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Abstract

For a price-taking generator operating a hydro-electric reservoir in a pool
electricity market, the optimal stack to offer in each trading period over a
planning horizon can be computed using dynamic programming. However,
the market trading period (usually 1 hour or less) may be much shorter than
the inherent time scale of the reservoir (often many months). We devise a dy-
namic programming model for such situations in which each stage represents
many trading periods. In this model, the decision made at the beginning of
each stage consists of a target mean and variance of the water release in the
coming stage. This decomposes the problem into inter-stage and intra-stage
subproblems.

1 Introduction

In recent years various forms of electricity markets have emerged throughout the
world. In this paper we develop a model for determining the optimal policy of
a hydroelectric generator operating in an electricity pool market such as those
implemented in the Nordic countries, Australia and New Zealand, and some parts
of North America.

In an electricity pool market, each generator is required to submit a non-
decreasing supply function ¢ = S(p), indicating how much power it is willing to
generate as a function of the price paid. Usually, the supply function is required
to be in the form of an offer stack, meaning that it must be a step function. That
is, the generator offers several blocks (known as tranches) of power to the market,
with each tranche having a different asking price.

To determine spot prices for energy, a central dispatching authority then clears
the market by systematically accepting the least expensive supply offers until
demand is met (allowing for transmission network losses and constraints). The
marginal cost of supply at any node of the transmission network (i.e. the shadow
price of the energy balance constraint) then defines the spot price of energy at this
node.
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This process is repeated, with new supply offers, for each trading period. The
duration of a trading period is fixed, and varies with the particular market design.
In the New Zealand market a trading period has a duration of 30 minutes.

Specific details on how the central authority makes its dispatching decisions
differ with the market design. For a thorough treatment of the issues surrounding
the design of electricity markets see e.g. Chao and Huntington [6]. Details of the
New Zealand dispatching model can be found in [2].

The problem addressed in this paper is the construction of optimal supply offers
for a generator operating a single hydro-electric reservoir. The reservoir has seasonal
storage, meaning that the time required to deplete or replenish it (anything from a
few weeks to a year or more) is much longer than the market trading period. The
generator is assumed to be a price-taker. That is, the price received for all energy
generated — the spot price at the local node of the transmission network — is treated
as an exogenous random variable, unaffected by the offers made by this generator.
Similarly, water inflows to the reservoir are to be treated as random.

The model we develop is similar in style to the dynamic programming model
proposed by Pritchard and Zakeri [17]. In their model each trading period is a
stage of the dynamic programming model, and the price in each period is a ran-
dom variable. The optimization at each stage chooses an offer stack to maximize
the sum of the expected revenue from the current stage and the expected future
revenue obtained from releasing the remaining water optimally over the decision
horizon. This dynamic programming model is suitable for reservoirs with small
storage volumes that are quick to replenish. These are typically operated so that
the reservoir level cycles over a day or at most a week.

For reservoirs with large volumes, the storage levels cycle over seasons. The
Pritchard and Zakeri approach is less suitable for such a reservoir, since a reasonable
decision horizon must contain a very large number of trading periods. Not only does
this imply an enormous computational effort, but it provides a level of modelling
detail (for example optimizing a single half-hour offer to be made months from now)
that is unwarranted.

One way to address this issue would be to have stages of variable length. The
first few stages would each model a single trading period, and then the length of the
stages would gradually be increased. Some of the later stages might each represent
several days, or even weeks. This approach has been used successfully in other
contexts (see [4]). However, the difficulty with this in the pool-market context
is that spot electricity prices are highly volatile, with a large intra-day variation.
There will thus be a large error in approximating a whole day (for example) as
if it were a single trading period, with a single price. Suppose we generate only
in a few highly-priced trading periods during the day (perhaps making substantial
revenue therefrom); the single-period approximation might well indicate that we
do not generate at all, since the price for this stage — which must attempt to be
representative of the entire day — is too low.

It is thus clear that in a model where one stage may represent many trading
periods, one should attempt to preserve some representation of the price variability
within a stage.

The approach followed in this paper is to split the dynamic programming recur-
sion into two subproblems. The first subproblem (called the intra-stage problem)
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computes the single supply function to offer in every trading period of the current
stage so as to give the maximum expected revenue in that stage for a specified
mean and variance of water release over the stage. This subproblem is solved para-
metrically for a range of means and variances. The second subproblem (called the
inter-stage problem) is to use the values computed from the first problem to choose
the mean and variance of water release over the stage to maximize the revenue from
the current stage plus the expected revenue from future stages.

This approach is quite advantageous from a dynamic programming point of
view. The stages can be of a reasonable length (e.g. weekly), yet there are only two
decision variables at each stage — the mean and variance of the amount of water
that will be released during the stage. Even with the addition of a few auxiliary
state variables to model such things as weather and the “state of the market”, it is
clear that solution will be computationally feasible.

A key feature of the model is that the detailed planning for each stage is hidden
inside an intra-stage subproblem which is decoupled from the current reservoir level.
This makes it possible to carry out the intra-stage calculations offline, prior to the
main SDP recursion. This is a considerable computational advantage, but there
is a price to be paid: no dependence of the immediate payoff on the water level
is possible; in particular, hydrostatic head effects cannot be modelled. In many
(though not all) hydro-electric systems, such head effects are quite small, so this is
an acceptable tradeoff.

The application of dynamic programming for hydro-electric reservoir optimiza-
tion is not new (see e.g. [19] for an early paper in this area, and related stochastic
programming contributions by Pereira and Pinto [15] and Jacobs et al. [13]). Most
previous models have focused on situations in which uncertainty is restricted to
reservoir inflows, and the optimization chooses reservoir releases so as to minimize
the cost of displaced thermal generation. Models of price uncertainty are relatively
recent. A dynamic programming approach using price as a state variable is de-
scribed in a series of papers [8],[9] by Gjelsvik and his coauthors, and a stochastic
programming model is explored in the paper [7] by Fleten, Wallace and Ziemba who
represent price uncertainty by scenarios and maximize risk-adjusted profit within
an asset-liability framework. For a survey of other stochastic programming models
in energy, see [20].

A related strand of work looks at the equilibrium behaviour of generators of-
fering generation as players in a Cournot oligopoly. Scott and Read [18] construct
a dynamic programming recursion to compute equilibrium strategies for this game
in the presence of uncertain reservoir inflows. In a recent paper [5], Bushnell shows
using a mixed-complementarity model (with deterministic inflows) that in equilib-
rium generators can behave strategically by withholding water during periods of
high-prices, and increasing generation during low-price periods, an effect that is the
opposite to that expected in a model with price-taking behaviour.

Our contribution is to place the dynamic optimization problem within the con-
text of pool markets in which participants choose both reservoir releases and prices
in the form of an offer stack, and to provide a methodology for solving the dynamic
programming model.

The paper is laid out as follows. In the next section we derive the dynamic
programming recursion and demonstrate how it can be split into two subproblems.
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Section 3 formulates the intra-stage problem, as a convex quadratic programming
problem. Section 4 focuses on the inter-stage problem, and demonstrates under
mild conditions that the value functions have appropriate convexity properties that
will ensure a global solution to the problem. Finally in section 5 we discuss the
implications of relaxing some of the assumptions upon which our algorithm rests.

2 Outline of the model

For definiteness, suppose we wish to model the operation of a single hydro-electric
reservoir over a time horizon divided into stages one week long. The essential
decision to be made at the beginning of each stage is a tradeoff - how much water
to release in the current stage, and how much to save for later stages?

This decision is not as simple as it may appear. The pool-market mechanism
means that the quantity of water released is dependent (via a supply function) on
the market price of electricity, which from the operator’s point of view is a random
variable. Moreover, the stage can be further subdivided into market trading periods
of duration (say) 30 minutes, each of which may have a different electricity price;
to model this, some sort of stochastic process is called for. We are thus faced with
the choice of a release policy (from a large space of possible policies) for the current
stage, which will then give rise to the release of a random total quantity of water
during the stage.

However, what is important in long-term planning is not the hour-to-hour detail
of the release policy, but the probability distribution of the resulting water release
for the stage as a whole. At this level, it is helpful to think of this distribution as
being the decision variable for the stage; the details of how the distribution is to
be achieved can be relegated to an intra-stage sub-problem.

A possible form for the release distribution suggests itself immediately. Since
the total water release during a stage is the sum of the random releases during many
individual trading periods, a normal distribution might well be a good model. (An
oversimplified model would be: if a single tranche were offered in each trading
period, and the trading periods had independent and identically distributed prices,
the total release for the stage would have a binomial distribution.) Some empirical
support for this idea is provided by data such as those shown in Figure 1. Other
distributions could also be chosen, without invalidating the essential ideas of this
paper.

With this formulation, we have thus reduced the decision space for a single
stage to a space of probability distributions characterized by a small number of
parameters. For the normal distribution, there are only two parameters: the mean
1 and standard deviation o of the total release for the stage. These parameters
have a strong intuitive appeal: p can be thought of as a “target release” for the
coming stage, while o measures the degree of “risk”, or deviation from the target,
that the operator is willing to contemplate. To the extent that the planning of
a whole week’s operations can be specified by only two parameters, ¢ and o are
natural choices.

Let us now express this formulation of the problem mathematically, as a stochas-



W
o

number of weeks
- N )
wn =] 3]
‘ ‘

-
(=)
T

0 50 100 150 200 250 300
release during week

Figure 1: Total weekly release, when the release in each half-hour period is given
by S(p) = min(1, (1+ ((p/40) — 1)3)/2), where p is the prevailing price in $/MWh.
(S has a shape common among supply functions.) The price data are from the
Haywards series in [16], and cover the summer season (November through February)
of the five-year period to February 2003.

tic dynamic programming model. The essential relation is:
Vi(z) = max,, o (9:(p, 0, Y1) + EVia (e + Wy — p— 0 2,) | Y]) (1)

where

Vi(z) is the value of having reservoir level z at the beginning of stage ¢; as it
would be determined at that time. In other words, V;(x) may depend on random
events that occurred at earlier stages - and in that sense it is a random variable
itself - but not on random events occurring during stage t or later.

W; is the (random) inflow to the reservoir during stage .

Z; is a standard normal random variable, representing the normalized water
release. In the simplest formulation, Z; and W; would be independent. However, it
is possible to assume some other joint distribution for (W%, Z;), reflecting a possible
correlation between inflows and prices at the same stage.

Y; is a state variable, representing relevant information (about weather, market
conditions, etc.) available at the beginning of stage ¢. The variable Y; may be
multidimensional, and indeed is likely to be at least two-dimensional, since it must
include information relevant to both inflows and prices in future periods. For
example, (Y;) could be a Markov chain with 10 states as indicated by the bullets
in the following table.
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This example models a hydro-dominated electricity system. (The real-world
model is New Zealand, where hydro-electricity accounts for approximately two-
thirds of all electricity generated.) In such a context, two main kinds of information
are available and relevant to the prices and inflows that our generator will receive
in future stages: a long-term weather forecast for the next (say) 12 weeks, and
current reservoir storage for the whole system. (The latter is not to be confused
with the storage in our own reservoir, which will likely be only a small part of the
system total.) Note that the weather forecast has relevance to both future prices
and future inflows; also that the two least likely combinations have been omitted
from the state space.

gi(p, o, y) is the expected payoff during stage ¢, when the decision made for the
stage is (u,0) and the auxiliary process Y; is in state y. The value of g;(p, 0,y) is
itself the optimal value of an intra-stage subproblem, which has the form

maxses E[Ri(s)|Y, = y]
subject to E [X;(s)|Y: =y| = pu, (2)
Var (X,(s) | Y; = y) = o2,

where

S is the space of possible release policies for the stage (perhaps a high-dimensional
space).

Ry(s) is the (random) revenue that results from adopting policy s during stage
t.

Xi(s) is the (random) total water release that results from adopting policy s
during stage t.

The essential virtue of this approach is that it decomposes the problem into two
parts. The intra-stage problem is to compute g;(u,o,y) by solving (2). This can
be carried out off-line, to give g:(11, o, y) for a table of values of i, o, and y. Note
that to do this, one does not need to consider the reservoir level. Observe that the
release policy s determines a collection of (possibly different) supply functions to
offer in each trading period in a stage; optimizing this policy may present us with
a considerable computational challenge.

The inter-stage problem is to solve (1), the dynamic programming problem,
in the usual backwards-recursive fashion. For each stage, this requires referring
to previously computed tables of values of ¢, and Vi, and interpolating where
necessary. This inter-stage problem is quite tractable, since the internal structure
of each stage has been hidden in the intra-stage problem.

In the next two sections, we will study the intra-stage and inter-stage problems
in more detail. Before doing so, however, we will address one question regarding
(2). The variance constraint there has been given as Var (X,(s) |Y; = y) = o2, but
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why should it not be Var (X;(s)|Y; = y) < 02?7 After all, if a policy can be found
with maximal expected payoff, but less risk than the maximum permitted, why not
use it? The following result shows that it will usually make no difference which
version of the constraint is used.

Lemma 2.1 Let g.(p1,0,y) be given by (2) as above, while §,(u, o,y) is the optimal
value of the problem

mazses E[Ry(s)|Y, = y]

subject to E[X¢(s)|Y: =y| = p, (3)
Var (X(s) |Yi = y) < 0,

Suppose Viy1 is concave. Then Vi(x) and f/t(a:) given by

Vi(z) = mazue (g:(p,0,Ys) + E[Vipa(z + Wy — p— 0Z;) | Yi])
V}(ac) = Mmax, s (f]t(ﬂ; O-vy;f) +E [WH(QE +We—p— UZt) ’Y;f])

are equal.

Proof. We have g,(u, 7,y) < § (11, o,y) from their definitions, and so V;(z) < V;(x).
To see the reverse inequality, fix y and suppose that when Y; = y, we have (p, &)
achieving the optimum value of f/t(a:), and a corresponding s achieving the optimum
value of (3) for (u,5). Of course we have Var (X,(s)|Y; =y) < &° Let 0% =
Var (X;(s) | Yy = y). Since s is also feasible for (2), we have g:(u, 7,y) < g:(p, 0,9).
Furthermore, concavity (and the symmetry of the normal distribution) give

EVipn(a+W,—p—-62)|Yi=y| < EVipn(+ W, —p—02)|Y; =y

It follows that V;(z) < Vi(z). ]

In the next section we study the intra-stage problem, and provide a methodol-
ogy for computing an approximate solution. We also show that this approximate
problem is convex, which allows us to show that g, (14, 0,y) is concave in both p
and 0. This fact will be important in verifying the tractability of the inter-stage
model.

3 The intra-stage model

In this section we describe a more specific version of the intra-stage problem (2).
The starting point is the assumption that the generator’s “release policy” for a
given stage will consist of a single supply function, to be offered to the market in
every trading period during the stage. While this may sound simple, it appears
to be not so different from the way that at least some hydro-electric reservoirs are
operated in practice. Moreover, it makes intuitive sense - since we have already
assumed that market prices are exogenous and cannot be influenced, there is little
reason to vary the supply function between (say) peak and off-peak periods.

We further assume that the objective that is to be maximized is gross revenue
(i.e. pricexdispatched quantity). As usual with hydro-electric problems, there is
no “fuel cost”, other than a water value which is provided for within the model.
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A key observation is that the actual price process is not important; the price
duration curve (giving the proportion of half-hourly prices below any given price
p) contains sufficient information for our purposes. Given the price duration curve
for a given stage t and state y, and a supply function s used consistently during the
stage, it is possible to compute by integration the revenue R;(s) and water release
X:(s) that result. Instead of seeking stochastic models for random prices, therefore,
we will focus on modelling random price duration curves. Then for any random
price duration curve 7, the intra-stage problem 2 has the form

max E | [77 pg(p) dr(p)

Pmin
subject t0 ¢ : [Prmins Pmaz] — [0, ¢max| is & non-decreasing function (4)
E[R] = p, Var (R) < o2,
where R = [""* q(p) dr(p).

Pmin

R Py R P

Figure 2: Piecewise linear price duration curve.

The model we propose for the price duration curve is a piecewise linear function
with non-random breakpoints and random slopes. Figure 2 is a price duration
curve of this kind, with three linear pieces. In general, there are m fixed price
bands, being [po, p1) , [P1,P2) ;- - - [Pm—1, D), With o = Dmin and pr, = Pras- (These
price bands might vary with stage ¢ and state y, but for simplicity of notation in
this section we will suppress the dependence of the intra-stage problem on ¢ and
y.) Within each price band, let the slope of the linear pieces be given by random
variables Ay, ... , Ay, respectively. Note that we must have > " | A;(p; —pi—1) = N,
the number of trading periods in the stage, and the joint distribution of Ay, ... | A4,,
should be chosen to ensure this. One promising model is the Dirichlet distribution
(see [10]).

We seek a supply function ¢ (p) maximizing expected return subject to con-
straints on mean and variance. We define

Pi
Ii:/ q(p)dp, fori=1,... ,m.

Di—1



Then the intra-stage problem is

g9(p,0) =max 3" a; [)" pq(p)dp
subject to ¢ : [po, Pm] — [0, ¢max) is @ non-decreasing function

I = Iii_lq(p)dp, i=1,...,m, (5)
a'l=yp,
VI < 02,

where a and V are, respectively, the mean and variance-covariance matrix of the
random vector (Ay, ..., An). Note that (5) uses the inequality version of the vari-
ance constraint.

The problem (5) seeks to maximize a linear functional over a set Q of feasible
supply functions. It is worth noting that the maximum must be attained: Q
is compact under the quadratic norm given by [lg(-)||* = [ q(p)* dp, and our
objective functional is continuous on Q with this norm.

Another significant feature of (5) is that it is a convex optimization problem,
since Q is a convex set. (To see that the variance constraint is a convex condition,
note that the expression vVIT VI defines a semi-norm — which is a convex function
—on Q.) This convexity will ultimately play an important role in ensuring the
tractability of the dynamic programming recursion (1). We begin by using it to
establish the concavity of g in each of its arguments.

Lemma 3.1 g (p,0) as defined in (5) is concave in (u,0).

Proof. Let us write the feasible set of (5) as Q(p, o), to emphasize the dependence
on the parameters p and o. Let F(q(-)) = 332, a; [," pq(p)dp. Note that if

q1 € Q(:U’lv 01) and Q2 € Q(:U’Qv 02)7 then for any A€ (07 1)7
Aqp+ (1= A)g2 € Q(Apy + (1 = Mpg, Aoy + (1 = A)oa),
and so

g + (L= Mg, Aor + (1 = A)o2) > F(Aqi + (1 — A)ga)
= AF(q) + (1= N)F(g).

Taking the supremum over all ¢; € Q(uq,01) and g2 € Q(py, 02) gives

gy + (1= Npg, Aoy + (1 = X)os) > Ag(py, 01) + (1 — A)g(ps, 02),

as required. [

The problem (5) is an infinite dimensional optimization problem. However, it
is not too difficult to see that the optimum ¢ (-) must have a piecewise constant
form with m or fewer tranches. In other words, the optimum supply function —
conveniently enough — has the form of an offer stack. We formally present this
result in the following lemma.



Figure 3: An optimal stack can be taken to be piecewise constant

Lemma 3.2 The problem (5) has an optimal piecewise constant solution q(p) in
which each interval [p;_1,p;] contains at most one breakpoint.

Proof. Suppose ¢ = S(p) is an optimal solution for (5) that is not constant on
some interval [p;_1,p;]. Let ¢i_1 = S(p;_1) and ¢; = S(p;), and define
(¢:pi — qimapi1) — ]Zi_l S(p)dp

& — gi—1 .

T, =

Then it is easy to show that p;_; < r; < p;. If r; = p;_1, then let

oy ) @G Pici <P pi
S(p) = { S(p), otherwise,

and if r; = p;, then let

oy — 4 -1 Pic1 Sp<pi
S(p) { S(p), otherwise.

If p;_1 < r; <p;, then let
Gi-1, Pi1 S p <y,
S'(p) = %, i <p<pi
S(p),  otherwise

(see Figure 3). Observe that S’ (p) is piecewise constant with at most one breakpoint
in [p;_1,p;]. Furthermore by virtue of the definition of r; we have

/pi 5’(p)dp=/pi S (p) dp,

Pi—1 Pi—1
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so S and S’ contribute equally to the Constraints on mean and variance.
Let U(x fp _, S(p)dp, and U'(x f S’ (p) dp. Then

d(U(z) —U'(x))
dx

=9 (z) -5 ()

which is nonnegative for p;_; < z < r;, and non positive for r; < z < p;. So
U(x) = U'(xz) > 0 for all = in [p;_1,p;], with equality at p,_; and p;,. We thus have

/ " B8 ) - SE)dp = [pU) - U~ / " U) - U)) dp

Pi—1 Pi—1

(\Y
o

It follows that S’ is optimal for (5). Repeating the argument for all intervals [p;_1, pi]
yields the result. n

By virtue of lemma 3.2 we can reformulate (5) so as to include the breakpoints
of q(p) as variables. We have shown that there exists a piecewise constant optimal
solution with m or fewer breakpoints, so we label these as ;, ¢ = 1,... ,m, and let
¢, 1 =1,...,m, be the (constant) offer quantities at these prices (we denote by g
the amount offered at price py). This gives the following optimization problem.

MaAXgq {rs,qi,1: }1i=1,... ,m 221 a; (f;;i_l qi—1pdp + f,ﬁl Qipdp)

subject to Ii:j;:i_l Gdp+ [Fqdp, i=1,2,...,m,
0§q0§q1§~~~qm§qMam (6)
pi_lgngpi, izl,...,m,
a'l=yp,
ITVI< o2

A disadvantage with this approach is that (6) is no longer a convex mathemat-
ical program. However it can be approximated by a convex quadratic program,
by discretizing the prices that can be chosen. We do this by defining for each
j=1,...,J, a price interval [d;,d;;1) of fixed length u = (Prprea — Pamin) /J, and
choosing a quantity g; so that ¢ (p) is constant (and equal to ¢;) over the interval
[dj,djt1). For each interval [p;_q,p;) in the price duration curve it is helpful to
define the set R; = {j : pi-1 < d; < p;}.
The objective function is then approximated by

Zal Z 5 (d?+1 d?) 9
i=1  jER;
= “iai > (dj + g) 95
i=1  jER; 2

11



L2
1
I
i
I
i
I
i
I
i
—— —— - ——————-'_-—-—-'-—

Piai dj rydjg R

Figure 4: Optimal offer S (bold line) and discretized offer S’ (solid line)

which is linear in ¢. Under the discretization the first m constraints of (6) change
to

Ii:quj, t=1,...,m,

JER;
which are linear in ¢ and I. The stack must be increasing, so we require
0<q <...< ¢ < qMaa-

This yields the quadratic program

u

g(p,0) =maxg 1.0 w0 e, (di+3) @
subject to  I; = “zjeRi g, 1=1,...,m,
a'l =y, (7)
0<q<...<q5 < qmaas
I"VI < o2,
a convex problem since V is positive semidefinite.

By choosing J large enough we can obtain an approximate solution to (5). This
is made precise as follows. Let ¢ = S (p) be a globally (piecewise constant) optimal
solution for (5). We depict part of this solution by bold lines in Figure 4. If we
discretize the price axis into J equal sections, then for each of the m pieces, the
optimal solution S can be approximated by a supply function ¢ = S’(p), which is
a feasible solution of (7). This approximation will be exact except in any interval
[d;,d;+1) containing a breakpoint r; of S, as shown in Figure 4.

To ensure that S’ is a feasible solution for (5), we may choose ¢ to give

T i d; dj41 , be
/ Qi—1dp+/ Qidp:/ Qi—ldp+/ dep+/ q:dp,
Pi—1 T Pi—1 d; djq1

7

12



SO

Qi1 (1i — pic1) + @i (P — 73) = i1 (dy — pic1) + ¢ (dj1 — dj) + ¢; (pi — djpa),

whereby

1T — GiTs — Qi—1d; id
djp1 —d;

Then the difference in objective between the two stacks over the range of prices

[pi—1,pi] is
Ti dj+1 dj+1 .
A = / pgi—1dp + / pgsdp — / pg;dp
d; r d;

7 7

1

= 3 (g1 (rf = ) + @ (51 —77) — 4 (dfa — d5)] -
Using (8), we get
1
A = 5 [%’—1 (7“12 - d?) + 4 (d?+1 - 7”@2) = (Gse17s — @i — Gi1d; + qidjq) (djp + dj)]
1
= 5 (@ = q-1) (djur = 13) (rs = dy)
1
= 5 (@ —ai1) M (djrr = dj) (L= A) (1 — dj)], for some 0 <A <11,
1
< S (¢ — qi-1) (djpa1 — dj)2
1 Pitas = Pain \
= 3 (% — qi—1) <f) .

So, summing over the entire range of S, the difference in objective between the
optimal stack and the feasible solution to the discretized problem is bounded above
by

m

2 2
Zi (q — g ) PMaz — PMin < iq PMaz — PMin
] 1 i—1 N =3 Maz N .

=1

4 The inter-stage problem
We now return to the stochastic dynamic programming problem (1):
Vi) = maxuo (g0, 0, Yi) + B Vs (0 + We = p— 0 Z) V). (9)

The random variable Y; represents the information available at the beginning of
stage t and relevant to inflows and prices during stages ¢ and later. It is envisaged
in this paper that the stochastic process (Y;) will be a fairly simple one; perhaps
a finite-state Markov chain, as suggested in section 2. For each possible value y of
Y}, there will be a distribution of price duration curves for use in stage ¢ (described
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by parameters a, ; and V, ; as discussed in section 3); a distribution for the inflow
W, at stage t; and a distribution for Y;,;.

The first step in solving (9) is to solve the intra-stage problem to find values of
g¢(p, 0,y) for each ¢,y and (a table of possible values of) u, o. These values can
be computed offline and re-used in many different versions of the overall problem.
For example, the decision horizon, inflow distribution, reservoir size, and transition
probabilities for (Y;) can all be varied without needing to re-solve the intra-stage
problem. The value of ¢;(u1, 0,y) is decoupled from all of these parameters, being
only a measure of how much payoff can be extracted from a given set of market
conditions during a stage where water use is constrained by the planning parameters
1, 0. Note that although we have allowed for dependence on the stage ¢, it is possible
that the computations for this step will be identical for several stages, or even for
all stages; this offers a careful implementation some potential gains in execution
time.

Since p and o are continuous variables, it would be possible to improve the
accuracy of the representation of the function g.(-,-,y) by using an interpolation
scheme (e.g. a spline) for values of (u, o) in between those for which the intra-stage
problem has been solved. However, as we shall see shortly, this may prove to be
unnecessary.

Now, with the function ¢; in hand, let us consider the other parts of (9). For
computational purposes, we replace the random variable V;(x) with the more ex-
plicit expression v,(z,Y;), where v; is a deterministic function. The problem (9) is
to be solved in the usual backwards-recursive fashion: we choose a final water value
function vr(z,y) at the time horizon T and then fort =7 — 1,7 —2,... ,0 (where
t = 0 represents the present time):

1. Extend v, by setting

vt—i—l ($7 y) = vt—l—l (l’mam y) fOI' T > Lmaz

v (z,y) =v41(0,y) — p(Jz]) for z <0,

where Z,,,; is the maximum capacity of the reservoir, and p is a penalty
function (see below).

2. Compute

vt($7 y) = aXy, o (gt(lu’: g, y) + ht(lu’: ag,x, y))

for each possible y and a finite collection of values 0 < 1 < -+ <z, < Tynaa
of x. Here

ht(ﬂ7a7$7y) = E[V;f-l-l(‘r—i_ Wi — K= UZt) ’Y;f = y]
= Yo [ [ wnlsw-p-ony)fws) dsdo,
Y 0 —o0

where p, s is the transition probability P (Y11 =¢'|Y, =y), and f, is the
joint probability density of (W}, Z;), conditional on Y; = y.
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Step 1 above addresses an issue which we have not previously considered — the
range of permissible values of the reservoir level z. In any realistic problem there
must be both an upper and a lower bound on this level. Without loss of generality,
we may consider these bounds to take the form 0 < x < z,,,,. But in our model,
the decision made (release policy formulated) at the beginning of each stage does
not determine how much water will remain at the end of the stage. (Nor could it,
in any model taking realistic account of the uncertainty in prices and inflows.) It
is therefore not possible strictly to enforce the bounds on reservoir level.

The upper bound z,,,, is the easiest to deal with. It is reasonable to assume
that if the reservoir overflows, the excess water will be spilled and lost, thus having
no value. This assumption can be incorporated into the model by extending the
function vy to values of > .4, as indicated above when computing v;.

The lower bound is more troublesome. In reality, if the reservoir began to run
out of water during a stage, the operator would modify its release policy for the
remainder of the stage. But we cannot incorporate this into our model without
substantially redesigning it; our paradigm is that any decision can be made only
at the beginning of a stage. Instead, we extend v,y to negative values of = by
adding a penalty term p(|z|); a linear penalty p(u) = Cu seems to be sufficient.
The effect of this is to preclude the choice at stage t of (i, o) pairs for which there
is an appreciable chance of offering to supply more energy than the reservoir can
generate during stage t. The magnitude of the penalty constant C' indicates the
degree of aversion to this particular risk.

So far we have said nothing about the form of the distribution of W;. One
convenient (though not particularly realistic) assumption is that W; is normally
distributed; this means that W; — u — 07, is also normally distributed, and it is
possible to compute the integral in step 2. above by Hermite-Gauss quadrature (see
Hildebrand [11] for an explanation of the procedure and Abramowitz and Stegun
[1] p. 890 for numerical values used in the quadrature). Other distributions for
W, can be handled equally well by a similar technique. Note that the numerical
evaluation of this integral also requires interpolation to obtain values of vy ;.

Step 2 requires the solution of an optimization problem. We will show in a
moment that this is a convex problem, i.e. that the function ¢;(u, o, y)+hi(p, o, z,y)
to be maximized is concave in (u,c). But the value of this function is known
only at the finitely many points at which ¢(-,-,y) has been computed; we are
reliant on interpolation for the values at other points. It would be natural to
use an interpolation scheme which preserves convexity. Linear interpolation is one
particularly simple possibility, as it ensures that the maximum of the interpolated
function will occur at one of the points where the value of g.(-,-,y) is known, so
that the optimization reduces to evaluating ¢;(-,-,y) + h(-, -, z,y) at these points
and identifying the largest value.

Theorem 4.1 If Vi1 (x) is concave in x with probability 1, then so is V, (x).

It follows from this that if vr(z,y) is concave in x for each y, then the same is
true of each v(x,y).
Proof. First note that

ht(ﬂ7a7m7y) = E[V;f-l-l(‘r—i_vvt _:U’_O-Zt) ’Y;f :y]
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is concave in z, y, and 0. To see this, note that x — y — 07, is linear in x, u, and o
with probability 1, and so Vi41(x — p— 0 Z; + W) is concave in those variables with
probability 1. Since the expectation of concave functions is concave, h; is concave
in x, p, and o.

We also have from Lemma 3.1 that g;(y4,0,y) is concave in y and o. Hence
gi(p, o,y) + he(p, 0,2, y) is concave in z, u, and o.

It now remains to be shown that the concavity in x is preserved by the taking of
the maximum in Step 3 above. For fixed y, suppose uf and o} maximize g, (4, o, y)+
hi (11,0, 21,y), and suppose p3 and o3 maximize g; (4, 0,y) + hy (4, 0, 22, y).

F=do+(1-Nas,  p=Mi+(1-Np,  ands=Aoi+(1- )03,

for some A € (0,1). Then

9t (1,6,y) + by (1,6,2,y) = g (A + (1= A) p3, Ao + (1 = A) 05, 9)

+he(Apl+ (1= A ps, Aol + (1= X) o5, Az + (1 — ) 22, y)
Age (13,07, 9) + (1 = A) gi (43, 03, y) + Ay (p1, 07, 21, 9)

+ (1 = A) he (p3, 03, 2, 9) -

v

But since this is just one feasible p, o pair, the left-hand-side of this expression is
a lower bound for v; (Az1 + (1 — A) 22, y), and the result follows. ]

5 Conclusions and Further Work

In this paper we have described a model based on parameterized price duration
curves to represent the prices over the course of a week, and derived a convex
optimization model to compute an optimal supply function for this week. Under
mild assumptions on the form of our price duration curve, we have shown that the
optimal stack is piecewise constant.

We have developed a model that aggregates trading periods into stages with
the same stack offered at each trading period within a stage. Using a normal
distribution to represent the total amount of water used in each week leaves us
with three decisions to make for each week — the mean, the standard deviation
and an offering strategy yielding these properties.

A possible weakness in our approach is the assumption that generators will not
affect the price by their choice of offer. For large generators, this may not be the
case. Note that to improve the model to allow for such “price-making” behaviour,
only the intra-stage value functions g;(u, o, y) need to be modified; the rest of the
model can be left unchanged.

One approach to handling price-making is given by Anderson and Philpott [3],
who define a market distribution function ¢ (q,p) that gives the probability of an
offer of ¢ units of electricity at price p not being fully dispatched.

One might hope to estimate and use 1 (g, p) to calculate weekly returns g (u, o)
in an intra-stage model with price-making behaviour. However, it is very likely
that ¢ will vary over the trading periods in the stage in response to the stack
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we offer to the market in the first trading period, so assuming a single offer stack
for every trading period in the stage would be unrealistic, even if it were easy
to compute. Furthermore, the inter-stage model requires some methodology of
estimating market distribution functions for future stages by relating the behaviour
of other generators to observable state variables like regional water storage and
weather forecasts. This is a difficult undertaking.

Another challenge is the extension of the model from one to several (hydro-
logically coupled) reservoirs. This would require additional state variables for the
reservoir levels, and a corresponding exponential increase in computational effort
(the well-known “curse of dimensionality”). The handling of underflow and overflow
constraints would also become more difficult.
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