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Abstract

Electricity markets face a substantial amount of uncertainty. Traditionally this un-
certainty has been due to varying demand. With the integration of larger proportions
of volatile renewable energy, this added uncertainty from generation must also be faced.
Conventional electricity market designs cope with uncertainty by running two markets: a
day ahead or pre-dispatch market that is cleared ahead of time, followed by a real-time
balancing market to reconcile actual realizations of demand and available generation. In
such markets, the day ahead market clearing process does not take into account the distri-
bution of outcomes in the balancing market. Recently an alternative so-called stochastic
settlement market has been proposed (see e.g. Pritchard et al. [5] and Bouffard et al.
[2]). In such a market, the ISO co-optimizes pre-dispatch and spot in one single settlement
market.

In this paper we consider simplified models for three types of market clearing mecha-
nisms. We demonstrate that under the assumption of symmetry, our simplified stochastic
programming market clearing is equivalent to a two period single settlement (TS) system
that takes count of deviation penalties in the second stage. These however differ from a TS
model that dispenses with deviation penalties and has been (and continues to be) in use
in New Zealand (NZTS). Our models are targeted towards analyzing imperfectly compet-
itive markets. We will construct Nash equilibria of the resulting games for the introduced
market clearing mechanisms and compare them under the assumptions of symmetry and
in an asymmetric example.

1 Introduction

Electricity markets face two key features that set them apart from other markets. The first
is that electricity cannot be stored, so demand must equal supply at all times. This is partic-
ularly problematic given that demand for electricity is usually uncertain. Second, electricity
is transported from suppliers to load over a transmission network with possible constraints.
The combination of these two features means that in almost all electricity markets today an
Independent System Operator (ISO) sets dispatch centrally and clears the market. Generators
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and demand-side users can make offers and bids, and the ISO will choose which are accepted
according to a pre-determined settlement system.

The classic settlement system used in almost all existing electricity markets is one where
the ISO sets dispatch to maximize social welfare. Effectively the ISO matches supply to meet
(the uncertain) demand at every moment while maximizing welfare. This becomes particularly
difficult in the short-run (up to 24 hours before actual market clearing) as some types of gen-
erator (e.g. steam turbines and to some extent gas turbines) need to ramp up their generation
slowly, and it is costly to change their output rapidly. Different markets have approached this
problem in different ways.

One common approach used is to run a deterministic two-settlement model. In the first
period, usually run about 24 hours before clearing, generators make offers, and the ISO chooses
a pre-dispatch. (Note that in the remainder of this paper, we use the terms generator and firm
interchangeably.) This first market is run based on an estimate of what demand is expected
to be, then a second ‘balancing market’ is run soon before the market actually clears. In this
second market, new sets of offers are submitted and upon market clearing the dispatches can
deviate from pre-dispatch levels. Both period’s markets are based on that described above -
maximizing social welfare, but they are run separately, and the result of one is not tied to the
other. However the two markets are financially binding (hence the term two settlement). The
results of the first pertain to pre-dispatch prices and quantities, while the results of the second
are used for balancing prices and quantities.

Another option is used in New Zealand. Here generators can place offers for a given half
hour period up to two hours prior to a designated period. During the actual half hour, the ISO
will then run an optimization problem every five minutes, using the same bids each time, to
figure out dispatch. Any generator may then be asked to deviate at 5 minutes notice. Note that
in this case, the same offer curves are used in the pre-dispatch phase as well as the actual half
hour in question. The predispatch market in New Zealand provides generators with an idea of
what they might expect to be producing but it is not financially binding. Hence there is only a
single settlement in the New Zealand system. In this deterministic two period single-settlement
(NZTS) market, expected demand is used to clear the pre-dispatch quantities and the ISO has
no explicit measure of any deviation costs for a generator.

An alternative to deterministic settlement systems is to use a stochastic settlement process.
In a stochastic settlement, the ISO can choose both pre-dispatch and short-run deviations
for each generator to maximize expected social welfare in one step. By co-optimizing both
together, we might expect a stochastic settlement system to do better (on average) than two
deterministic settlements. The idea of a stochastic settlement can be attributed to Bouffard
et al., Wong and Fuller, and Pritchard et al. [2, 5, 6]. In these two-stage, single settlement
models, the pre-dispatch clears with information about the future distribution of uncertainties
in the system (e.g. demand and volatile renewable generation,) and information about deviation
costs for each generator. These models assume that each firms’ offers and deviation costs are
truthful. In an imperfectly competitive market, this assumption is not valid. The question
then remains: can the stochastic settlement auction give better expected social welfare when
firms are behaving strategically? That is the question explored by this paper.

We start by introducing a simplified version of the NZTS market currently operated in New
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Zealand. We will then introduce a simplified version of the stochastic programming mechanism
for clearing electricity markets. We will establish that the stochastic program reduces to a
two period single settlement model slightly different from the NZTS model were deviation
penalties are explicitly considered by the ISO. We refer to this market clearing mechanism
as ISOSP. We will present results pertaining to the existence of equilibria for the simplified
NZTS and derive an analytical expression for a symmetric equilibrium. We then establish the
key result that reduces the simplified stochastic market clearing mechanism to a NZTS type
model, but with explicit deviation penalties. Here again we construct analytical expressions
for symmetric equilibria. Finally we compare the symmetric equilibria of NZTS and ISOSP
settlements and show that the ISOSP settlement with explicit deviation costs performs better
in terms of expected social welfare. Section 6 concludes the paper.

2 The Market Environment

In this paper, we aim to compare different market designs for electricity. We begin by presenting
assumptions that are common to all markets we consider, features of what we call the market
environment. These include such considerations as the number of firms, the costs firms face,
the structure of demand and so forth.

Assumption 2.1 The market environment may be defined by the following features.

• Electricity is traded over a network with no transmission constraints and no line losses,
thus we may consider all trading as taking place at a single node. 1

• Demand for electricity is uncertain, and may realize in one of s ∈ {1, · · · , S} possible
outcomes (scenarios), each with probability θs. Demand in state s is assumed to be linear,
and defined by the inverse demand function ps = Ys − ZQ, where Q is the quantity of
electricity and ps is the market price in scenario s. Without loss of generality, assume
Y1 < Y2 < ... < YS. We will denote the expected value of Ys by Y =

∑

s θsYs.

• There are n symmetric firms wishing to sell electricity. (In the penultimate section we
dispense with the symmetry assumption.)

• For a given firm i in scenario s, we will denote the pre-dispatch quantity by qi, and any
short-run change in production by xi,s. Thus a generator’s actual production in scenario
s is equal to qi + xi,s, which we denote by yi,s.

• Each firm i’s long-run cost function is αqi + β

2
q2
i , where qi is the quantity produced by

firm i, and β > 0.

• Each firm’s short-run cost function is α (qi + xi,s) + β

2
(qi + xi,s)

2 + δ
2
x2

i,s, where qi is the
long-run expected dispatch of firm i, and qi + xi,s is the actual short-run dispatch and
δ > 0.

1This assumption may also shed light on any scenario where line capacities do not bind, even if in other
scenarios they do bind.
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• As minimum marginal cost of generation should not be more than maximum price of
electricity, we assume

α ≤ Ys ∀s ∈ {1, . . . , S}.

• There is an Independent System Operator (ISO) who takes bids and determines dispatch
and prices according to the given market design.

• All the above assumptions are common knowledge to all participants in the market.

Our assumptions on generators’ cost functions are particularly critical to the analysis that
follows, and deserve further explanation. Generators face two distinct costs when generating
electricity. If given sufficient advance notice of the quantity they are to dispatch, the generator
can plan the allocation of turbines to produce that quantity most efficiently. This is what we
mean by a long-run cost function. The interpretation of this is the lowest possible cost at
which a generator can produce quantity q. In electricity markets, however, demand fluctuates
at short notice, and the ISO may ask a generator to change its dispatch at short notice. In this
case, generators may not have enough time to efficiently reallocate its turbines. For example,
many thermal turbines take hours to ramp-up. Most likely, the generator will have to adopt
a less efficient production method, such as running some turbines above their rated capacity
which also increases the wear on the turbines. Thus there is some inherent cost in deviating
from an expected pre-dispatch in the short-run. This cost can be incurred even if the requested
deviation is negative. We assume that the generator will be unable to revert to the most
efficient mode of producing this quantity qi,s + xi,s in the short-run, so pays a penalty cost.
Note that this imposes a positive penalty cost upon the generator for making the short-run
change, even if the change is negative. This penalty cost is additively imposed on top of the
‘efficient’ cost of producing at the new level. We call this cost the deviation cost. Note that we
assume the symmetric case in which cost of generation and deviation is determined through
the same constant parameters (α, β, δ).

Our goal is to compare the outcomes of different markets imposed upon this environment.
To be able to draw comparisons in different paradigms, we need to examine the steady state
behaviour of participants under the different market clearing mechanisms. To this end, we
need to compute equilibria arising under the different market clearing mechanisms. In order to
make the computations tractable, we will restrict the firms to offer linear supply functions in
the following sections of this paper.

3 Deterministic Two Period Settlement (NZTS) Model

In this section we will introduce a deterministic two period market which is inspired by the
market clearing mechanism as it operates currently in New Zealand. In the New Zealand
market, firms bid a step supply function for a given half hour period. The bid is made at least
two hours in advance. The market will then be cleared six times, every five minutes during the
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given half hour period.2 We simplify the situation by assuming the market clears only twice;
once after the bids are submitted, but before demand is realized. This we call the ‘pre-dispatch
settlement’ which tells the generators approximately how much they should produce. Once
demand is realized, the same bids will be used to determine actual dispatch in what we call
the ‘spot settlement’. The difference between pre-dispatch and spot dispatch is a generator’s
short-run deviation, which is subject to potentially higher costs as we described earlier however
the ISO has no knowledge of this cost and it is not explicitly stated in the generators’ bids.
This cost can be indirectly reflected in the supply functions the generators bid in.

3.1 Mathematical Model

Our simplified mathematical model for the NZTS market has two distinct stages; pre-dispatch
and spot. Each generator i bids a supply function ai + biqi before the pre-dispatch market
to represent their quadratic costs. At this point, demand is uncertain. The ISO will then
use the generator’s bid twice: once to clear the pre-dispatch market, and once again after
demand is realized to clear the spot market. The pre-dispatch market determines the pre-
dispatch quantities each generator is asked to dispatch, and the spot market determines the
final quantities the generators are asked to dispatch. As in reality, in both the pre-dispatch and
spot markets, the ISO aims to maximize social welfare, assuming generators are bidding their
true cost functions. Since demand is unknown in pre-dispatch, the ISO will nominate (and use)
an expected demand (and will not consider the distribution of demand).

min z =
∑n

i=1

(

aiqi + bi

2
q2
i

)

−
(

Y Q − Z
2
Q2
)

s.t.
∑

i qi − Q = 0 [f ]
(1)

From this first settlement, the ISO can extract a forward price f equal to the shadow
price on the (expected demand balance) constraint. Recall that the pre-dispatch quantity for
generator i is denoted by qi. After pre-dispatch is determined, true demand is realized, and the
ISO then clears the spot market (using the specific demand scenario that has been realized) to
maximize welfare by solving (2).

min z =
∑n

i=1

(

aiyi,s + bi

2
y2

i,s

)

−
(

YsCs −
Z
2
C2

s

)

s.t.
∑

i yi,s − Cs = 0 [ps]
(2)

Here again the ISO computes a spot price ps as the shadow price on the constraint. (Note
that we can eliminate the constraint and substitute Cs in the objective, however imposing
this constraint enables the easy introduction of the price as the shadow price attached to the
constraint.) The generator is not permitted to change its bid after pre-dispatch, but does face
the usual additional deviation cost δ for its short-run deviation.

2Within this five minute period a frequency keeping generator will match any small changes in demand. We
ignore this aspect of the market, as frequency-keeping is purchased through a separate market and until recently
was procured through annual contracts.
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Note that in both ISO optimization problems (1, 2) we have dispensed with non-negativity
constraints on the pre-dispatch and dispatch quantity respectively. We will demonstrate that
the resulting equilibria of our NZTS market model will always have associated non-negative pre-
dispatch and dispatch quantities. We have eliminated the non-negativity constraints following
the convention of supply function equilibrium models (see e.g. [4, 1]) in order to enable the
analytic computation of equilibrium supply offers.

In the last section of this paper, we return to this point, enforce non-negativity constraints,
and present numerical experiments where the equilibrium offers (and associated dispatch quan-
tities,) are computed using global optimization techniques.

Firm i’s profit in scenario s in this market is then given by

uTS
i,s (qi, xi,s) = fqi + ps (yi,s − qi) −

(

αyi,s +
β

2
y2

i,s +
δ

2
(yi,s − qi)

2

)

. (3)

3.2 Equilibrium Analysis of the Deterministic Two Period Market

In this section we will present equilibria of the NZTS market model. We will first compute
the optimal dispatch quantities from the ISO’s optimal dispatch problems (1) and (2) for
any number of players. We will then embed these quantities in the generator’s expected profit
function and allow the generators to simultaneously optimize over their (linear) supply function
parameters to obtain equilibrium offers.

Proposition 3.1 Problem (1) is a convex program with a strictly convex objective. Its unique
optimal solution and the corresponding optimal dual f are given by

f =
Y + ZA

ZB + 1
qi = fBi − Ai

where Ai = ai

bi
, Bi = 1

bi
, A =

∑

i Ai and B =
∑

i Bi.

Proof Note that problem (1) has a single linear constraint and that its objective is a strictly
convex quadratic as we have assumed that bi > 0 and Z > 0. The problem therefore has a
unique optimal solution delivered by the first order conditions provided below.

Q −
∑

i

qi = 0 (4)

f − Y + ZQ = 0 (5)

−f + ai + biqi = 0 ∀i (6)

Using equation (5) we can rewrite equation (6) as

Y − ZQ = ai + biqi ∀i (7)
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Now summing over all i we obtain

∑

i

qi = (
∑

i

1

bi

)(Y − ZQ) − (
∑

i

ai

bi

) (8)

Note that B =
∑

i
1
bi

and A =
∑

i Ai. This together with equations (8) and (4) yields

Q =
BY − A

ZB + 1
.

Now substituting Q from the above into equation (5), we obtain

f =
Y + ZA

ZB + 1
.

Similarly substituting Q into (7) yields

qi = Bi(Y − Z
BY − A

ZB + 1
) − Ai.

This equation simplifies to
qi = fBi − Ai,

and we obtain the expressions in the statement of the proposition.

Proposition 3.2 For each scenario s, problem (2) is a convex program with a strictly convex
objective. Its unique optimal solution and the corresponding optimal dual ps, are given by

ps =
Ys + ZA

ZB + 1
yi,s = psBi − Ai

where Ai, Bi, A and B are defined above in proposition (3.1).

Proof Note that problems (2) and (1) are structurally identical, therefore the simple proof of
proposition (3.1) applies again here.

Remark Note from the above that the pre-dispatch price (and quantity) are equal to the
expected spot market prices (and quantities respectively). That is

f =
S
∑

s=1

θsps. (9)

We will now compute the linear supply functions resulting from the equilibrium of the TS
market game laid out in (2.1). Before we begin with the firm computations, we will establish
a technical lemma that we utilize in establishing the equilibrium results.
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Lemma 3.3 Assume that function f(x, y) : R2 → R is defined on a Dx×Dy with Dx, Dy ⊆ R.
Furthermore assume that x∗(y) ∈ Dx, maximizes f(x, y) for any arbitrary but fixed y. Also
assume g(y) = f(x∗(y), y) is maximized at y∗ ∈ Dy. Then, f(x, y) is maximized at (x∗(y∗), y∗).

Proof Note that for any (x, y) ∈ Dx × Dy,

f(x, y) ≤ f(x∗(y), y)

by the assumption on x∗(y) ∈ Dx. Furthermore f(x∗(y), y) ≤ f(x∗(y∗), y∗). Clearly then

f(x, y) ≤ f(x∗(y∗), y∗) for any (x, y) ∈ Dx × Dy.

3.2.1 Firm i’s computations

In this section we will focus on firm i’s expected profit function. Note that using equation (9)
we obtain

uTS
i = Es[u

TS
i,s ] =

S
∑

s=1

θs

(

psyi,s −

(

αyi,s +
β

2
y2

i,s +
δ

2
(yi,s − qi)

2

))

.

Using propositions (3.1) and (3.2), we can re-write uTS
i as a function of ai and bi. In order

to find a maximum of uTS
i (for a fixed set of competitor offers) we appeal to a transformation

that will yield concavity results for uTS
i . We consider uTS

i to be a function of Ai and Bi (instead
of ai and bi). Note that the transformation (Ai = ai

bi
, Bi = 1

bi
) is a one-to-one transformation.

Proposition 3.4 Let all competitor (linear) supply function offers be fixed. The following
maximizes uTS

i (and is therefore firm i’s best response).

Bi =
1 + ZB−i

Z + β + δ + Z(β + δ)B−i

Ai =
α + Bi (Zα − δ (Y + ZA−i)) + ZαB−i

2Z + β + ZβB−i

Proof We can show that uTS
i is a concave function of Ai, assuming Bi is a fixed parameter.

Here we have dispensed with the expression for uTS
i as a function of Ai and Bi as it is long and

rather complicated. This expression can be found in the online technical companion [3].
We note that uTS

i is a smooth function of Ai and Bi. Let A−i =
∑

j 6=i Aj and B−i =
∑

j 6=i Bj .
Then

∂2uTS
i

∂Ai
2 = −

(1 + ZB−i) (2Z + β + ZβB−i)

(1 + ZB) 2
≤ 0

Let Bi be arbitrary but fixed. As uTS
i is a concave function of Ai the first order condition

yields an expression for A∗
i (Bi), the value of Ai that maximizes uTS

i (for the fixed Bi).

A∗
i (Bi) = (1+ZB−i)(−Y +α−ZA−i+ZαB−i)+Bi(Z(Y +ZA−i)+(Zα+βY +ZβA−i)(ZB−i+1))

(1+ZB−i)(2Z+β+ZβB−i)
.
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We can embed A∗
i (Bi) into uTS

i and find the maximizer in terms of Bi. Lemma (3.3) then
can be applied to demonstrate that the end result delivers the maximum of uTS

i .
After embedding this value of A∗

i into the profit function, the derivative with respect to Bi

of uTS
i is.

dui

dBi

=
(Y 2 −

∑

s θsY
2
s ) (−1 + (Z + β + δ)Bi + Z (−1 + (β + δ)Bi) B−i)

(1 + ZB) 3

B∗
i = 1+ZB−i

Z+β+δ+Z(β+δ)B−i
, is the zero of this derivative. Recall that Y =

∑

s θsYs, therefore

Jensen’s inequality implies Y 2 −
∑

s θsY
2
s ≤ 0. Thus, dui

dBi
≥ 0, when Bi < Bi

∗, and dui

dBi
≤ 0,

when Bi > B∗
i . In other words, ui is a quasi-concave function of Bi and is maximized at

Bi = Bi
∗.

Note that evaluating A∗
i at B∗

i yields

A∗
i =

α + Bi (Zα − δ (Y + ZA−i)) + ZαB−i

2Z + β + ZβB−i

.

From the above, we can obtain the equilibrium of the NZTS model by solving all best
responses simultaneously. This gives the unique and symmetric solution

2S-EQM: Bi =
2

−(n − 2)Z + β + δ +
√

(n − 2)2Z2 + 2nZ(β + δ) + (β + δ)2
(10)

Ai =
α + (nZα − Y δ)Bi

2Z + β + (n − 1)Z(β + δ)Bi

, (11)

or alternatively

2S-EQM: bi =
−(n − 2)Z + β + δ +

√

(n − 2)2Z2 + 2nZ(β + δ) + (β + δ)2

2
(12)

ai =
αbi + (nZα − Y δ)

2Zbi + βbi + (n − 1)Z(β + δ)
, (13)

As we discussed earlier, these equilibrium offers yield non-negative pre-dispatch and dispatch
quantities. Below we formally state this result, however the computations to show the non-
negativity of these quantities can be found in the technical companion [3].

Proposition 3.5 The equilibrium pre-dispatch and spot production quantities of the firms in
the NZTS market are non-negative, i.e.

qi ≥ 0 ∀i,

yi,s ≥ 0 ∀i, s.
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4 Stochastic Settlement Market

4.1 ISOSP Model

We now introduce the market model we will use to analyze a stochastic settlement market. As
discussed in the introduction, the stochastic settlement market contains only a single stage of
bidding, but the market clearing procedure takes into account the distribution of future demand
when determining dispatch. The market works as follows. When the market opens, demand
is uncertain. Firms are allowed to bid their ‘normal’ cost functions (the cost of producing a
given output most efficiently) and a ‘penalty’ cost function that they would need to be paid to
deviate in the short-run. Since firms have quadratic cost functions, they can bid their actual
costs by submitting a linear supply function. Each firm i chooses ai and bi to bid the linear
supply function ai + biq, and di to bid the (marginal) penalty cost diq. Note that as with the
NZTS model, these bids (ai, bi, di) need not be their true values (α, β, δ). The offered bi is
required to be positive and di should be non-negative.

After generators have placed their bids, the ISO computes the market dispatch according to
the stochastic settlement model (outlined below). At this point demand is still uncertain. The
ISO chooses two key variables. The first is the pre-dispatch quantity for each firm. This is the
quantity the ISO asks each firm to prepare to produce, namely the pre-dispatch quantities qi

defined in Section 2. The second is the short-run deviation for generator i under each scenario
s. This deviation is the variable xi,s defined in Section 2, representing the adjustment made to
firm i’s predispatch quantity in scenario s. The ISO can choose both pre-dispatch and short-run
deviations simultaneously, while aiming to maximize expected social welfare. The ISO assumes
that generators have bid their true costs.

In the final stage, demand is realized, and the ISO will ask generators to modify their
pre-dispatch quantity according to the short-run deviation for the particular scenario. Each
generator ends up with producing qi + xi,s. Two prices are calculated during the course of
optimizing welfare. The first is the (shadow) price of the pre-dispatch quantities. We will
denote this by f . The second are the prices of each of the deviations, for each of the scenarios.
We will denote these by ps for scenario s. Each generator is paid f per unit for its pre-dispatch
quantity qi, and ps for its deviations xi,s. Thus in realization s, generator i makes profit equal
to

uSS
i,s (qi, xi,s) = fqi + psxi,s − α (qi,s + xi,s) +

β

2
(qi,s + xi,s)

2 +
δ

2
x2

i,s. (14)

Mathematically, the stochastic optimization problem solved by the ISO can be represented
as follows. 3

ISOSP:

3This is a modified version of Pritchard et al.’s problem. There is only one node and thus no transmission
constraints, and demand is elastic.
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min z =
∑S

s=1 θs

(
∑n

i=1

[

ai(qi + xi,s) + bi

2
(qi + xi,s)

2 + di

2
x2

i,s

]

− (YsCs −
Z
2
C2

s )
)

s.t.
∑

i qi − Q = 0 [f ]
Q +

∑

i xi,s − Cs = 0 ∀s ∈ {1, . . . , S} [ps]

Q and Cs stand for the total contracted (or pre-dispatched) quantity and total consumption
in scenario s respectively. Note that we could have eliminated the two equality constraints.
However, their dual variables are the market prices f and ps respectively, so for clarity we have
left them in.

4.2 Characteristics of the Stochastic Optimization Problem

We begin by presenting a series of results that simplify the set of solutions to the ISOSP
problem. These results drastically simplify the subsequent analysis of firms’ behaviour in
equilibrium under stochastic settlement.

Lemma 4.1 In the stochastic settlement market clearing, the expected deviation of firm i from
pre-dispatch quantity q∗i is zero, that is, the optimal solution to ISOSP will always satisfy

∑

s

θsx
∗
i,s = 0.

Proof Let us assume Q∗
i and x∗

i,s form ISOSP’s optimal solution. Let us define for each i
and s the quantity ki,s := q∗i + x∗

i,s, the total production of firm i in scenario s. Note that
Cs =

∑

i q
∗
i +

∑

i x
∗
i,s. Assume, on the contrary, that there exists at least one firm j such that

∑

s θsx
∗
j,s 6= 0. The optimal objective value of ISOSP is then given by

∑

i

∑

s

θs(aiki,s +
bi

2
(ki,s)

2) +
∑

i

∑

s

θs

di

2
(x∗

i,s)
2 + Ys

∑

i

ki,s −
Z

2
(
∑

i

ki,s)
2. (15)

Note that as
∑

s θsx
∗
j,s 6= 0, the term

∑

i

∑

s θs
di

2
(x∗

i,s)
2 is positive. Now, for a fixed i and

ki,s given from above, consider the problem

min
qi,xi,s

w =
di

2

S
∑

s=1

θsx
2
i,s

∀s : qi + xi,s = ki,s. (16)

This problem clearly reduces to the univariate problem

min
qi

w =
S
∑

s=1

θs(ki,s − qi)
2,

which is optimized at
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qi =

S
∑

s=1

θski,s.

Define q̂i and x̂i,s by

q̂i =

{

q∗i , i 6= j
∑S

s=1 θskj,s otherwise,

and

x̂i,s =

{

x∗
i,s, i 6= j

kj,s − q̂j otherwise.

By definition, q̂i + x̂i,s = q∗i + x∗
i,s for all i and s. It is easy to see that the quantities q̂i and

x̂i,s yield a feasible solution to ISOSP. Furthermore, the objective function evaluated at q̂i and
x̂i,s is given by

∑

i

∑

s

θs(aiki,s +
bi

2
(ki,s)

2) + Ys

∑

i

ki,s −
Z

2
(
∑

i

ki,s)
2.

This value is strictly less than the objective evaluated at q∗i and x∗
i,s (given by 15), as we

have already established that
∑

i

∑

s θs
di

2
(x∗

i,s)
2 > 0. This yields the contradiction that proves

the result.

Corollary 4.2 In the stochastic problem ISOSP, if q∗i + x∗
i,s ≥ 0 is satisfied ∀s ∈ {1, . . . , S}

then q∗i ≥ 0 will hold.

Proof In lemma 4.1 we established that
∑

s θsx
∗
i,s = 0. Therefore there exists a scenario s′

such that x∗
i,s′ ≤ 0. clearly then q∗i + x∗

i,s′ ≥ 0 implies q∗i ≥ 0.

Discussion Lemma 4.1 is the crucial result that drives the rest of our characterizations.
This results hinges on the fact that we penalize quadratic deviation from the pre-dispatch
quantity. This model penalizes the deviations upward and downward identically. Therefore the
predispatch point is optimized based on the mean demand scenario. The reader may argue that
allowing for different upward and downward penalties is more realistic. However as Pritchard
et. al. (see [5]) show, such allowance of asymmetric penalties can lead to systematic arbitrage
by the ISO, where a generator may be required to deviate upward “in every scenario” simply
to increase expected welfare. This is undesirable for a market clearing mechanism. We have
therefore confined our attention to the symmetric upward and downward penalty case for this
paper, which guarantees systematic arbitrage will not occur. We now use the above results and
intuition to prove that the ISO’s optimization problem can be viewed as a deterministic two
period settlement system where unlike NZTS, the deviation penalties are explicitly stated in
the ISO’s problem in the second period.

Lemma 4.3 Problem ISOSP is equivalent to the following optimization problem which is sep-
arable in the pre-dispatch and the spot market variables
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z =
n
∑

i=1

(

aiqi +
bi

2
q2
i

)

− Y
n
∑

i=1

qi +
Z

2

(

n
∑

i=1

qi

)2

+

n
∑

i=1

(

bi + di

2

S
∑

s=1

θsx
2
i,s

)

−

n
∑

i=1

S
∑

s=1

θsYsxi,s +
Z

2

S
∑

s=1

θs

(

n
∑

i=1

xi,s

)2

.

Proof Substituting for Cs from constraints into the objective function of ISOSP yield

z =
S
∑

s=1

θs

(

n
∑

i=1

(

ai (qi + xi,s) +
bi

2
(qi + xi,s)

2 +
di

2
x2

i,s

)

−Ys

n
∑

i=1

(qi + xi,s) +
Z

2

(

n
∑

i=1

(qi + xi,s)

)2)

Rearranging the above we obtain:

z =
n
∑

i=1

(

aiqi +
bi

2
q2
i

)

− Y
n
∑

i=1

qi +
Z

2

(

n
∑

i=1

qi

)2

+

n
∑

i=1

(

ai

S
∑

s=1

θsxi,s

)

+

n
∑

i=1

(

bi + di

2

S
∑

s=1

θsx
2
i,s

)

−

n
∑

i=1

S
∑

s=1

θsYsxi,s +
Z

2

S
∑

s=1

θs

(

n
∑

i=1

xi,s

)2

+

n
∑

i=1

(

qibi

S
∑

s=1

θsxi,s

)

+

S
∑

s=1

θsZ

n
∑

i=1

n
∑

j=1

qixj,s

Note that the first part of the objective above is a function of pre-dispatch quantities qi and
the second only a function of the spot dispatches xi,s. Furthermore, observe that in both of

the terms in the third part, the factor
∑S

s=1 θsxj,s appears. We can therefore appeal to lemma
(4.1) and eliminate this last part. This completes the proof.

Note: We have therefore established that ISOSP reduces to a deterministic two period
single settlement model very similar to NZTS but with penalties explicitly present in the second
period.

The rest of this section is devoted to deriving explicit expressions for the solution of ISOSP.
In the next section we will use these expressions to arrive at best response functions for the
firms and subsequently in constructing an equilibrium for the stochastic market settlement. In
order to simplify the equations and arrive at explicit solutions, we will transform the space of
the parameters of ISOSP (firm decision variables). We will use the following transformation

13



H :





R

R
+ − {0}

R
+



→





R

R
+ − {0}

R
+ − {0}



 that is one-to-one and onto.





Ai

Bi

Ri



 = H





ai

bi

di



 :=





ai/bi

1/bi

1/(bi + di)





If we further define
A =

∑

i

Ai, B =
∑

i

Bi and R =
∑

i

Ri,

ISOSP reduces to minimizing the following:

z =

n
∑

i=1

(

Ai

Bi

qi +
1

2Bi

q2
i

)

− Y

n
∑

i=1

qi +
Z

2

(

n
∑

i=1

qi

)2

+
S
∑

s=1

θs





n
∑

i=1

1

2Ri

x2
i,s − (Ys − Y )

n
∑

i=1

xi,s +
Z

2

(

n
∑

i=1

xi,s

)2


 .

Note as before (lemma (4.3)) that the above is separable in qi’s and xi,s’s, we can therefore
solve the two stages separately. Note also that the two problems are convex optimization
problems therefore KKT conditions will readily produce the optimal solution (for derivation
please refer to the technical companion [3]).

Proposition 4.4 If (q, x, f, p) represents the solution of ISOSP, then we have

qi =
(Y + ZA)Bi

1 + ZB
− Ai (17)

xi,s =
(Ys − Y )Ri

1 + ZR
(18)

f =
Y + ZA

1 + ZB

ps =
Y + ZA

1 + ZB
+

Ys − Y

1 + ZR

Observe from the expression for f that this forward price (paid on pre-dispatch quantities) is
independent of any deviation costs in the spot market.

Corollary 4.5 In the solution of ISOSP, forward price is equal to the expected spot market
price.

Proof This is simply observed from proposition 4.4.

The fact that contract price is equal to the expected spot market price, implies that there
is no systematic arbitrage.
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Figure 1: Market clearing of the spot market using firms’ supply functions as an equivalent
representation of ISOSP problem

4.3 Equilibrium Analysis of the Stochastic Settlement Market

In section (4.1) we presented firm i’s profit under scenario s in equation (14). In our market
model, we assume that all firms are risk neutral and therefore interested only in maximizing
their expected profit. Firm i’s expected profit is given by

ui = fqi +
S
∑

s=1

θs

(

psxi,s −

(

α(qi + xi,s) +
β

2
(qi + xi,s)

2 +
δ

2
x2

i,s

))

, (19)

The above expression for ui can be expanded and we can observe that

ui = fqi − (αqi +
β

2
q2
i )

+
S
∑

s=1

θs

(

psxi,s −
β + δ

2
x2

i,s

)

−α

S
∑

s=1

θsxi,s − βqi

S
∑

s=1

θsxi,s

Note that from lemma (4.1), the generator would know that for any admissible bid, the
corresponding expected deviation from pre-dispatch quantities

∑S

s=1 θsxi,s = 0. Therefore the
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expected profit for the generator becomes

ui = fqi − (αqi +
β

2
q2
i )

+
S
∑

s=1

θs

(

psxi,s −
β + δ

2
x2

i,s

)

.

We can use the expressions obtained from proposition (4.4) to write ui as follows.

ui = −
1

2
βA2

i +
Ai (−ZA + α + ZBα + ZAβBi + Y (−1 + βBi))

1 + ZB

+
1

2(1 + ZB)2(1 + ZR)2

(

2(1 + ZR)2(ZA + Y )(ZA + Y − (1 + ZB)α)Bi − (1 + ZR)2(ZA + Y )2βB2
i

+(1 + ZB)2Ri (−2 + (β + δ)Ri)

(

Y 2 −
∑

s

θsY
2
s

))

(20)

Although this expression of the expected profit for the generator is rather ugly, it does have
the advantage that upon differentiating with respect to Ri, all dependence on Ai and Bi drops
and we are left with

dui

dRi

=
(Y 2 −

∑

s θsY
2
s ) (−1 + (Z + β + δ)Ri + ZR−i (−1 + (β + δ)Ri))

(1 + ZR)3 . (21)

Recall that R−i =
∑

j 6=i Rj . (For verification of this derivative term see the technical companion
[3].) The fact that this derivative is free of Ai and Bi indicates that ui is separable in Ri and
(Ai, Bi), that is

ui(Ai, Bi, Ri) = gi(Ai, Bi) + hi(Ri). (22)

Due to this natural separability, our equilibrium analysis will focus on finding best responses
in terms of Ai, Ri and Bi very similar to the NZTS section.

Equation (22) enables us to maximize ui by maximizing gi and hi over (Ai, Bi) and Ri

respectively. This is helpful as we can establish quasi-concavity results for gi and hi separately.
We start our investigations by examining gi. The full expression for gi can be found in the

technical companion [3]. Holding Bi fixed, note that

d2gi

dA2
i

= −
(1 + ZB−i) (2Z + β + ZβB−i)

(1 + ZB)2 .

This demonstrates that gi is concave in Ai for any fixed Bi. Furthermore, for any fixed Bi, we
can use the first order conditions to find A∗

i (Bi), i.e. the value of Ai that maximizes gi(Ai, Bi)
for the fixed Bi.

A∗
i (Bi)=

(1 + ZB−i) (α − ZA−i + ZαB − Y ) + (Y + ZA−i) (Z + β + ZβB−i) Bi

(1 + ZB−i) (2Z + β + ZβB−i)
(23)
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To find the optimal value for gi, we can now appeal to lemma (3.3) and substitute the
expression for A∗

i (Bi) in gi(A
∗
i (Bi), Bi). Surprisingly, upon undertaking this substitution, it

can be observed that gi(A
∗
i (Bi), Bi) is a constant value. Figure 2 depicts gi.

Figure 2: Two views of the function gi. Note that the optimal value of gi is obtained along a
continuum, for any value of Bi.

To uncover the intuition behind this feature of gi, we can offer the following mathematical
explanation. We observe that

dgi

dAi

=
− (1 + ZB−i) (Y − α + ZA−i + (2Z + β)Ai + ZB−i (−α + βAi))

(1 + ZB)2

+
(Z(Y + α) + Y β + Y (Zα + Y β)B−i + ZA−i (Z + β + ZβB−i))Bi

(1 + ZB)2

and that
dgi

dBi

= −
Y + ZA

1 + ZB
.
dgi

dAi

.

Therefore, stationary conditions enforced in Ai will also imply stationarity in Bi.
As gi(A

∗
i (Bi), Bi) is constant for any Bi > 0, for any value of Bi > 0, the tuple (A∗

i (Bi), Bi)
is an argmax of gi for any positive Bi. The following analysis on hi will explain how optimal
Ri is constrained by the value of Bi.

Proposition 4.6 Suppose that R−i is fixed. Then hi is optimized at

R∗
i = min{Bi,

1 + ZR−i

Z + β + α + Z(β + δ)R−i

}

Proof Note that at

R̂i =
1 + ZR−i

Z + β + α + Z(β + δ)R−i

(24)

The derivative dhi

dRi
= dui

dRi
vanishes. Also recall from Jensen’s inequality that Y 2 ≤

∑

s θsY
2
s .

It can therefore be seen from (21) that this derivative is positive for Ri < R̂i and negative
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for Ri > R̂i. Recall further that the definition of Bi and Ri require Ri ≤ Bi. Therefore, in
optimizing hi, we need to enforce this constraint and we obtain

R∗
i = min{Bi,

1 + ZR−i

Z + β + α + Z(β + δ)R−i

}.

We now return to ui, the expected profit function for firm i. As ui(Ai, Bi, Ri) = gi(Ai, Bi) +
hi(Ri), we can start by obtaining the maximum value of gi attained at a point (A∗

i (Bi), Bi)
for any positive Bi. Subsequently, we proceed to optimize hi(Ri). Proposition (4.6) readily
delivers the optimal Ri. We have therefore proved the following theorem.

Theorem 4.7 The best response of firm i, holding competitor offers fixed, is to offer in

Ai=
(1 + ZB−i) (α − ZA−i + ZαB − Y ) + (Y + ZA−i) (Z + β + ZβB−i) Bi

(1 + ZB−i) (2Z + β + ZβB−i)
,

Ri =
1 + ZR−i

Z + β + α + Z(β + δ)R−i

,

and any choice of Bi where

Bi ≥
1 + ZR−i

Z + β + α + Z(β + δ)R−i

.

Theorem 4.7 indicates that the game has multiple (infinite) symmetric equilibria. To prevent
the problem of unpredictability, caused by multiple equilibria, from here on we assume that
the ISO chooses Bi as a system parameter. This parameter is identical for and known to all
participants. This also provides the ISO with the opportunity to choose Bi in a way to obtain
a preferable equilibrium (i.e. an equilibrium that yields higher social welfare).

Proposition 4.8 The unique symmetric equilibrium quantities of the stochastic settlement
market are as follows.

ai =
α − Y + Bi (−Z(Y (n − 2) − (2n − 1)α) + Y β + Z(n − 1)(Znα + Y β)Bi)

Bi (Z(n + 1) + β + Y (n − 1)(Zn + β)Bi)
(25)

di = max{0,
−Z(n − 2) + β + δ +

√

Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
−

1

Bi

} (26)

Proposition 4.9 Let

b̂ =
−Z(n − 2) + β + δ +

√

Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
.

In a stochastic settlement market with bi ≤ b̂ and large number of firms, firms tend to offer
their true cost parameters. In other words,
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lim
n→∞

ai = α

lim
n→∞

bi + di = β + δ.

When the fixed parameter bi is chosen equal to β, limn→∞ di = δ.

Proof The equations are simply derived from the equilibrium values of ai and di given in
proposition 4.8.

Proposition 4.9 shows that our market is behaving competitively in the sense that when
number of firms increases, they offer their true cost parameters.

One important feature of the equilibrium values are the non-negativity of the pre-dispatch
and dispatch. This is important, because we neglected the non-negativity constraints in ISOSP
in the first place.

Theorem 4.10 Let (q∗,x∗) represent the equilibrium of the stochastic settlement market, then
the following inequalities hold.

∀i, s : q∗i + x∗
i,s ≥ 0

∀i : q∗i ≥ 0

The proof of the above theorem is contained in the technical companion.
Though, the equilibrium pre-dispatch and dispatch are non-negative, one might raise an

objection that a game without the non-negativity constraints embedded in the ISO’s optimiza-
tion problem, is different from the original game. Therefore, there is no assurance the found
equilibrium is also the equilibrium of the original game. The following theorem states that the
obtained equilibrium values are also the equilibrium of the original game with non-negativity
constraints. The proof of this theorem is quite lengthy and consists of several technical lemmas.
This proof can be found in the technical companion [3].

Theorem 4.11 The equilibrium of the symmetric stochastic settlement game without the non-
negativity constraints in ISOSP is also the equilibrium of the stochastic settlement game with
the non-negativity constraints.

Thus far we established that under the assumption of symmetry, the stochastic settlement
(ISOSP) market is equivalent to a two period deterministic settlement in which the deviation
penalties are explicitly present in the second period (DTS). We then proceeded to derive an
analytical symmetric equilibrium expression for ISOSP. In this process, we enhanced the defi-
nition of our game to avoid multiple equilibria and allow the ISO to choose the marginal cost
parameters for the (symmetric) players in this game. The issue of multiple equilibria arises as
there are multiple optimal solutions to the best response problem. Specifically, for any choice
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of bi and di, so long as Ri = 1
bi+di

= R̂i, we obtain an optimal solution (subject to boundary
conditions of course).

While in the context of our computations, due to the natural decomposition of ui, it was
natural to treat bi as the free variable, our intention has been to compare the NZTS mechanism
with the ISOSP market clearing proposed. As we observed that ISOSP is equivalent to DTS,
it would make sense to think of a game where the ISO imposes the deviation penalty on all
participants by picking di = d ≥ 0. If we think of the ISO choosing d, announcing d to all
participants and imposing this value as the deviation penalty in the second stage, the resulting
game, along with its symmetric equilibrium, is equivalent to the game where the ISO selects b
for the range where 0 ≤ d ≤ b̂.

Here observe that if ISO selects d = δ, then as the number of participants increases, in the
symmetric equilibrium we obtain bi → β and ai → α. Furthermore, it is clear that if d = 0,
then the equilibria for NZTS are recovered.

5 Comparison of the Two Markets

We are interested in the performance of the two market clearing mechanisms ISOSP and NZTS,
under strategic behaviour. Our criterion for comparing the two models is social welfare. So-
cial welfare is defined as the sum of the consumer and producer welfare and in our market
environments this reduces to

W =
S
∑

s=1

θs



Ys

(

n
∑

i=1

yi,s

)

−
Z

2

(

n
∑

i=1

yi,s

)2




−

S
∑

s=1

θs

(

n
∑

i=1

(

αyi,s +
β

2
yi,s

2 +
δ

2
(yi,s − qi)

2

)

)

. (27)

Note that the different social welfare values W SS (for the ISOSP) and W NZTS (for the NZTS
mechanism) are found through the same formula, however with the different equilibrium yi,s

variables.
Recall that following theorem 4.7 the choice of Bi (equivalently the choice of bi,) was del-

egated to the ISO. The next proposition establishes that when firms are bidding strategically,
the stochastic settlement market dominates the NZTS market provided the ISO chooses the
slope of the supply function sufficiently low.

Proposition 5.1 The social welfare of ISOSP is higher than the NZTS market provided the
parameter bi is chosen less than the threshold value b̂, where

b̂ =
−Z(n − 2) + β + δ +

√

Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
.

20



Proof To prove the proposition, we show when bi = b̂, we can conclude WSS = WNZTS. Then,
we demonstrate WSS is a decreasing function of bi, and therefore, WSS ≥ WNZTS, when bi ≤ b̂
(note that WNZTS is a constant and does not change with b).

When bi = b̂, equations (25), (11), and (10) yield that the equilibrium quantities are identical
in the stochastic settlement and deterministic two period settlement markets. That is

BSS
i = BNZTS

i

ASS
i = ANZTS

i

RSS
i = BSS

i

Here we can simplify the expressions for yi,s and qi (from propositions 3.1, 3.2, and 4.4) to
obtain

qSS
i = qNZTS

i =
Y Bi − Ai

1 + ZB

ySS
i,s = yNZTS

i,s =
YsBi − Ai

1 + ZB

Therefore social welfare of these models (equation 27) are the same provided bi = b̂.
We can rewrite the social welfare expression (27) as

W =

S
∑

s=1

θs



Ys

(

n
∑

i=1

yi,s

)

−
Z

2

(

n
∑

i=1

yi,s

)2

−

n
∑

i=1

(

αyi,s +
β

2
yi,s

2 +
δ

2
xi,s

2

)



 . (28)

Note that the expression for social welfare is the same for both models and only depends
on the corresponding quantities dispatched from each model (i.e. ySS

i,s vs yNZTS
i,s etc).

Furthermore, note that xSS
i,s is independent of b, and therefore,

dW SS

dbi

= −
1

b2
i

∑

i,s

dW SS

dySS
i,s

dySS
i,s

dBi

. (29)

On the other hand, taking the derivative of ySS
i,s with respect to Bi (see the technical com-

panion [3]) we obtain

dySS
i,s

dBi

=
(Y − α)(n − 1)Z2

(Z + nZ + β + (n − 1)Z(nZ + β)Bi) 2
≥ 0.

The right hand side is readily seen to be non-negative as Y > α and n > 1.

As
dySS

i,s

dBi
is independent of firm i and scenario s (note that Bi is chosen by the ISO and fixed

to a single parameter for all firms,) we can re-arrange (29) and obtain

21



dW SS

dbi

= −
1

b2
i

dySS
i,s

dBi

∑

i,s

dW SS

dySS
i,s

.

On the other hand, differentiating (28) yields

dW SS

dySS
i,s

= θs

(

Ys − α − (Zn + β)ySS
i,s

)

.

Hence,

∑

s

dW SS

dySS
i,s

= Y − α − (Zn + β) qSS
i

=
bZ(Y − α)

Z(n − 1)(nZ + β) + b((n + 1)Z + β)
≥ 0.

Therefore we can conclude that,
dW SS

dbi

≤ 0.

Note that we can easily show that

b̂ ≥ β + δ,

and therefore, if the fixed bi is chosen equal to β then W SS ≥ WNZTS.

Example Consider a market with two symmetric generators as defined in table 1.

Parameter Value

α, β, δ 50, 1, 0.5
Y1, Y2, Z 100, 150, 1

θ1, θ2 0.5, 0.5
n 2

Table 1: The market environment for the example

Figure 3 shows how the social welfare of the stochastic settlement mechanism is affected
by the choice of b. It also demonstrates that for small enough bs, the stochastic settlement
mechanism has a higher equilibrium social welfare in comparison with the NZTS mechanism.
For the rest of this example, we assume the ISO chooses b = β = 1 which ensures higher
equilibrium social welfare from the stochastic settlement in comparison with the conventional
mechanism.

Another interesting experiment is to investigate the effect of δ on these mechanisms.
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b

1960

1980

2000

2020

2040

Social Welfare

ISOSP

NZTS

d=b̂

d=0

d=0

Figure 3: The effect of b on the social welfare of stochastic settlement model and an how it
compares to the deterministic two period settlement mechanism

1 2 3 4

1950

2000

Social Welfare

δ

ISOSP

NZTS

Figure 4: The SP mechanism yields higher social welfare for different δ values

1 2 3 4

1020

1040

1060

1080

ProducerWelfare

ISOSP

NZTS

δ

Figure 5: The SP mechanism yields lower producer welfare for a range of examples (i.e. different
δ values)

Figures 4, 5, and 6 compare the stochastic settlement and the NZTS mechanisms for this
market, however for different δ values. A first observation is the stochastic settlement mecha-
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1 2 3 4
δ

850

900

950

1000

ConsumerWelfare

ISOSP

NZTS

Figure 6: The SP mechanism yields higher consumer welfare for a range of examples (i.e.
different δ values

nism increases social and consumer welfare and decreases producer welfare in comparison with
the two settlement mechanism. Also, these effects are enhanced by increasing δ. This is an
expected result that the strength of the stochastic settlement is bolder when cost of deviation
is higher.

It is also interesting to investigate the effect of competition on these mechanisms. To do so,
we can test the effect of number of firms on these mechanism.

3 4 5 6 7 8

n

2200

2400

2600

Social Welfare

ISOSP

NZTS

Figure 7: Social welfare of the deterministic two period settlement mechanism converges that
of the stochastic mechanism when n increases. Competition increases with a bigger market.

Figure 7 shows the difference in the social welfare of our two mechanism as a function of n.
It shows that when the number of generators increase, the performance of the stochastic and
deterministic two period settlement mechanisms converges.
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6 Conclusion

In this paper, we set up a simple modelling environment in which we were able to compare the
New Zealand inspired deterministic two period single settlement market clearing mechanism
against a stochastic settlement auction which reduces to another two period single settlement
auction with explicit penalties of deviation, therefore different from the NZTS model. We were
able to model firms’ best responses in these markets, and so find equilibrium behaviour in
each. We find that in our symmetric models, the ISOSP auction provably dominates the NZTS
auction when measuring expected social welfare.
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