj) . (Dj(rj)− μ) ≥ 0 (2)

(K + f) .(π − μ) ≤ 0, (K − f) .(π − μ) ≥ 0 (3)

The simplest version of a HVDC flow right model would solve DP(K) to
give an optimal solution q∗i and DP(0) to give a solution q̄i, and then charge
generator i a cost proportional to q∗i − q̄i. The proportionality constant could
be fixed for all trading periods, or varying (to give an incentive to shift out
of peaks). In the latter case it would need to be chosen carefully to enable
the recovery of the full cost of the line.
A more sophisticated flow right model allocates HVDC flow rights to

generators through an auction. The optimal dispatch of electricity for a
generator cannot then exceed its dispatch in the no-line solution by more
than its allocated HVDC flow right. Formally let ρi be the HVDC flow right
held by generator i, where X

i

ρi ≤ K. (4)

The optimal dispatch model for the whole system is then solved with the
HVDC line being present but with constraints

qi ≤ q̄i + ρi (5)

being imposed on the dispatch qi of each generator. This gives

DPR(ρ): min
P

i

R qi
0
Ci(q)dq +

P
j

R rj
0
Dj(r)drP

i qi − f = d, [π(ρ]P
j rj + f = g, [μ(ρ)]

−K ≤ f ≤ K,
0 ≤ qi ≤ q̄i + ρi, [λ(ρ)]
0 ≤ qi ≤ Qi, 0 ≤ ri ≤ Ri.

Quantities in brackets denote Lagrange multipliers for DPR(ρ). These all
vary with ρ. It is clear that choosing ρi poorly for a given trading period can
result in a suboptimal dispatch and considerable inefficiency. It is conceivable
also that some agent might acquire all K units of the HVDC flow right in
some trading period in which it can use its flow rights to restrict the dispatch
of competitors.
Observe that the flow-right model we are discussing here involves physical

rights, and as such the ability to strategically withhold transmission capacity
from other players is not ruled out. This is not the case in most discussions of
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flowgate rights in the literature (see [9]) where withholding is not allowed and
the flowgate right can only be exercised when the optimal dispatch (ignoring
the rights ownership) constrains the flow in the line.
Given that such a fixed allocation might lead to inefficient dispatch, it

is possible to construct a rebalancing of rights at the same time as dispatch
to ensure that these correspond to the optimal dispatch with the line. The
HVDC flow rights balancing auction requires each generator to submit a
nonincreasing bid curve for extra HVDC flow rights in each trading period.
(Generators with excess rights can offer to supply excess flow rights as well by
offering a supply curve, but we suppose for simplicity that excess flow rights
are only supplied inelastically by Transpower.) Given a collection of bids
for rights, the auction allocates them to generators with highest bids until
the market clears. In a uniform-priced auction all generators would pay the
market clearing price for sold permits. A discriminatory or pay-as-bid format
collects payment according to what is bid. There has been much discussion
in the literature about which format is better, especially when agents may
bid strategically (see [2]), but we will not discuss this aspect here. In what
follows, we shall assume a uniform price format.
A simultaneous auction of flow rights and energy would operate as fol-

lows. An optimal solution (q∗, r∗, f∗) to DP(K) is computed and the South
Island price π recorded and supplied to generators. Then an optimal solution
(q̄, r̄, f̄) is computed for DP(0). If q∗ ≤ q̄, then there is no need to allocate
flow rights from South to North5. We assume henceforth that q∗ ≥ q̄ and
q∗ 6= q̄. Each South Island generator i then makes an offer for extra dispatch
capacity using a bid function Bi(s), and the ISO then solves

DPR: min
P

i

R qi
0
Ci(q)dq +

P
j

R rj
0
Dj(r)dr −

P
i

R ρi
0
Bi(s)dsP

i qi − f = d, [πa]P
j rj + f = g, [μa]

−K ≤ f ≤ K,
0 ≤ qi ≤ q̄i + ρi, [λi]P

i ρi ≤ K [σ]
0 ≤ qi ≤ Qi, 0 ≤ ri ≤ Ri, 0 ≤ ρi ≤ Qi − q̄i.

The solution to this problem allocates HVDC flow rights ρi to generator i,
for which the ISO collects a payment. We have the following results.

Lemma 1 If ρ∗ = q∗ − q̄ then
P

i ρ
∗
i ≤ K.

Proof. We have
P

i q̄i − d = 0 and
P

i q
∗
i − d = f∗, so

P
i ρ
∗
i =P

i (q
∗
i − q̄i) = f∗ ≤ K. But qi ≤ q̄i+ ρi implies

P
i ρi ≥

P
i (qi − q̄i) = f .

Lemma 2 If (q, r, f, ρ) is feasible for DPR then f ≤
P

i ρi.

5If q̄ ≥ q∗ and q̄ 6= q∗ then one might allocate HVDC flow rights to North Island
generators for power flowing from North to South using the same methodology that we
describe here. In the interests of brevity we choose to omit this case.
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Proof. We have
P

i q̄i − d = 0 and
P

i qi − d = f , so
P

i (qi − q̄i) = f .
But qi ≤ q̄i + ρi implies

P
i ρi ≥

P
i (qi − q̄i) = f .

It follows from Lemma 1 that if we choose ρi = q
∗
i − q̄i, then these rights

satisfy (4) and so it is a feasible allocation for DPR. Furthermore, even with
these rights imposing constraints (5) on dispatch, it is still the case that the
optimal economic dispatch q∗ is feasible for DPR. For short-term efficiency
it would be useful to encourage the rights to be allocated in this way. This
can be ensured by each generator bidding for rights at their marginal value,
i.e the extra value that additional rights contribute to the generator’s profit.
This is shown by the following proposition.

Proposition 3 If Bi(s) = π−Ci(q̄i+s), and ρ∗ = q∗− q̄, then (q∗, r∗, f∗, ρ∗)
solves DPR.

Proof. First observe that (q∗, r∗, f∗, ρ∗) satisfies the constraints of DPR,
where

P
i ρ
∗
i ≤ K follows from Lemma 1. We show that if Bi(s) = π −

Ci(q̄i+s) then there exist Lagrange multipiers so that (q
∗, r∗, f∗, ρ∗) satisfies

the Karush-Kuhn-Tucker conditions for DPR. The objective function of DPR
can be rewrittenX

i

Z qi

0

Ci(q)dq +
X
j

Z rj

0

Dj(r)dr −
X
i

Z ρi

0

(π − Ci(q̄i + s))ds

=
X
i

Z qi

0

Ci(q)dq +
X
i

Z q̄i+ρi

q̄i

Ci(s)ds+
X
j

Z rj

0

Dj(r)dr − π
X
i

ρi

Let μa = μ, πa = π, λi = π − Ci(q∗i ). With these choices the Lagrangian for
DPR (ignoring simple bounds) is

L =
X
i

Z qi

0

Ci(q)dq +
X
i

Z q̄i+ρi

q̄i

Ci(s)ds+
X
j

Z rj

0

Dj(r)dr − π
X
i

ρi

+π(d+ f −
X
i

qi) + μ(g − f −
X
i

ri) +
X
i

(π − Ci(q∗i ))(qi − q̄i − ρi)

+σ(
X
i

ρi −K)

This has derivatives

∂L
∂qi

= Ci(qi)− π + π − Ci(q∗i )

∂L
∂rj

= Dj(rj)− μ

∂L
∂f

= π − μ

∂L
∂ρi

= Ci(q̄i + ρi)− π − (π − Ci(q∗i )) + σ

Now choosing q = q∗ gives ∂L
∂qi
= 0 so

qi.
∂L
∂qi
≤ 0, (Qi − qi) .

∂L
∂qi
≥ 0 (6)
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and choosing r = r∗ gives

rj.
∂L
∂rj
≤ 0, (Rj − rj) .

∂L
∂rj
≥ 0 (7)

because Dj(r
∗
j )− μ satisfies (2). Similarly choosing f = f∗ ∈ [−K,K] gives

(K + f) .
∂L
∂f
≤ 0, (K − f) .∂L

∂f
≥ 0 (8)

Finally choosing ρ∗ = q∗ − q̄ (which is nonnegative by assumption) gives

∂L
∂ρi

= 2Ci(q
∗
i )− 2π + σ.

If
P

i (q
∗
i − q̄i) < K, then choosing σ = 0 gives ∂L

∂ρi
= 2Ci(q

∗
i ) − 2π. Since

ρ∗ = q∗ − q̄ ≥ 0, the optimality conditions (1) give

(ρ∗i + q̄i).
∂L
∂ρi
≤ 0, (Qi − q̄i − ρ∗i ).

∂L
∂ρi
≥ 0.

Note that these conditions imply that if ∂L
∂ρi

> 0 then ρ∗i + q̄i = 0. This

implies that ρ∗i = q̄i = 0. Thus we have ρ
∗
i .

∂L
∂ρi
≤ 0 which gives

ρ∗i .
∂L
∂ρi
≤ 0, (Qi − q̄i − ρ∗i ).

∂L
∂ρi
≥ 0. (9)

If
P

i (q
∗
i − q̄i) = K, then we have

P
i ρ
∗
i = K. By Lemma 2, f

∗ ≤
P

i ρ
∗
i , so

increasing
P

i ρ
∗
i beyond K will not yield any extra benefits since f∗ ≤ K.

So we choose Lagrange multiplier σ = 0 and apply the same argument as
above to yield (9).
Thus μa = μ, πa = π, λi = π − Ci(q∗i ), σ = 0 and (q∗, r∗, f∗, ρ∗) satisfy

the Karush-Kuhn-Tucker conditions (6)-(9) for DPR, and so (q∗, r∗, f∗, ρ∗) is
an optimal solution for DPR as these conditions are necessary and sufficient
for a convex program.
Proposition 3 shows that a bid for flow rights s of Bi(s) = π −Ci(q̄i + s)

gives the welfare maximizing dispatch if the market is operated as described
above. Since such a bid function represents the marginal profit that each
generator will earn from an extra flow right, this result is not surprising. The
next section discusses the situation in which generators can bid strategically
for flow rights. This is shown to lead to an inefficient dispatch of energy.

3 Cost allocation with imperfect competition

We now turn our attention to the effect of strategic behaviour of generators on
the outcomes of an auction for flow rights. We first review the equilibrium
conditions for 2 players in a single-node energy market when players offer
supply functions (see [15],[5]).
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3.1 Supply-function equilibrium in energy

Suppose each player has linear marginal costs ci(q) = ciq and demand H is
inelastic and random with probability distribution F . Each company’s profit
is then

Ri(q, p) = pq −
ciq

2

2
.

Consider generator 1. Suppose that the other generators’ offers aggregate to
form the supply function S(p). Then the market distribution function (see
[4]) faced by generator 1 is

ψ(q, p) = F (q + S(p))

and an optimal response is defined by

Z1(q, p) =
∂R1
∂q

∂ψ

∂p
− ∂R1

∂p

∂ψ

∂q

= ((p− c1q)S0(p)− q)F 0(q + S(p)).

By [4, Lemma 4.2] Z = 0 defines an optimal response to S(p). If F 0(q +
S(p)) > 0 then this defines the response q(p) as solving

(p− c1q(p))S0(p)− q(p) = 0

giving

S0(p) =
q(p)

p− c1q(p)
.

In a symmetric supply-function equilibrium (SFE) with n+ 1 generators
having identical marginal costs cq, each generator has n rivals giving total
supply defined by S(p) = nq(p), which leads to

nq0(p) =
q(p)

p− cq(p) .

To solve this ordinary differential equation, consider the inverse supply func-
tion p(q). Then

p0(q) =
1

q0(p)
= n

p(q)− cq
q

so

p0(q)− np(q)
q
= −nc.

Multiplying by q−n yields

q−np0(q)− nq−np(q)
q
= −ncq−n
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or ¡
q−np(q)

¢0
= −ncq−n.

If n > 1 then ¡
q−np(q)

¢
= nc

q1−n

n− 1 + α

so

p(q) =
nc

n− 1q + αqn

which corresponds to the result in [5].
In the special case where n = 1 (i.e. a duopoly) we have

q0(p) =
q(p)

p− cq(p)

which is the first-order linear ordinary differential equation

p0(q)− p(q)
q
= −c.

Multiplying by q−1 yields ¡
q−1p(q)

¢0
= −cq−1

which has general solution

p(q) = −cq ln q + αq. (10)

For the curve defined by (10) to produce a symmetric Nash equilibrium, it
must be non-decreasing and non-negative. This requires α to be large enough
so that the curves remain increasing for all values of demand. Observe that
there is no upper bound here for α, and we can define a family of supply-
function equilibrium for any α sufficiently large.

Proposition 4 Suppose the support of F 0 is (0, 1). If α ≥ c− c ln 2 then the
offer curve

pα(q) =

½
−cq ln q + αq, q ∈ [0, 1

2
],

1
2
c ln 2 + 1

2
α, q ∈ (1

2
, 1]

defines a symmetric SFE.

Proof. Note that pα(q) ≥ 0 and for q ∈ [0, 12 ], p0α(q) = −c − c ln q + α
≥ 0 as long α ≥ c+c ln q, which is guaranteed by α ≥ c−c log 2. If the other
generator offers pα(q) then

Z(q, p) = ((p− cq)S0(p)− q)F 0(q + S(p))
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1.0

Z < 0

Z > 0

Z < 0

p

1.0

Z < 0

Z > 0

Z < 0

p

Figure 2: Plot of Z(q, p) for example pα(q) where c = 1 and α = 1− ln 2.

Now Z = 0 along the curve pα(q) and is positive above the curve and negative
below it as shown in Figure 2.Since for fixed p, (p− cq)S0(p)−q is decreasing
in q, we also have that Z < 0 in the rectangle [1

2
, 1] × [0, pα(12)]. Since

S(pα(
1
2
)) = 1

2
, F 0(q + S(pα(

1
2
)) = 0 for q > 1

2
, and so Z = 0 along the

horizontal line (q, 1
2
c ln 2 + 1

2
α), q ∈ (1

2
, 1]. Indeed Z = 0 everywhere above

this line segment as F 0(q + S(pα(
1
2
)) = 0 in this region as well. It follows

that pα(q) is an optimal response to pα(q), and so forms a symmetric supply-
function equilibrium.
Observe that when the demand is h, generators always get dispatched

h/(n + 1). Then, the expected profit made by each generator (assuming
n > 2) is

E[R(pa(
H

n+ 1
),

H

n+ 1
)] = E[

µ
nc

n− 1
H

n+ 1
+ α(

H

n+ 1
)n
¶

H

n+ 1
− 1
2
c

µ
H

n+ 1

¶2
]

= E[
nc

n− 1

µ
H

n+ 1

¶2
+ α(

H

n+ 1
)n

H

n+ 1
− 1
2
c

µ
H

n+ 1

¶2
]

=
1

2

n+ 1

n− 1cE[
µ

H

n+ 1

¶2
] + αE[(

H

n+ 1
)n+1]

so for fixed n the expected profit is linear in α, and so can be arbitrarily
high. One way of refining the equilibrium concept so that there is a unique
supply-function equilibrium, is to set a price cap p̄. Companies would now
bid supply functions with the highest value of α that will give a dispatch
where their maximum dispatched output corresponds to the price cap. This
condition is pα(

hmax
n+1

) = p̄, or

nc

n− 1
hmax
n+ 1

+ α(
hmax
n+ 1

)n = p̄

α =

µ
p̄− nc

n− 1
hmax
n+ 1

¶
(
hmax
n+ 1

)−n

Since pα(h) is an increasing function of α, this gives us an upper bound
for α. Note that the price cap needs to be high enough so that this upper
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bound remains higher than the marginal cost of generation at hmax
n+1

. This

condition is p̄ ≥ chmax
n+1

. Observe that α can be negative as long as it gives a

non-decreasing offer curve at q = hmax
n+1

.

3.2 Supply-function equilibrium in physical flow rights

The supply-function equilibrium decribed above can be used to derive a
supply-function equilibrium for generators bidding for HVDC flow rights.
In order to derive this, we simplify the energy auction and assume that all
energy is traded at a fixed price π. Generators then bid strategically for flow
rights. We assume for simplicity that all generators are located in the South
Island and sell only in the North Island. Thus each generator’s dispatch of
energy must not exceed their flow right allocation
We denote the profit for generator i when dispatched quantity q in the

energy market by

Πi(q) = πq − ci
q2

2
.

If the clearing price for flow rights is p then the generator must pay qp for
the rights to dispatch q. The profit of generator i when dispatched quantity
q becomes

Ri(q, p) = πq − ci
q2

2
− pq.

In the auction we suppose that each generator ibids a non-increasing curve
q = Bi(p) for flow rights. For each level of demand h, the solution toP

iBi(p) = h determines a clearing price p, and associated profit Ri(q, p).
To compute a supply-function equilibrium, we let r = π − p, and appeal

to the results of the previous section. Given any non-increasing curve Bi(p)
there is a non-decreasing curve Si(r) = Bi(π−r). If the rest of the generators
offer a curve that aggegates to S(r) then an optimal response for generator
1 is defined by

Z1(q, r) =
∂R1
∂q

∂ψ

∂r
− ∂R1

∂r

∂ψ

∂q

= ((r − c1q)S0(r)− q)F 0(q + S(r)).
When F 0(q + S(r)) 6= 0, we have

q(r) =
rS0(r)

1 + c1S0(r)

We can use this to derive some equilibria in different settings.

3.2.1 Symmetric duopoly

Suppose there are two identical generators with c1 = c2 = c. Then by
symmetry q(r) = S(r), and we have

q(r) =
rq0(r)

1 + cq0(r)

13



By (10) this has solution

r(q) = −cq ln q + αq

so

p(q) = π − r(q)
= π − αq + cq ln q

Note that pα(q) = π+cq log q−αq is a decreasing curve, as long as q ≤ e−1+α
c .

Proposition 5 Suppose the support of F 0 is (0, 1). If α ∈ [c − c ln 2, 2π −
c ln 2], then the bidding curve

pα(q) =

½
π − αq + cq ln q, q ∈ [0, 1

2
],

π − 1
2
α− 1

2
c ln 2, q ∈ (1

2
, 1]

defines a symmetric SFE.

Proof. The proof follows along the same lines as that of Proposition 4.

Because we are looking for symmetric Nash equilibria, the generators will
always be dispatched half of the total demand. Hence, their expected profits
are equal and are

E[R] = E[πh
2
− ch

2

8
− pα(

h

2
)
h

2
]

= E[π
h

2
− ch

2

8
− (π − α

h

2
+ c
h

2
ln
h

2
)
h

2
]

= E[1
8
h2 (−c+ 2α+ 2c ln 2− 2c lnh) ].

Thus E[R] is an increasing function of α. The least competitive equilibrium
therefore has maximum α = 2π− c ln 2. This choice of α means that the bid
for the purchase of half of the maximum flow rights is 0. With this choice of
α the total expected revenue collected from the ISO for the HVDC charge is

E[hpα(
h

2
)] = E[h(π − (2π − c ln 2)h

2
+ c
h

2
ln
h

2
)]

= E[πh− πh2 +
1

2
ch2 lnh].

We may compare this with the expected revenue collected from a non-
strategic bid curve Bi(s) = π − cs. This is

E[h(π − ch
2
)] = E[

µ
πh− ch

2

2

¶
].

At any demand level h < 1 we get

πh− ch
2

2
− (πh− πh2 +

1

2
ch2 lnh) = h2(π − 1

2
c− 1

2
c lnh) > 0

14



since the energy price π > 1
2
c, the marginal cost of generation at half the

maximum demand. Thus the revenue earned by the ISO is decreased in
every demand realization due to strategic bidding for HVDC flow rights. If
we compute the expected rights revenue from both settings in the case where
H has a uniform distribution then

E[πh− πh2 +
1

2
ch2 lnh] =

1

6
π − 1

18
c

and

E[h(π − ch
2
)] =

1

2
π − 1

6
c

a threefold increase when strategic bidding is precluded.

3.2.2 Asymmetric duopoly

Let us now consider an asymmetric case, where the marginal costs are c1(q) =
c1q and c2(q) = c2q. We have the best response of player 1 is

S1(r) =
rS02(r)

1 + c1S02(r)

Since Si(r) = Bi(π − r), this gives

B1(π − r)(1− c1B02(π − r)) = −rB02(π − r)

and p = π − r gives on rearranging

B1(p) = B1(p)c1B
0
2(p)− (π − p)B02(p)

B02(p) = −
B1(p)

(π − p)− c1B1(p)
(11)

Similarly

B01(p) = −
B2(p)

(π − p)− c2B2(p)
(12)

This gives a system of simultaneus nonlinear differential equations in p. In
order to solve this system we follow the approach of Anderson and Hu [3].
We discretize [0, 1] into n equal intervals, and we define the 4(n+ 1) values
of B1, B

0
1, B2 and B

0
2 at the endpoints of these intervals (called grid points).

The relations (11) and (12) applied at each grid point give a set of equations.
We also add conditions that ensure monotonicity and smoothness of the
solution, as well as requiring that B1(0) = B2(0) = π. The resulting system
of simultaneous nonlinear equations and inequalities can be formulated as a
nonlinear programming problem6 and solved by GAMS/CONOPT[10]. The
numerical solution for this system where π = 3, c1 = 1, and c2 = 5 is plotted
in Figure 3.

6The GAMS source code for this is provided in the Appendix to this paper.
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Figure 3: Supply-function equilibrium with π = 3, and asymmetric costs
c1 = 1, c2 = 5.

It is interesting to look at the efficiency of such a dispatch. An efficient
dispatch needs to satisfy c1q1 = c2q2, which means that q1/q2 = c2/c1 = 5.
However, as one can see from Figure 3 the effect of the auction is to bring the
dispatches of the two generators closer together, so that the value of q1/q2
is at most 1.5. This means that the dispatch is not efficient. When total
demand is h we have a system optimum of q1 =

5h
6
, q2 =

h
6
, with total system

cost of 1
2

¡
5h
6

¢2
+ 5

2

¡
h
6

¢2
= 5

12
h2. In contrast the solution q1 =

3h
5
, q2 =

2h
5
has

a total system cost when demand is h of at least 1
2

¡
3h
5

¢2
+ 5

2

¡
2h
5

¢2
= 29

50
h2

which is about a 40% increase in dispatch cost.

4 Conclusion

The simple examples in this paper illustrate that allocating physical trans-
mission rights for the HVDC is possible as long as agents bid their true
marginal value for those rights (given perfect knowledge of the South Island
clearing price in the system optimal dispatch). This begs the question of
why we would choose to allocate the rights by auction in any case. A simpler
scheme would be to allocate the costs of the HVDC link directly to genera-
tors depending on the values of q∗i − q̄i. This would give an efficient energy
dispatch ceteris paribus but incentives would exist for generators to change
their offers of energy to avoid some of the extra charges. These incentives
are illustrated by the simple supply-function equilibrium results we discuss.
We have not attempted to quantify the extent of the inefficiency produced

by strategic offering in a real market. Indeed the increase in energy prices
from strategic offering will also create some allocative inefficiency (if demand
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is allowed to respond) that we have not discussed here. It may be argued
that the effects discussed here are not material in real electricity markets in
which the offering process would be considerably more complicated than the
simple model we present. Nevertheless, illustrations of inefficiency in these
simple models should serve as a warning to market designers not to expect
too much from the efficiency of physical transmission right auctions, unless
the market is closely monitored to prevent undue exercise of market power.

5 Appendix

* GAMS/CONOPT SFE model

*

* Written by Andy Philpott, based on Xinmin Hu’s model

* Assume a discretization of demand shock

* Gives a supply-function response

* Note: Asymmetric SFE

SETS

i player / 1, 2 /

k discretization /1*51/;

;

scalar delta >0 to make constraints strict
/0.005/ ;

scalar r

/3/ ;

parameter c(i) cost coefficient /

1 1

2 5 / ;

parameter d(k) demand shock /

1 0.00

2 0.02

3 0.04

4 0.06

:

:

49 0.96

50 0.98

51 1.00

/ ;

parameter q0(i,k) ;

parameter p0(k);

positive variable

q(i,k) quantity offered by player i at demand k

pi(k) clearing price at demand level k ;

variable

s(i,k) slope of other player

t(i,k) slope of player i
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pt(k)

u(k) error terms

error;

equation

objective

response(i,k)

demand(k)

stdef1(k)

stdef2(k)

decreasing1(i,k)

decreasing2(i,k)

decreasing3(k)

tilde(i,k)

monotonic1(k)

monotonic2(k)

monotonic3(i,k);

objective .. error =e= 1000*sum(k,u(k)*u(k));

response(i,k) .. s(i,k)*(r - pi(k) - c(i)*q(i,k)) + q(i,k)

=e= 0;

demand(k).. sum(i, q(i,k)) + u(k) =e= d(k) ;

stdef1(k).. t(’1’,k) =e= s(’2’,k) ;

stdef2(k).. s(’1’,k) =e= t(’2’,k);

decreasing1(i,k).. t(i,k) =l= 0;

decreasing2(i,k)$(ord(k) lt card(k)).. q(i,k+1)- q(i,k)

=g= 0;

decreasing3(k)$(ord(k) lt card(k)).. pi(k+1) - pi(k)

=l= 0;

tilde(i,k)$(ord(k) lt card(k)).. q(i,k+1) - q(i,k)

- t(i,k+1)*pi(k+1)+ t(i,k)*pi(k) + (t(i,k+1)-t(i,k))* pt(k)

=e= 0;

monotonic1(k).. pi(k) - delta =g= pt(k) ;

monotonic2(k)$(ord(k) lt card(k)).. pt(k) - delta

=g= pi(k+1) ;

monotonic3(i,k)$(ord(k) lt card(k)).. q(i,k) + delta

=l= q(i,k+1) ;

model sfe /all / ;

option nlp=conopt ;

option decimals = 8;

t.up(i,k)= -0.001 ;

s.up(i,k)= -0.001 ;

t.lo(i,k)= -5.0 ;

s.lo(i,k)= -5.0 ;

q.up(i,’1’)= 0;

q.lo(i,’1’)= 0;

pi.up(’51’)=0.000;

pi.lo(’51’)=0.000;

pi.up(’1’)=3.000;
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pi.lo(’1’)=3.000;

solve sfe minimising error using nlp;

FILE RES /D:sfeLEN50.out/;

PUT RES;

RES.nd=5;

RES.nw=10;

RES.ap=0;

put ’’Quantity1 Quantity2 Price PTilde ’’ / ;

loop (k,

put q.l(’1’,k);

put ’’ ’’;

put q.l(’2’,k);

put ’’ ’’;

put pi.l(k)

put ’’ ’’;

put pt.l(k)

/;

) put /;
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