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Abstract

In this paper we focus on planning the expansion of electricity distribution net-
works. The objective of the distribution network expansion planning problem is
to determine an investment schedule to ensure an economic and reliable energy
supply. This is done by constructing a minimum cost radial distribution network
under the constraints of network line load capacities, voltage drops, reliability, and
load demands. The complexity comes from the combinatorial nature imposed by
the radial network constraint and: various options for transformer and substation
location; several alternatives for cable or line sizes and routes; multistage invest-
ment decisions; complex objectives; and uncertainty about demand variation and
location, equipment availability, and faults.

The aim is to solve a multistage stochastic programming problem, however,
solving even a deterministic mixed integer programming problem is very computa-
tionally expensive. To overcome this, we use Lagrangian relaxation to decompose
the original problem into smaller, easy-to-solve dynamic programming subprob-
lems for each arc. This approach looks promising for efficiently solving multistage
stochastic programming problems, for which a stochastic subproblem would be
solved using stochastic dynamic programming.

1 Introduction

Electrical power is the most useful form of energy. Every residential, industry
and commercial customer in our country is served by the electric power system.
This system renders power to provide our everyday lighting, heating, and electrical
equipment needs. Our everyday electrical necessities are met so well that we take
this high quality service for granted.

The role of an electric power system can simply be described as the generation
and supply of electrical energy in an efficient, economic and reliable manner to



meet customer demands. The electric power system is made up of several systems
such as the generation, the transmission, and the distribution system. Power is
generated at a location where it gives the most overall economical selling cost. The
transmission system is used to transport large amounts of energy from the point
of generation to the distribution system. The distribution system then distributes
the energy to all the customers in the area. In general, individual organizations
own and operate only one of the components of the electric power system. These
three abovementioned systems together consist of millions of components and cost
billions of dollars to construct, operate and maintain. A diagram of an electric
power system is shown in figure 1.
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Figure 1: The electric power system.

1.1 The Electricity Distribution Network

Commonly, a distribution network is operated in a radial configuration (Lakervi and
Holmes 1995). Radial networks have a treelike structure. This means that each
load point is connected to the point of supply (substation) through a single path.
The radial network is the simplest relative to a wide range of network operating
configurations. Furthermore, radial networks are the least expensive to maintain
and operate. Figure 2 shows a schematic diagram of a radial distribution network.

The electricity distribution network is an important part of the highly complex
electric power system. The capital investment in the distribution system constitutes
a significant portion of the total amount spent in the entire power system. Thus
effective design and efficient operation of distribution networks have become very
important.

The New Zealand electricity market was deregulated in 1996. The deregulation
aims to lower electricity prices and shift the focus of distribution companies to
consumers. Thus this provides a strong incentive for distribution companies to
lower their total cost since their profit is the difference between the price limit set
by the network authority and the actual costs incurred in distributing electricity
to consumers. This can be achieved by improving efficiency, maximizing asset
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Figure 2: A radial distribution network.

utilization and operational economics. In addition to these tasks the distribution
company must provide for increasing demand in electric energy. Typically this
is done in the form of network expansion projects (this may include reinforcing
current, assets). These projects usually require capital investments in the order
of millions of dollars; consequently it is of utmost importance to the distribution
company to get the best return on investment.

1.2 Demand Growth

Normally, even small distribution networks may have several hundred nodes, of
which most correspond to load points and the others correspond to switching points
(Ferreira et al 1999). Furthermore there may be hundreds of arcs corresponding
to cables/lines and switching busbars resulting in complex systems. Maintaining
and operating such a large distribution network within an accepted service level is
a difficult task. Moreover, with a growing population, the demand for electricity
is also increasing. The increasing demand and the future demand levels will not
only influence the size of each network equipment, but also the current network
configuration. Therefore an economic design of the distribution network should be
such that no network reinforcement or expansion is needed for a certain number of
years.

In cases where the load in a particular feeder or line is nearing capacity, a
distribution company first tries to reconfigure their network to accommodate such
demand increase. To clarify this, consider the example in figure 3 where a simple
radial network is given with 2 switches and 3 lines. Figure 3a shows the original
configuration of the radial network with switch 1 closed, switch 2 open, 2 load
points on line 1, 1 load point on line 2 and no load on line 3 i.e. a line currently
not in use, represented by the dashed line. Suppose that each line has a capacity
of 3 units and each load point occupies a single unit. Thus observe that line 1
supplies its own 2 loads and also the load on line 2. Consequently it is running
at its capacity limit of 3 units. In figure 3b there has been a unit increase in load
on line 2. In the current configuration this increases the load requirement on line



Figure 3: a) The original configuration. b) Unit increase in demand on line 2. ¢)
Open switch 1, close switch 2 to reconfigure network to accommodate increased
demand on line 2.

2 to 4 units. This is not feasible and therefore distribution company reconfigures
the network by opening switch 1 and closing switch 2, as shown in figure 3c. This
brings line 3 into service and frees up 1 unit of capacity in line 1 and 1 unit capacity
in lines 2 and 3 combined.

The above example illustrates the idea that for given radial network configura-
tion, all the arcs (line or cable) that are not part of the tree can be used to change
the topology of the network to improve its performance or in the above case make
it feasible again. Thus in the reliability context a reliable cable can be brought
into service while taking an unreliable cable out of service somewhere else in the
network. This may result in slightly altered but a more reliable radial network
configuration. However, if in case of load growth there are no possible network
configurations that satisfy the network operational constraints, then a distribution
company must consider investing capital into reinforcement of existing equipment
or installing of new equipment.

To cope with growing demand, reconfiguring the distribution network is an
extremely low-cost solution compared with investing in reinforcement or network
expansions. However, as mentioned, this is not always an option. Clearly, it is very
uneconomical for a distribution company to carry out reinforcements or expansions
on a yearly basis as the demand growth is realized. From this follows the question,
what is the least cost expansion plan which will ensure that all distribution network
operational requirements are satisfied and every demand is met at all times for a
given planning horizon? This forms the basis for the distribution network expansion
planning problem.

1.3 The Distribution Network Expansion Planning Prob-
lem

The objective of the distribution network expansion planning problem is to deter-
mine an investment schedule to ensure an economic, efficient and reliable energy
supply. This is done by constructing a minimum cost distribution network un-
der: load balance constraints that ensure that supply meets all demand; load flow
constraints to ensure that capacity is not exceeded; voltage restrictions to ensure
quality of supply; constraints for the acceptable level of network reliability related
to frequency and duration of outages; and the network radial configuration require-



ment. The set of radial configurations is an unknown discrete set as there are
definite states for switches that control the configuration. The switches are either
on or off, there is no in between. As mentioned above, even small distribution
networks can have hundreds of arcs and thus millions of unknown possible radial
configurations. Hence the radial configuration requirement imposes a very difficult
constraint on the optimization process.

This optimization problem may have several objectives (multi-criteria), com-
monly that of minimizing: 1) operational costs such as the day-to-day network
monitoring and maintenance; 2) expansion costs to meet growing demand; 3) heat
energy losses that occur due to conductor impedance; and 4) maximizing net-
work reliability to reduce supply outages hence increase customer satisfaction. The
multi-criteria approach adds to the problem dimensionality as there may be several
variables and constraints associated with each piece of equipment.

2 Mixed Integer Programming Formulation

First we formulate a deterministic mixed integer linear program for the distribution
network expansion planning problem based on the aforementioned constraints. In a
deterministic model the future demand is known with certainty. For simplicity we
do not consider any reliability or voltage aspects. Nonetheless we intend to evaluate
reliability and voltage quality of the optimal solution after the optimization process
using a specialized power systems software, in which a solution will be considered
feasible if it satisfies the reliability service and voltage levels. Recall that an arc
represents a cable or line, and a node represents either a demand load point or
supply point. It is assumed that each demand point has a switch to disconnect it
from any arc incident upon it.

Parameters
A;r = Arc incidence matrix.
B, = Size of block expansion in capacity gained from using technology [ (A).
Crit = Cost per block of expansion in arc k using technology [ in year t.
D; = Demand at node 7 in year t (A).
Iy Initial capacity of arc k, i.e., capacity at time, ¢t = 0.
K Total number of arcs in the electricity network.
L = Total number of expansion technologies available.
M, = Maximum capacity (A) of arc k (including expansions over years 1, ..., t).
N = Total number of nodes in the electricity network.
T = Final time period of the planning horizon.

Decision variables

zr, = Current flow in arc k in year t (A).
Yeit = 1 if technology [ is chosen for expansion on arc k£ at time ¢, 0 otherwise.
zky = 1if arc k is in radial network at time ¢, 0 otherwise.



Objective function
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subject to:

Total capacity of arc k at time ¢t must be equal to initial capacity plus the sum
of possible block expansions over the years 1, ..., ¢:

Tt S Ik + Zizl Zlel Blykls, k= 1, ...,K,t = 1, ,T

1
Tpt > _Ik_ZZzl Zlel Blyklsa k= 17---7K7t= 17---7T' ( )

There is flow in arc k of the network at time ¢ if and only if it is part of the
network:

Tt Szkth, k=1,...,K,t= 1,...,T. (2)
Tkt 2 —Zkth, k= 1, ...,K,t = 1, ,T

Power supply must equal demand, i.e., power balance constraints:
S Agape =Dy,  i=1,.,N,t=1.T. (3)

Distribution network must be in a radial configuration:

Sz =N — 1, t=1,..T. (4)

Tt € %, Ykits 2kt € {Oa 1} :

Note that the parameter M} in constraint (2) tends to introduce fractionality
in the problem. This effect can be decreased by making M) as small as possible
without affecting the actual optimal solutions. A possibility is to assign it a value
that is some multiple of the initial capacity . Furthermore, one can introduce a
parameter a to scale the values of My in proportion to the demand for a particular
year t. For example, if demand is low than the a could be 1.5 or 2, and if demand
is high then to allow possibly larger flows, one could increase « to 3 or 4.

This integer program has been implemented and gives optimal solutions to rel-
atively small problems. For example, consider a problem with 6 nodes, 9 arcs, and
a 4 year planning horizon for which the future demand is known. There are two
technologies available for expansion of each arc k, i.e., L = 2. One allows for a block
expansion of 5 units and the other of 10. Table 1 shows the costs of expansion based
on the block expansion type B; used and year t of expansion.

Table 1: t
1 2 3 4
B, 51100 105 110 118
10 | 150 158 165 174




Figure 4: Tllustrates the solution of the example problem with 6 nodes, 9 arcs, and
a 4 year planning horizon.

The minimum cost expansion solution is illustrated in figure 4 part a, b, c and d,
representing year 1, 2, 3 and 4, respectively. Here, a solid line represents a power line
in service and a dashed line represents a redundant power line. The number next to
the ‘<’ sign indicates the initial capacity of the corresponding line. The load points
and the load amounts are represented by the arrows and the adjacent numbers,
respectively. Note that the negative load indicates a point of supply. The solution
to this problem (y;11 = 1, y121 = 1, Y221 = 1) indicates that all the expansions should
be done in year 1, i.e., arc 1 is expanded using both block expansion technologies
and arc 2 is expanded using a 10 unit block. For this example, the reason for
expanding in year 1 is apparent. That is, the deterministic information about the
future demand is exploited by expanding in the year of least cost, that given by
expansions in year 1. Observe that the radial network configurations change in
year 2 and year 3, relative to year 1 and 2, respectively. By close examination, the
change in configuration in year 2 is not necessary as having arc 7 in service and
arc 9 out of service will not violate the network capacity constraints. However this
is advantageous in the operational sense as it indicates the flexibility in network
configurations. Thus a distribution company could reconfigure their network during



maintenance or repairs without having to compromise service to customers. The
change in configuration in year 3 however is necessary since the flow in arc 10 in
the configuration of year 2 is at maximum capacity. Hence if it were to stay in the
same configuration as year 2, it would not be able to supply the increased demand
in nodes 4 and 5.

As mentioned above, problems can be solved to optimality. However the com-
putational effort is large relative to the size of the problem. For instance, the small
problem for the above example took approximately 5 seconds of CPU time to solve
using CPLEX6.6. A problem with 10 nodes and 18 arcs for a 4 year planning
horizon takes longer than 30 minutes to solve. The time to solve increases expo-
nentially relative to the size of the problem, hence the complex nature (NP-hard)
of the electricity distribution network expansion planning problems.

We intend to solve multistage stochastic formulations of such problems, where
there is uncertainty in demand. That is, there may be many probable outcomes
for each demand point for each stage of the multistage planning horizon. Thus the
multistage stochastic formulation will contain many scenarios, where each scenario
will represent a sequence of realizations of an outcome of a demand at each stage of
the multistage planning horizon. However with real life problems easily exceeding
hundreds of arcs and nodes, using the abovementioned approach for multistage
stochastic programming would be very computationally impractical. To circumvent
this obstacle, next we look at solving a Lagrangian relaxation formulation of this
problem.

3 Lagrangian Relaxation Formulation

In the past, the Lagrangian relaxation technique has proven successful with dis-
crete optimization problems of similar scale and complexity. This approach has
led to improved algorithms for a number of important and large integer program-
ming problems in the areas of routing, capacitated facility location, scheduling,
assignment and set covering (Fisher 1981). Furthermore, stochastic unit commit-
ment problems for power generation have been solved using Lagrangian relaxation
in which the complex problem is decomposed into simpler stochastic single unit
subproblems (Dentcheva and Romisch 1998).

The Lagrangian relaxation technique is based on the observation that many
difficult integer programming problems can be modelled as relatively easy problems
complicated by a set of side constraints (Fisher 1985). Thus we create a Lagrangian
problem in which the complicating constraints are replaced with a penalty term
in the objective function. This penalty term involves the amount of constraint
violation and their corresponding dual variables or Lagrange multipliers (cost of
violation). Replacing these constraints produces a Lagrangian relaxation problem
that is relatively easy to solve. For example, consider the following integer program:

z=min{cz : Az < b,Dx < d,x € Z}}. (IP)

Let us suppose that Ax < b are the easy constraints and Dx < d are the compli-
cating constraints. If we relax the complicating constraints, then the Lagrangian



relaxation of (IP) is:

z(z,\) = min{cz + \(d — Dx) : x € X, X > 0}, (L(z, X))

where X = {2 : Az < b,z € Z7} and X\ are the dual variables corresponding to
the relaxed constraints. Since the Lagrangian problem L(z, A) is a relaxation of the
integer program [P, for any A > 0, the optimal value of L(z,\) provides a lower
bound on the optimal value of the I P problem, i.e., z(z,\) < z. Therefore with
different values of duals A, solving L(z, A) will provide different lower bounds. We
want to obtain the maximum lower bound on the optimal value of I P. For this we
need to solve the Lagrangian dual problem:

d(A) = max{z(xz,\) : A > 0}. (LD(\))

The Lagrangian dual problem LD(\) can be considered as the problem of max-
imizing a concave nonsmooth function z(z, A), piecewise linear in A\. An important
property of the Lagrangian dual is that it gives a lower bound which is at least
as good as the lower bound obtained from the linear programming relaxation. In
many cases the bound is strictly better. The proof and more detailed description of
other properties of Lagrangian Duality can be found in (Everett 1963) and (Wolsey
1998).

Note that the optimal solution for LD(A) which provides a lower bound, may
not be feasible for the I P problem. In such cases one has to heuristically alter
the infeasible solution to obtain a solution that is feasible. The objective function
value Z of the solution found by the heuristic will provide an upper bound on the
optimal value of the I P problem z. From this we know that the optimal solution
to the I P gives an objective value z that lies in the gap between the upper and
lower bounds, i.e., z(z,\) < z < Z. So the gap gives us a means of quantifying the
relative accuracy of any I P feasible solution obtained.

In the distribution network expansion planning problem, the set of complicat-
ing constraints are the supply-demand (3) and radial configuration (4) constraints.
These two constraints together force the feasible solution to give a treelike net-
work structure. Therefore a possible Lagrangian problem is given by relaxing these
constraints, which is shown in the following formulation.

r Zszl (Zle ChritYrie + 1y 2kt + Zil )\itAz'kl“kt)

min; - (Mt(N -1)+3Y, AitDz't) )

subject to:
Tt SIk—i—ZZ:l Zlel Biyus, k=1,. K, t=1,....T,
ap > I — S0 SO0 Biys, =1,.,K,t=1,..,T,
Tt < 2pt M, k=1,.,K,t=1,...,T
T 2 — 2kt M, k=1,. ,K,t=1,..,T,

ke € R, yre, 2t € {0,1},



where:

Ait = the Lagrange multiplier for the supply-demand constraint (3);
Ly the Lagrange multiplier for the radial configuration constraint (4).

Notice that Lagrangian problem L(u, \) can be decomposed into a Lagrangian
subproblem for each arc k. Then the solution of each subproblem will specify
whether or not: 1) the capacity on arc k will be expanded; and 2) if arc k will
be a constituent of the radial network; for each year t of the multistage plan-
ning horizon. The Lagrangian subproblems would be easy to solve using dynamic
programming. Therefore this approach looks promising for efficiently solving elec-
tricity distribution network expansion planning problems. More importantly, for
solving multistage stochastic programming problems, we would solve a stochastic
subproblem for each arc k (for each multistage scenario), using stochastic dynamic
programming.
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