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Abstract

Electricity markets face a substantial amount of uncertainty. Traditionally this un-
certainty has been due to varying demand. With the integration of larger proportions
of volatile renewable energy, this added uncertainty from generation must also be faced.
Conventional electricity market designs cope with uncertainty by running two markets:
a day ahead or pre-dispatch market that is cleared ahead of time, followed by a realtime
balancing market to reconcile actual realizations of demand and available generation. In
such markets, the day ahead market clearing process does not take into account the distri-
bution of outcomes in the balancing market. Recently an alternative so-called stochastic
settlement market has been proposed (see e.g. Pritchard et al. [5] and Bouffard et al.
[2]). In such a market, the ISO co-optimizes pre-dispatch and spot in one single settle-
ment market. By considering all possible demand realizations ahead of time, pre and spot
dispatch is deemed to be scheduled more efficiently. In this paper we consider simplified
models for both market clearing mechanisms. Our models are targeted towards analyzing
imperfectly competitive markets. We will demonstrate that this stochastic programming
market clearing mechanism is indeed more efficient under the assumption of symmetry,
however somewhat contrary to intuition, this result fails in an asymmetric example that
we provide.

1 Introduction

Electricity markets face two key features that set them apart from other markets. The first
is that electricity cannot be stored, so demand must equal supply at all times. This is partic-
ularly problematic given that demand for electricity is usually uncertain. Second, electricity
is transported from suppliers to load over a transmission network with possible constraints.
The combination of these two features means that in almost all electricity markets today an
Independent System Operator (ISO) sets dispatch centrally and clears the market. Generators
and demand-side users can make offers and bids, and the ISO will choose which are accepted
according to a pre-determined settlement system.

The classic settlement system used in almost all existing electricity markets is one where the
ISO sets dispatch to maximize social welfare. The ISO will ask for generators’ cost functions,
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and buyers’ willingness to pay functions, and choose dispatch to maximize welfare. This assumes
that bidders have been truthful. A large part of demand however, is inelastic, created by
residential and commercial consumers turning on and off electrical appliances without regard
to price. The ISO’s job then is to match supply to meet this demand at every moment in
time. This becomes particularly difficult in the short-run (up to 24 hours before actual market
clearing) as some types of generator (e.g. steam turbines and to some extent gas turbines) need
to ramp up their generation slowly, and it is costly to change their output rapidly. Different
markets have approached this problem in different ways.

One common approach used is to run two settlements. In the first settlement, usually run
about 24 hours before clearing, generators make offers, and the ISO chooses a pre-dispatch.
This gives generators an idea of what they might expect to be producing, so they can warm
up their plant, etc to prepare to produce most efficiently at this level. This first market is
run based on an estimate of what demand is expected to be, so a second ‘balancing market’
is run soon before the market actually clears. In this second market, new sets of offers are
submitted and upon market clearing the dispatches can deviate from pre-dispatch levels. Both
settlement markets are based on that described above - maximizing social welfare, but they are
run separately, and the result of one is not tied to the other.

Another option is used in New Zealand. Here generators can place offers for a given half
hour period up to two hours beforehand. During the actual half hour, the ISO will then run
a settlement every five minutes, using the same bids each time, to figure out dispatch. Any
generator may then be asked to deviate at 5 minutes notice. Note that in this case, the same
offer curves are used in the pre-dispatch phase as well as the actual half hour in question. In
the two settlement markets, expected demand is used to clear the pre-dispatch quantities.

These market mechanisms are all workarounds designed to compensate for a settlement
system that is basically devised to maximize welfare assuming demand is deterministic. In a
deterministic auction, one should know how much generation capacity is available and what
the demand level is while this is not always the case in real electricity markets. Intermittent
generation (like wind and solar energy) and demand level are usually hard to predict. This
complicates the problem of dispatching generators in reality.

An alternative to deterministic settlement systems is to use a stochastic settlement process.
In a stochastic settlement, the ISO can choose both pre-dispatch and short-run deviations
for each generator to maximize expected social welfare in one step. By co-optimizing both
together, we might expect a stochastic settlement system to do better (on average) than two
deterministic settlements. The idea of a stochastic settlement can be attributed to Bouffard
et al., Wong and Fuller, and Pritchard et al. [2, 5, 6]. In these two-stage, single settlement
models, the pre-dispatch clears with information about the future distribution of uncertainties
in the system (e.g. demand and volatile renewable generation,) and information about deviation
costs for each generator. These models assume that each firms’ offers and deviation costs are
truthful. In an imperfectly competitive market, this assumption is not valid. The question
then remains: can the stochastic settlement auction give better expected social welfare when
firms are behaving strategically? That is the question explored by this paper.

We start by introducing a simplified version of the two settlement market that operates
in New Zealand. We will then introduce a simplified version of the stochastic programming
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mechanism for clearing electricity markets. As we will look at this mechanism as a game, and
we try to analyse results under a steady state, we need to find the equilibria. We therefore
need simplified and tractable versions of these mechanism. Thus we modify the offered supply
function by firms from step functions to linear functions. We will present results pertaining
to the existence of equilibria for each market clearing mechanism. Finally we construct these
equilibria and compare social welfare attached to them under the different clearing mechanisms.

In section 2, we discuss some of the related literature, then we introduce the assumptions
underpinning the market environment. We introduce and prove properties of the two settlement
and stochastic settlement auctions respectively. Finally we present proofs of how the two
auctions compare. Section 6 concludes the paper.

2 The Market Environment

In this paper, we aim to compare different market designs for electricity. We begin by presenting
assumptions that are common to all markets we consider, features of what we call the market
environment. These include such considerations as the number of firms, the costs firms face,
the structure of demand and so forth.

Assumption 2.1 The market environment may be defined by the following features.

• Electricity is traded over a network with no transmission constraints and no line losses,
thus we may consider all trading as taking place at a single node. 1

• Demand for electricity is uncertain, and may realize in one of s ∈ {1, ∙ ∙ ∙ , S} possible
outcomes (scenarios), each with probability θs. Demand in state s is assumed to be linear,
and defined by the inverse demand function ps = Ys − ZQ, where Q is the quantity of
electricity and ps is the market price in scenario s. Without loss of generality, assume
Y1 < Y2 < ... < YS. We will denote the expected value of Ys by Y =

∑
s θsYs.

• There are n symmetric firms wishing to sell electricity.

• For a given firm i in scenario s, we will denote the pre-dispatch quantity by qi, and any
short-run change in production by xi,s. Thus a generator’s actual production in scenario
s is equal to qi + xi,s, which we denote by yi,s.

• Each firm i’s long-run cost function is αqi + β
2
q2
i , where qi is the quantity produced by

firm i, and β > 0.

• Each firm’s short-run cost function is α (qi + xi,s) + β
2

(qi + xi,s)
2 + δ

2
x2

i,s, where qi is the
long-run expected dispatch of firm i, and qi + xi,s is the actual short-run dispatch and
δ > 0.

1This assumption may also shed light on any scenario where line capacities do not bind, even if in other
scenarios they do bind.
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• As minimum marginal cost of generation should not be more than maximum price of
electricity, we assume

α ≤ Ys ∀s ∈ {1, . . . , S}.

• There is an Independent System Operator (ISO) who takes bids and determines dispatch
and prices according to the given market design.

• All the above assumptions are common knowledge to all participants in the market.

Our assumptions on generators’ cost functions are particularly critical to the analysis that
follows, and deserve further explanation. Generators face two distinct costs when generating
electricity. If given sufficient advance notice of the quantity they are to dispatch, the generator
can plan the allocation of turbines to produce that quantity most efficiently. This is what we
mean by a long-run cost function. The interpretation of this is the lowest possible cost at
which a generator can produce quantity q. In electricity markets, however, demand fluctuates
at short notice, and the ISO may ask a generator to change its dispatch at short notice. In this
case, generators may not have enough time to efficiently reallocate its turbines. For example,
many thermal turbines take hours to ramp-up. Most likely, the generator will have to adopt
a less efficient production method, such as running some turbines above their rated capacity
which also increases the wear on the turbines. Thus there is some inherent cost in deviating
from an expected pre-dispatch in the short-run. This cost can be incurred even if the requested
deviation is negative. We assume that the generator will be unable to revert to the most
efficient mode of producing this quantity qi,s + xi,s in the short-run, so pays a penalty cost.
Note that this imposes a positive penalty cost upon the generator for making the short-run
change, even if the change is negative. This penalty cost is additively imposed on top of the
‘efficient’ cost of producing at the new level. We call this cost the deviation cost. Note that we
assume the symmetric case in which cost of generation and deviation is determined through
the same constant parameters (α, β, δ).

Our goal is to compare the outcomes of different markets imposed upon this environment.
To be able to draw comparisons in different paradigms, we need to examine the steady state
behaviour of participants under the different market clearing mechanisms. To this end, we
need to compute equilibria arising under the different market clearing mechanisms. In order to
make the computations tractable, we will restrict the firms to offer linear supply functions in
the following sections of this paper.

3 Two Settlement Model

In this section we will introduce a two-settlement market which is inspired by the market
clearing mechanism as it operates in New Zealand. In the New Zealand market, firms bid a
step supply function for a given half hour period. The bid is made at least two hours in advance.
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The market will then be cleared six times, every five minutes during the given half hour period. 2

We simplify the situation by assuming the market clears only twice; once after the bids are
submitted, but before demand is realised. This we call the ‘pre-dispatch settlement’ which tells
the generators approximately how much they should produce. Once demand is realized, the
same bids will be used to determine actual dispatch in what we call the ‘spot settlement’. The
difference between pre-dispatch and spot dispatch is a generator’s short-run deviation, which
is subject to potentially higher costs as we described earlier.

3.1 Mathematical Model

Our simplified mathematical model for the two settlement market has two distinct stages; pre-
dispatch and spot. Each generator i bids a supply function ai + biqi before the pre-dispatch
market to represent their quadratic costs. At this point, demand is uncertain. The ISO will
then use the generator’s bid twice: once to clear the pre-dispatch market, and once again after
demand is realized to clear the spot market. The pre-dispatch market determines the pre-
dispatch quantities each generator is asked to dispatch, and the spot market determines the
final quantities the generators are asked to dispatch. As in reality, in both the pre-dispatch and
spot markets, the ISO aims to maximize social welfare, assuming generators are bidding their
true cost functions. Since demand is unknown in pre-dispatch, the ISO will nominate (and use)
an expected demand (and will not consider the distribution of demand).

min z =
∑n

i=1

(
aiqi + bi

2
q2
i

)
−
(
Y Q − Z

2
Q2
)

s.t.
∑

i qi − Q = 0 [f ]
(1)

From this first settlement, the ISO can extract a forward price f equal to the shadow
price on the (expected demand balance) constraint. Recall that the pre-dispatch quantity for
generator i is denoted by qi. After pre-dispatch is determined, true demand is realized, and the
ISO then clears the spot market (using the specific demand scenario that has been realized) to
maximize welfare by solving (2).

min z =
∑n

i=1

(
aiyi,s + bi

2
y2

i,s

)
−
(
YsCs − Z

2
C2

s

)

s.t.
∑

i yi,s − Cs = 0 [ps]
(2)

Here again the ISO computes a spot price ps as the shadow price on the constraint. (Note
that we can eliminate the constraint and substitute Cs in the objective, however imposing
this constraint enables the easy introduction of the price as the shadow price attached to the
constraint.) The generator is not permitted to change its bid after pre-dispatch, but does face
the usual additional deviation cost δ for its short-run deviation.

Note that in both ISO optimization problems (1, 2) we have dispensed with non-negativity
constraints on the pre-dispatch and dispatch quantity respectively. We will demonstrate that

2Within this five minute period a frequency keeping generator will match any small changes in demand. We
ignore this aspect of the market, as frequency-keeping is purchased via fixed annual contracts and does not
impact the market.

5



the resulting equilibria of our two settlement market model will always have associated non-
negative pre-dispatch and dispatch quantities. We have eliminated the non-negativity con-
straints following the convention of supply function equilibrium models (see e.g. [4, 1]) in order
to enable the analytic computation of equilibrium supply offers.

In the last section of this paper, we return to this point, enforce non-negativity constraints,
and present numerical experiments where the equilibrium offers (and associated dispatch quan-
tities,) are computed using global optimization techniques.

Firm i’s profit in scenario s in this market is then given by

uTS
i,s (qi, xi,s) = fqi + ps (yi,s − qi) −

(

αyi,s +
β

2
y2

i,s +
δ

2
(yi,s − qi)

2

)

. (3)

3.2 Equilibrium Analysis of the Two Settlement Market

In this section we will present equilibria of the two settlement market model. We will first
compute the optimal dispatch quantities from the ISO’s optimal dispatch problems (1) and (2)
for any number of players. We will then embed these quantities in the generator’s expected
profit function and allow the generators to simultaneously optimize over their (linear) supply
function parameters to obtain equilibrium offers.

Proposition 3.1 Problem (1) is a convex program with a strictly convex objective. Its unique
optimal solution and the corresponding optimal dual f are given by

f =
Y + ZA

ZB + 1
qi = fBi − Ai

where Ai = ai

bi
, Bi = 1

bi
, A =

∑
i Ai and B =

∑
i Bi.

Proof Note that problem (1) has a single linear constraint and that its objective is a strictly
convex quadratic as we have assumed that bi > 0 and Z > 0. The problem therefore has a
unique optimal solution delivered by the first order conditions provided below.

Q −
∑

i

qi = 0 (4)

f − Y + ZQ = 0 (5)

−f + ai + biqi = 0 ∀i (6)

Using equation (5) we can rewrite equation (6) as

Y − ZQ = ai + biqi ∀i (7)

Now summing over all i we obtain

∑

i

qi = (
∑

i

1

bi

)(Y − ZQ) − (
∑

i

ai

bi

) (8)
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Note that B =
∑

i
1
bi

and A =
∑

i Ai. This together with equations (8) and (4) yields

Q =
BY − A

ZB + 1
.

Now substituting Q from the above into equation (5), we obtain

f =
Y + ZA

ZB + 1
.

Similarly substituting Q into (7) yields

qi = Bi(Y − Z
BY − A

ZB + 1
) − Ai.

This equation simplifies to
qi = fBi − Ai,

and we obtain the expressions in the statement of the proposition.

Proposition 3.2 For each scenario s, problem (2) is a convex program with a strictly convex
objective. Its unique optimal solution and the corresponding optimal dual ps, are given by

ps =
Ys + ZA

ZB + 1
yi,s = psBi − Ai

where Ai, Bi, A and B are defined above in proposition (3.1).

Proof Note that problems (2) and (1) are structurally identical, therefore the simple proof of
proposition (3.1) applies again here.

Remark Note from the above that the pre-dispatch price (and quantity) are equal to the
expected spot market prices (and quantities respectively). That is

f =
S∑

s=1

θsps. (9)

We will now compute the linear supply functions resulting from the equilibrium of the two
settlement market game laid out in (2.1). Before we begin with the firm computations, we will
establish a technical lemma that we utilize in establishing the equilibrium results.

Lemma 3.3 Assume that function f(x, y) : R2 → R is defined on a Dx×Dy with Dx, Dy ⊆ R.
Furthermore assume that x∗(y) ∈ Dx, maximizes f(x, y) for any arbitrary but fixed y. Also
assume g(y) = f(x∗(y), y) is maximized at y∗ ∈ Dy. Then, f(x, y) is maximized at (x∗(y∗), y∗).

Proof Note that for any (x, y) ∈ Dx × Dy,

f(x, y) ≤ f(x∗(y), y)

by the assumption on x∗(y) ∈ Dx. Furthermore f(x∗(y), y) ≤ f(x∗(y∗), y∗). Clearly then

f(x, y) ≤ f(x∗(y∗), y∗) for any (x, y) ∈ Dx × Dy.
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3.2.1 Firm i’s computations

In this section we will focus on firm i’s expected profit function. Note that using equation (9)
we obtain

uTS
i = Es[u

TS
i,s ] =

S∑

s=1

θs

(

psyi,s −

(

αyi,s +
β

2
y2

i,s +
δ

2
(yi,s − qi)

2

))

.

Using propositions (3.1) and (3.2), we can re-write uTS
i as a function of ai and bi. In order

to find a maximum of uTS
i (for a fixed set of competitor offers) we appeal to a transformation

that will yield concavity results for uTS
i . We consider uTS

i to be a function of Ai and Bi (instead
of ai and bi). Note that the transformation (Ai = ai

bi
, Bi = 1

bi
) is a one-to-one transformation.

Proposition 3.4 Let all competitor (linear) supply function offers be fixed. The following
maximizes uTS

i (and is therefore firm i’s best response).

Bi =
1 + ZB−i

Z + β + δ + Z(β + δ)B−i

Ai =
α + Bi (Zα − δ (Y + ZA−i)) + ZαB−i

2Z + β + ZβB−i

Proof We can show that uTS
i is a concave function of Ai, assuming Bi is a fixed parameter.

Here we have dispensed with the expression for uTS
i as a function of Ai and Bi as it is long and

rather complicated. This expression can be found in the online technical companion [3].
We note that uTS

i is a smooth function of Ai and Bi. Let A−i =
∑

j 6=i Aj and B−i =
∑

j 6=i Bj .
Then

∂2uTS
i

∂Ai
2 = −

(1 + ZB−i) (2Z + β + ZβB−i)

(1 + ZB) 2
≤ 0

Let Bi be arbitrary but fixed. As uTS
i is a concave function of Ai the first order condition

yields an expression for A∗
i (Bi), the value of Ai that maximizes uTS

i (for the fixed Bi).

A∗
i (Bi) = (1+ZB−i)(−Y +α−ZA−i+ZαB−i)+Bi(Z(Y +ZA−i)+(Zα+βY +ZβA−i)(ZB−i+1))

(1+ZB−i)(2Z+β+ZβB−i)
.

We can embed A∗
i (Bi) into uTS

i and find the maximizer in terms of Bi. Lemma (3.3) then
can be applied to demonstrate that the end result delivers the maximum of uTS

i .
After embedding this value of A∗

i into the profit function, the derivative with respect to Bi

of uTS
i is.

dui

dBi

=
(Y 2 −

∑
s θsY

2
s ) (−1 + (Z + β + δ)Bi + Z (−1 + (β + δ)Bi) B−i)

(1 + ZB) 3
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B∗
i = 1+ZB−i

Z+β+δ+Z(β+δ)B−i
, is the zero of this derivative. Recall that Y =

∑
s θsYs, therefore

Jensen’s inequality implies Y 2 −
∑

s θsY
2
s ≤ 0. Thus, dui

dBi
≥ 0, when Bi < Bi

∗, and dui

dBi
≤ 0,

when Bi > B∗
i . In other words, ui is a quasi-concave function of Bi and is maximized at

Bi = Bi
∗.

Note that evaluating A∗
i at B∗

i yields

A∗
i =

α + Bi (Zα − δ (Y + ZA−i)) + ZαB−i

2Z + β + ZβB−i

.

From the above, we can obtain the equilibrium of the two settlement model by solving all
best responses simultaneously. This gives the unique and symmetric solution

2S-EQM:Bi =
2

−(n − 2)Z + β + δ +
√

(n − 2)2Z2 + 2nZ(β + δ) + (β + δ)2
(10)

Ai =
α + (nZα − Y δ)Bi

2Z + β + (n − 1)Z(β + δ)Bi

(11)

As we discussed earlier, these equilibrium offers yield non-negative pre-dispatch and dispatch
quantities. The computations to show the non-negativity of these quantities can be found in
the technical companion [3].

Proposition 3.5 The equilibrium pre-dispatch and spot production quantities of the firms in
the two settlement market are non-negative, i.e.

qi ≥ 0 ∀i,

yi,s ≥ 0 ∀i, s.

4 Stochastic Settlement Market

4.1 SFSP Model

We now introduce the market model we will use to analyze a stochastic settlement market. As
discussed in the introduction, the stochastic settlement market contains only a single stage of
bidding, but the market clearing procedure takes into account all possible realizations of demand
when determining dispatch. The market works as follows. When the market opens, demand
is uncertain. Firms are allowed to bid their ‘normal’ cost functions (the cost of producing a
given output most efficiently) and a ‘penalty’ cost function that they would need to be paid to
deviate in the short-run. Since firms have quadratic cost functions, they can bid their actual
costs by submitting a linear supply function. Each firm i chooses ai and bi to bid the linear
supply function ai + biq, and di to bid the (marginal) penalty cost diq. Note that as with the
two-settlement model, these bids (ai, bi, di) need not be their true values (α, β, δ). The offered
bi should have a positive quantity and di should be non-negative.
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After generators have placed their bids, the ISO computes the market dispatch according
to the stochastic settlement model (outlined below). At this point demand is still uncertain.
The ISO chooses two key variables. The first is the pre-dispatch quantity for every firm. This
is the quantity the ISO asks each firm to prepare to produce before demand is realized. This
is the pre-dispatch quantities qi for firm i as defined in Section 2. The second is the short-run
deviation that each generator will be asked to make in any possible scenario. This deviation
is the variable xi,s defined in Section 2, representing the deviation of firm i in scenario s. The
ISO can choose both pre-dispatch and short-run deviations simultaneously, while aiming to
maximize expected social welfare. The ISO assumes that generators have bid their true costs.

In the final stage, demand is realized, and the ISO will ask generators to modify their
pre-dispatch quantity according to the short-run deviation for the particular scenario. Each
generator ends up producing qi +xi,s. Two prices are calculated during the course of optimizing
welfare. The first is the shadow price on the pre-dispatch quantities. We will denote this by
f . The second are the shadow prices on each of the deviations, for each of the scenarios. We
will denote these by ps for scenario s. Each generator is paid f per unit for its pre-dispatch
quantity qi, and ps for its deviations xi,s. Thus in realization s, generator i makes profit equal
to

uSS
i,s (qi, xi,s) = fqi + psxi,s − α (qi,s + xi,s) +

β

2
(qi,s + xi,s)

2 +
δ

2
x2

i,s. (12)

Mathematically, the stochastic optimization problem solved by the ISO can be represented
as follows. 3

ISOSP:

min z =
∑S

s=1 θs

(∑n
i=1

[
ai(qi + xi,s) + bi

2
(qi + xi,s)

2 + di

2
x2

i,s

]
− (YsCs − Z

2
C2

s )
)

s.t.
∑

i qi − Q = 0 [f ]
Q +

∑
i xi,s − Cs = 0 ∀s ∈ {1, . . . , S} [ps]

Q and Cs stand for the total contracted (or pre-dispatched) quantity and total consumption
in scenario s respectively. Note that we could have eliminated the two equality constraints.
However, their dual variables are the market prices f and ps respectively, so for clarity we have
left them in.

4.2 Characteristics of the Stochastic Optimization Problem

We begin by presenting a series of results that simplify the set of solutions to the ISOSP
problem. These results drastically simplify the subsequent analysis of firms’ behaviour in
equilibrium under stochastic settlement.

Lemma 4.1 In the stochastic settlement market clearing, the expected deviation of firm i from
pre-dispatch quantity q∗i is zero, that is, the optimal solution to ISOSP will always satisfy

3This is a modified version of Pritchard et al.’s problem. There is only one node and thus no transmission
constraints, and demand is elastic.
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∑

s

θsx
∗
i,s = 0.

Proof Let us assume Q∗
i and x∗

i,s form ISOSP’s optimal solution. Let us define for each i
and s the quantity ki,s := q∗i + x∗

i,s, the total production of firm i in scenario s. Note that
Cs =

∑
i q

∗
i +

∑
i x

∗
i,s. Assume, on the contrary, that there exists at least one firm j such that∑

s θsx
∗
j,s 6= 0. The optimal objective value of ISOSP is then given by

∑

i

∑

s

θs(aiki,s +
bi

2
(ki,s)

2) +
∑

i

∑

s

θs
di

2
(x∗

i,s)
2 + Ys

∑

i

ki,s −
Z

2
(
∑

i

ki,s)
2. (13)

Note that as
∑

s θsx
∗
j,s 6= 0, the term

∑
i

∑
s θs

di

2
(x∗

i,s)
2 is positive. Now, for a fixed i and

ki,s given from above, consider the problem

min
qi,xi,s

w =
di

2

S∑

s=1

θsx
2
i,s

∀s : qi + xi,s = ki,s. (14)

This problem clearly reduces to the univariate problem

min
qi

w =
S∑

s=1

θs(ki,s − qi)
2,

which is optimized at

qi =
S∑

s=1

θski,s.

Define q̂i and x̂i,s by

q̂i =

{
q∗i , i 6= j∑S

s=1 θskj,s otherwise,

and

x̂i,s =

{
x∗

i,s, i 6= j
kj,s − q̂j otherwise.

By definition, q̂i + x̂i,s = q∗i + x∗
i,s for all i and s. It is easy to see that the quantities q̂i and

x̂i,s yield a feasible solution to ISOSP. Furthermore, the objective function evaluated at q̂i and
x̂i,s is given by

∑

i

∑

s

θs(aiki,s +
bi

2
(ki,s)

2) + Ys

∑

i

ki,s −
Z

2
(
∑

i

ki,s)
2.

This value is strictly less than the objective evaluated at q∗i and x∗
i,s (given by 13), as we

have already established that
∑

i

∑
s θs

di

2
(x∗

i,s)
2 > 0. This yields the contradiction that proves

the result.
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Corollary 4.2 In the stochastic problem ISOSP, if q∗i + x∗
i,s ≥ 0 is satisfied ∀s ∈ {1, . . . , S}

then q∗i ≥ 0 will hold.

Proof In lemma 4.1 we established that
∑

s θsx
∗
i,s = 0. Therefore there exists a scenario s′

such that x∗
i,s′ ≤ 0. clearly then q∗i + x∗

i,s′ ≥ 0 implies q∗i ≥ 0.

Lemma 4.1 is the crucial result that drives the rest of our characterizations. We now use
this to prove that the ISO’s optimization problem can be split into two separate problems: one
to clear the pre-dispatch market, and the other to clear the spot market.

Lemma 4.3 Problem ISOSP is equivalent to the following optimization problem which is sep-
arable in the pre-dispatch and the spot market variables

z =
n∑

i=1

(

aiqi +
bi

2
q2
i

)

− Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
n∑

i=1

(
bi + di

2

S∑

s=1

θsx
2
i,s

)

−
n∑

i=1

S∑

s=1

θsYsxi,s +
Z

2

S∑

s=1

θs

(
n∑

i=1

xi,s

)2

.

Proof Substituting for Cs from constraints into the objective function of ISOSP yield

z =
S∑

s=1

θs

(
n∑

i=1

(

ai (qi + xi,s) +
bi

2
(qi + xi,s)

2 +
di

2
x2

i,s

)

−Ys

n∑

i=1

(qi + xi,s) +
Z

2

(
n∑

i=1

(qi + xi,s)

)2)

Rearranging the above we obtain:

z =
n∑

i=1

(

aiqi +
bi

2
q2
i

)

− Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
n∑

i=1

(

ai

S∑

s=1

θsxi,s

)

+
n∑

i=1

(
bi + di

2

S∑

s=1

θsx
2
i,s

)

−
n∑

i=1

S∑

s=1

θsYsxi,s +
Z

2

S∑

s=1

θs

(
n∑

i=1

xi,s

)2

+
n∑

i=1

(

qibi

S∑

s=1

θsxi,s

)

+
S∑

s=1

θsZ
n∑

i=1

n∑

j=1

qixj,s

Note that the first part of the objective above is a function of pre-dispatch quantities qi and
the second only a function of the spot dispatches xi,s. Furthermore, observe that in both of

the terms in the third part, the factor
∑S

s=1 θsxj,s appears. We can therefore appeal to lemma
(4.1) and eliminate this last part. This completes the proof.
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The rest of this section is devoted to deriving explicit expressions for the solution of ISOSP.
In the next section we will use these expressions to arrive at best response functions for the
firms and subsequently in constructing an equilibrium for the stochastic market settlement. In
order to simplify the equations and arrive at explicit solutions, we will transform the space of
the parameters of ISOSP (firm decision variables). We will use the following transformation

H :




R

R+ − {0}
R+



→




R

R+ − {0}
R+ − {0}



 that is one-to-one and onto.




Ai

Bi

Ri



 = H




ai

bi

di



 :=




ai/bi

1/bi

1/(bi + di)





If we further define
A =

∑

i

Ai, B =
∑

i

Bi and R =
∑

i

Ri,

ISOSP reduces to minimizing the following:

z =
n∑

i=1

(
Ai

Bi

qi +
1

2Bi

q2
i

)

− Y
n∑

i=1

qi +
Z

2

(
n∑

i=1

qi

)2

+
S∑

s=1

θs




n∑

i=1

1

2Ri

x2
i,s − (Ys − Y )

n∑

i=1

xi,s +
Z

2

(
n∑

i=1

xi,s

)2


 .

Note as before (lemma (4.3)) that the above is separable in qi’s and xi,s’s, we can therefore
solve the two stages separately. Note also that the two problems are convex optimization
problems therefore KKT conditions will readily produce the optimal solution (for derivation
please refer to the technical companion [3]).

Proposition 4.4 If (q, x, f, p) represents the solution of ISOSP, then we have

qi =
(Y + ZA)Bi

1 + ZB
− Ai (15)

xi,s =
(Ys − Y )Ri

1 + ZR
(16)

f =
Y + ZA

1 + ZB

ps =
Y + ZA

1 + ZB
+

Ys − Y

1 + ZR

Observe from the expression for f that this forward price (paid on pre-dispatch quantities) is
independent of any deviation costs in the spot market.

13



As we have observed, ISOSP can be separated into two different (sets of) market clearing
problems, one for the pre-dispatch market and the other over the spot market (in each sce-
nario). Therefore the upshot of market clearing through our stochastic program is to find the
intersection of the expected demand curve with the aggregate supply offer curve (to find pre-
dispatch quantities) and then to find the intersection of the demand curve (for each scenario)
with the aggregate deviation offer curves as depicted in Figures 1 and 2 below.

Quantity

P
ri
ce

f
=

a i
+

b iq
i
=

A i

B i

+
1
B i
q i

f =
A
B

+
1
B
Q

Qqi

f

f
=

Y
−

ZQ

Figure 1: Market clearing of the forward market using firms’ supply functions as an equivalent
representation of ISOSP problem

Corollary 4.5 In the solution of ISOSP, forward price is equal to the expected spot market
price.

Proof This is simply observed from proposition 4.4.

The fact that contract price is equal to the expected spot market price, implies that there
is no systematic arbitrage.

4.3 Equilibrium Analysis of the Stochastic Settlement Market

In section (4.1) we presented firm i’s profit under scenario s in equation (12). In our market
model, we assume that all firms are risk neutral and therefor interested only in maximizing
their expected profit. Firm i’s expected profit is given by

ui = fqi +
S∑

s=1

θs

(

psxi,s −

(

α(qi + xi,s) +
β

2
(qi + xi,s)

2 +
δ

2
x2

i,s

))

, (17)
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Quantity

P
ri
ce

π s
=

(b
i
+

d i)
x i,s

=
1

R
i
x i,s

πs
=

1
R

∑ i
x i,s

∑
i xi,sxi,s

πs π
s =

(Y
s −

Y )−
Z ∑

i x
i,s

Figure 2: Market clearing of the spot market using firms’ supply functions as an equivalent
representation of ISOSP problem

The above expression for ui can be expanded and we can observe that

ui = fqi − (αqi +
β

2
q2
i )

+
S∑

s=1

θs

(

psxi,s −
β + δ

2
x2

i,s

)

−α
S∑

s=1

θsxi,s − βqi

S∑

s=1

θsxi,s

Note that from lemma (4.1), the generator would know that for any admissible bid, the
corresponding expected deviation from pre-dispatch quantities

∑S
s=1 θsxi,s = 0. Therefore the

expected profit for the generator becomes

ui = fqi − (αqi +
β

2
q2
i )

+
S∑

s=1

θs

(

psxi,s −
β + δ

2
x2

i,s

)

.
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We can use the expressions obtained from proposition (4.4) to write ui as follows.

ui = −
1

2
βA2

i +
Ai (−ZA + α + ZBα + ZAβBi + Y (−1 + βBi))

1 + ZB

+
1

2(1 + ZB)2(1 + ZR)2

(

2(1 + ZR)2(ZA + Y )(ZA + Y − (1 + ZB)α)Bi − (1 + ZR)2(ZA + Y )2βB2
i

+(1 + ZB)2Ri (−2 + (β + δ)Ri)

(

Y 2 −
∑

s

θsY
2
s

))

(18)

Although this expression of the expected profit for the generator is rather ugly, it does have
the advantage that upon differentiating with respect to Ri, all dependence on Ai and Bi drops
and we are left with

dui

dRi

=
(Y 2 −

∑
s θsY

2
s ) (−1 + (Z + β + δ)Ri + ZR−i (−1 + (β + δ)Ri))

(1 + ZR)3 . (19)

Recall that R−i =
∑

j 6=i Rj. (For verification of this derivative term see the technical companion
[3].) The fact that this derivative is free of Ai and Bi indicates that ui is separable in Ri and
(Ai, Bi), that is

ui(Ai, Bi, Ri) = gi(Ai, Bi) + hi(Ri) (20)

Equation (20) enables us to maximize ui by maximizing gi and hi over (Ai, Bi) and Ri respec-
tively. This is helpful as we can establish quasi-concavity results for gi and hi separately.

We start our investigations by examining gi. The full expression for gi can be found in the
technical companion [3]. Holding Bi fixed, note that

d2gi

dA2
i

= −
(1 + ZB−i) (2Z + β + ZβB−i)

(1 + ZB)2 .

This demonstrates that gi is concave in Ai for any fixed Bi. Furthermore, for any fixed Bi, we
can use the first order conditions to find A∗

i (Bi), i.e. the value of Ai that maximizes gi(Ai, Bi)
for the fixed Bi.

A∗
i (Bi)=

(1 + ZB−i) (α − ZA−i + ZαB − Y ) + (Y + ZA−i) (Z + β + ZβB−i) Bi

(1 + ZB−i) (2Z + β + ZβB−i)
(21)

To find the optimal value for gi, we can now appeal to lemma (3.3) and substitute the
expression for A∗

i (Bi) in gi(A
∗
i (Bi), Bi). Surprisingly, upon undertaking this substitution, it

can be observed that gi(A
∗
i (Bi), Bi) is a constant value. Figure 3 depicts gi.

To uncover the intuition behind this feature of gi, we can offer the following mathematical
explanation. We observe that

dgi

dAi

=
− (1 + ZB−i) (Y − α + ZA−i + (2Z + β)Ai + ZB−i (−α + βAi))

(1 + ZB)2

+
(Z(Y + α) + Y β + Y (Zα + Y β)B−i + ZA−i (Z + β + ZβB−i)) Bi

(1 + ZB)2

16



Figure 3: Two views of the function gi. Note that the optimal value of gi is obtained along a
continuum, for any value of Bi.

and that
dgi

dBi

= −
Y + ZA

1 + ZB
.
dgi

dAi

.

Therefore, stationary conditions enforced in Ai will also imply stationarity in Bi.
As gi(A

∗
i (Bi), Bi) is constant for any Bi > 0, for any value of Bi > 0, the tuple (A∗

i (Bi), Bi)
is an argmax of gi for any positive Bi. The following analysis on hi will explain how optimal
Ri is constrained by the value of Bi.

Proposition 4.6 Suppose that R−i is fixed. Then hi is optimized at

R∗
i = min{Bi,

1 + ZR−i

Z + β + α + Z(β + δ)R−i

}

Proof Note that at

R̂i =
1 + ZR−i

Z + β + α + Z(β + δ)R−i

(22)

The derivative dhi

dRi
= dui

dRi
vanishes. Also recall from Jensen’s inequality that Y 2 ≤

∑
s θsY

2
s .

It can therefor be seen from (19) that this derivative is positive for Ri < R̂i and negative
for Ri > R̂i. Recall further that the definition of Bi and Ri require Ri ≤ Bi. Therefore, in
optimizing hi, we need to enforce this constraint and we obtain

R∗
i = min{Bi,

1 + ZR−i

Z + β + α + Z(β + δ)R−i

}.

We now return to ui, the expected profit function for firm i. As ui(Ai, Bi, Ri) = gi(Ai, Bi) +
hi(Ri), we can start by obtaining the maximum value of gi attained at a point (A∗

i (Bi), Bi)
for any positive Bi. Subsequently, we proceed to optimize hi(Ri). Proposition (4.6) readily
delivers the optimal Ri. We have therefore proved the following theorem.
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Theorem 4.7 The best response of firm i, holding competitor offers fixed, is to offer in

Ai=
(1 + ZB−i) (α − ZA−i + ZαB − Y ) + (Y + ZA−i) (Z + β + ZβB−i) Bi

(1 + ZB−i) (2Z + β + ZβB−i)
,

Ri =
1 + ZR−i

Z + β + α + Z(β + δ)R−i

,

and any choice of Bi where

Bi ≥
1 + ZR−i

Z + β + α + Z(β + δ)R−i

.

Theorem 4.7 indicates that there exist a situation with multiple (infinite) equilibria in this
game. To prevent the problem of unpredictability, caused by multiple equilibria, we assume
that the ISO chooses Bi as a system parameter. This parameter is identical for and known to
all participants. This also provides the ISO with the authority to choose Bi in a way to obtain
better equilibrium (i.e. an equilibrium that yields higher social welfare).

Proposition 4.8 The unique symmetric equilibrium quantities of the stochastic settlement
market are as follows.

ai =
α − Y + Bi (−Z(Y (n − 2) − (2n − 1)α) + Y β + Z(n − 1)(Znα + Y β)Bi)

Bi (Z(n + 1) + β + Y (n − 1)(Zn + β)Bi)
(23)

di = max{0,
−Z(n − 2) + β + δ +

√
Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
−

1

Bi

} (24)

One important feature of the equilibrium values are the non-negativity of the pre-dispatch
and dispatch. This is important, because we neglected the non-negativity constraints in ISOSP
in the first place.

Theorem 4.9 If (q∗,x∗) represents the equilibrium of the stochastic settlement market, fol-
lowing equations always hold.

∀i, s : q∗i + x∗
i,s ≥ 0

∀i : q∗i ≥ 0

Though, the equilibrium pre-dispatch and dispatch are non-negative, one might raise an
objection that a game without the non-negativity constraints embedded in the ISO’s optimiza-
tion problem is different with the original game. Therefore, there is no assurance the found
equilibrium is also the equilibrium of the original game. The following theorem proves that the
obtained equilibrium values are also the equilibrium of the original game with non-negativity
constraints. The proof of this theorem is quite lengthy and consists of several lemmas, which
can be found in the technical companion [3].
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Theorem 4.10 The equilibrium of the symmetric stochastic settlement game without the non-
negativity constraints in ISOSP is also the equilibrium of the stochastic settlement game with
the non-negativity constraints.

5 Comparison of the Two Markets

The key question we asked in the introduction is which model performs better when firms bid
strategically. Our criterion for comparing the two models is social welfare. In the environment
of our markets, social welfare is defined as

SW =
S∑

s=1

θs



Ys

(
n∑

i=1

yi,s

)

−
Z

2

(
n∑

i=1

yi,s

)2




−
S∑

s=1

θs

(
n∑

i=1

(

αyi,s +
β

2
yi,s

2 +
δ

2
(yi,s − qi)

2

))

(25)

The next proposition establishes that when firms are bidding strategically, the stochastic
settlement market dominates the two settlement market provided the ISO chooses the slope of
the supply function sufficiently low.

Proposition 5.1 When the parameter bi is chosen less than the threshold value of b̂, where

b̂ =
−Z(n − 2) + β + δ +

√
Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
,

social welfare in the stochastic settlement market is higher than that in the two-settlement
market.

Proof To prove the proposition, we show when bi = b̂, we can conclude SWSS = SWTS. Then,
we demonstrate SWSS is a decreasing function of bi, and therefore, SWSS ≥ SWTS, when bi ≤ b̂.

When bi = b̂, it is easy to show that equilibrium quantities are identical in the stochastic
settlement and two settlement markets. (equations (23), (11), (10))

BSS
i = BTS

i

ASS
i = ATS

i

RSS
i = BSS

i

Under this situation we can show that yi,s and qi formulae (from propositions 3.1, 3.2, and
4.4) simplifies to

qSS
i = qTS

i =
Y Bi − Ai

1 + ZB

ySS
i,s = yTS

i,s =
YsBi − Ai

1 + ZB
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Therefore social welfare of these models (equation 25) are the same providing bi = b̂.
Note that we can rewrite social welfare formula (25) as

SW =
S∑

s=1

θs



Ys

(
n∑

i=1

yi,s

)

−
Z

2

(
n∑

i=1

yi,s

)2

−
n∑

i=1

(

αyi,s +
β

2
yi,s

2 +
δ

2
xi,s

2

)


 .

Note that xi,s is independent of b, and therefore,

dW

dbi

= −
1

b2
i

∑

i,s

dW

dyi,s

dyi,s

dBi

.

On the other hand, we show (in the technical companion [3]) that

dyi,s

dBi

=
(Y − α)(n − 1)Z2

(Z + nZ + β + (n − 1)Z(nZ + β)Bi) 2
≥ 0.

Note that according to our assumptions ∀s, α ≤ Ys. Also, this derivative is a fixed number
independent of i and s. Thus,

dW

dbi

= −
1

b2
i

dyi,s

dBi

∑

i,s

dW

dyi,s

.

On the other hand,

dW

dyi,s

= θs (Ys − α − (Zn + β)yi,s) .

Hence,

∑

s

dW

dyi,s

= Y − α − (Zn + β) qi

=
bZ(Y − α)

Z(n − 1)(nZ + β) + b((n + 1)Z + β)
≥ 0.

In sum, we can conclude that,

dW

dbi

≤ 0.

Example Consider a market with two symmetric generators as defined in table 1.
Figure 4 shows how the social welfare of the stochastic settlement mechanism is affected by

the choice of b. It also shows that for enough small bs, the stochastic settlement mechanism has
a higher equilibrium social welfare in comparison with the two settlement mechanism. Thus,
for the rest of this example, we assume the ISO chooses b = 0.001 to increase the equilibrium
social welfare.
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Parameter Value

α, β, δ 50, 1, 0.5
Y1, Y2, Z 100, 150, 1

θ1, θ2 0.5, 0.5
n 2

Table 1: The market environment for the example

Figure 4: The effect of b on the social welfare of stochastic settlement model and an how it
compares to the two settlement mechanism

Figure 5: The SP mechanism yields higher social welfare for different δ values

Another interesting experiment is to investigate the effect of δ on these mechanisms.
Figures 5, 6, and 7 compare the stochastic settlement and the two settlement mechanisms

for this market, however for different δ values. A first observation is the stochastic settlement
mechanism increases social and consumer welfare and decreases producer welfare in comparison
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Figure 6: The SP mechanism yields lower producer welfare for a range of examples (i.e. different
δ values)

Figure 7: The SP mechanism yields higher consumer welfare for a range of examples (i.e.
different δ values

with the two settlement mechanism. Also, these effects are enhanced by increasing δ. This is an
expected result that the strength of the stochastic settlement is bolder when cost of deviation
is higher.

It is also interesting to investigate the effect of competition on these mechanisms. To do so,
we can test the effect of number of firms on these mechanism.

Figure 8 shows the difference in the social welfare of our two mechanism as a function of n.
It shows that when the number of generators increase, the performance of the stochastic and
two settlement mechanisms converges.
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Figure 8: Social welfare of the two settlement mechanism converges that of the stochastic
mechanism when n increases. Competition increases with a bigger market.

6 Conclusion

In this paper, we set up a modelling environment in which we were able to capture key elements
of a stochastic settlement auction versus a two settlement auction. In particular, we were able
to model firms’ best responses in these markets, and so find equilibrium behaviour in each. We
find that in our model, the stochastic settlement auction dominates the two settlement auction
when measuring expected social welfare.

References

[1] F. Bolle. Supply function equilibria and the danger of tacit collusion. the case of spot
markets for electricity. Energy Economics, 14(2):94–102, 1992.

[2] F. Bouffard, F. D. Galiana, and A. J. Conejo. Market-clearing with stochastic security-part
i: formulation. Power Systems, IEEE Transactions on, 20(4):18181826, 2005.

[3] J. Khazaei, G. Zakeri, and S. Oren. Technical companion for the paper ”single and multi-
settlement approaches to market clearing mechanisms under demand uncertainty”.

[4] P. Klemperer and M. Meyer. Supply function equilibria in oligopoly under uncertainty.
Econometrica, 57(6):1243–1277, 1989.

[5] G. Pritchard, G. Zakeri, and A. Philpott. A Single-Settlement, Energy-Only electric power
market for unpredictable and intermittent participants. Operations Research, Apr. 2010.

[6] S. Wong and J. Fuller. Pricing energy and reserves using stochastic optimization in an
alternative electricity market. Power Systems, IEEE Transactions on, 22(2):631638, 2007.

23


