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Abstract

The paper presents a convergence proof for a broad class of sampling al-
gorithms for multi-stage stochastic linear programs in which the uncertain
parameters occur only in the constraint right-hand sides. This class includes
SDDP, AND, ReSa, and CUPPS. We show under some independence assump-
tions on the sampling procedure that the algorithms converge with probability
1.

Keywords: Multistage stochastic programming, sampling, almost sure
convergence.

1 Imntroduction

Multistage stochastic linear programming models have many applications but they
are notoriously difficult to solve. The most successful approaches in practical ap-
plications appear to be the sampling-based methods. The first of these approaches
(SDDP) was developed by Pereira and Pinto [6] in the context of hydro-electricity
planning. This algorithm has been successfully applied (see [7]) to compute solutions
to long-term hydro-thermal reservoir planning models. To the authors’ knowledge
no convergence result for this method has appeared in the literature. Since Pereira
and Pinto’s paper, a number of related algorithms have emerged (see e.g. CUPPS
[3], AND [4], and ReSa [5]) based on similar ideas.

In this paper we derive a general convergence result for algorithms of this type. A
convergence proof specifically aimed at the CUPPS algorithm has already appeared
in [3]. The argument we employ in our proof closely resembles that used in [3], in
that we use the same induction on stages. However our result is more general, being
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applicable to SDDP, AND, CUPPS, and ReSa. The main contribution of our work
is to identify the crucial conditions that guarantee convergence of sampling-based
multi-stage stochastic Benders decomposition methods. These assumptions are made
precise in the sequel, but essentially they amount to the following requirements:

1. cuts should eventually be computed in every stage;

2. samples that are used to create scenarios in the forward pass are also used in
cut generation.

In the next section we give a general formulation of the multi-stage stochastic
programming problem and describe the general algorithmic approach. The conver-
gence proof is then derived in section 3 using a series of lemmas. In section 4 we
show how the sampling-based algorithms of [3], [4], [5], and [6] satisfy the conditions
of the theorem.

2 Multistage decomposition

Multistage stochastic linear programs with recourse are well known in the stochastic
programming community. The general form of these is described in [1]. In this
paper we restrict our attention to multistage stochastic programs with the following
properties:

A.1 Random quantities appear only on the right-hand side of the linear constraints
in each stage.

A.2 The set €; of random outcomes in each stage ¢ is discrete and finite
(4 ={wy| i =1,...,q < oo} with probabilities p; > 0, Vi).

A.3 Random quantities in different stages are independent.

A.4 The feasible region of the linear program in each stage is non-empty and
bounded.

Under these assumptions, the multi-stage stochastic linear program can be writ-
ten in the following form:
Solve the problem [LP;] defined by

Q1 = n;in ci 1 + Qa(my)
s.t. Alxl = bl
z1 Z OJ

where for all t =2,...,T,

qt
Qt(xt—l) = ZptiQt(xt—lu wti)a

i=1
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and [LFP] is the problem

Qi(xs—1,ws) = 11910111 C;rxt + Qi)
s.t. At.’Et = Wi — Bt_lxt_l
T Z OJ

and we set Q.1 = 0.

The problem [LP;| depends on the choice of w; and z;_;, and so we could write
[LP;(x;—1,w;)], though we choose to suppress this dependence in the notation. (By
assumption A3, [LF] is independent of w;—y,wi—3 . ...) Observe that Q¢(zi—1,w;) is a
polyhedral convex function, and so is continuous in z;—; at all points of its domain.

In the algorithms that are considered in this paper the functions Q;(z;—1) in each
stage are approximated by the maximum of a collection of linear functions, each of
which is called a cut. This gives rise to a sequence of approximate problems [APF]
for each stage. These are defined for iteration k as follows:

For t = 1, [AP}] is the linear program

CF = minc]z; + 6,
x1,02
S.t. Alxl = bl
02+ (83) w1 > O, (j=0,...,k—1)
T Z 0,

and, for all t =2,...,T — 1, [APF] is the linear program

k T
Ci(ze—1,wt) min ¢; T + 01

$t70t+1

s.t. At.’Et = Wt — Bt_lxt_l
Or11 + (ﬂiH)th 2 Oy (j=0,...,k—=1)
Tt Z 0.

For all stages, the first cut (j = 0) is set as the trivial cut ;3 > —oco. We shall
use the notation (m;, p,) to denote dual variables of the problem [AP}], where 7,
corresponds to the equality constraints, and p, corresponds to the cut constraints.
We also use the notation Cf(z;_;) to denote Y% | pCF(zi1, wy).

Observe that under assumption A4,

{z¢ | Azt = wy — Bi—1xp—1, @ > 0}

is nonempty and bounded so [APF] always has a nonempty feasible set (with 8,y
chosen large enough) and hence an optimal solution. Thus the dual feasible region of
[AP}] is nonempty. Moreover by assumption A1, the dual feasible sets are indepen-
dent of the outcomes of the random quantities, which allows us to construct a valid
cut at each stage based on an assembled collection of dual solutions from different
samples.

In the last stage, T, the algorithms solve the actual problem [LPr|, therefore

Ck(zr_1,wr) = Qr(Tr_1,wr) VE.
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Since cuts are added from one iteration to the next, and no cuts are taken out, the
objective values of the approximated problems form a monotone sequence, i.e.

CfY (w1, wi) > Cf (To-1,w1) Vi, VE.

2.1 A class of sampling-based decomposition algorithm

In this section we define a general class of sampling algorithms for solving [LP;]. We
first describe the cut generation of the algorithms.

Definition 1 (Sampled cut)
A sampled cut at =¥ ; with sample QF C €, is computed as follows:

1. Solve [APF] for all wy € QF, and let (ni(zF_,), pi(zF_,)) be the optimal dual
variables (attained at an extreme point). Add them to the set DF.

2. For all wy ¢ QF, set
(mi(wh_y), pi(e-a)) = argmax {n] (wa — Bexzly) + o] (ki) | (me,py) € DI}
orift="T:

wf;,w(x’r}_l) = arg max {w;(wﬂ — BT_lx’f}_l) ‘ T € D’r}}

3. The cut has formula
0: > Otk — (5,’:6 )T«Tt—l

where

qt
ﬂf = Zptz' B, mi(zf ) for2<t<T,

i=1
qt ) ‘

Ot = Zpti [w; w;(w,’f_l) + (af;ll)-'_pz(xf_l)] for2<t<T-1,
i=1
qr )

ATk = ZpTz wr; T (Th_y)-
=1

Observe that oy is a scalar, whereas af_:ll denotes a (k — 1)-dimensional vector.
This means that the dimensions of af_:ll and pi(zF_|) are increasing as the iteration
count k increases. Note also that a sampled cut is well defined for Q¥ = (), as long
as DF # 0. If QF = DF = () then we set oy, = —00, BF = 0.

In our convergence proof we shall make use of the fact that ni(z¥ ;) lies in a
bounded set. In fact 7¢(z¥ ;) can take only a finite number of values in the course
of the algorithm. This is a consequence of the fact that =, and p, are chosen to be
extreme-point solutions of the dual of [APF]. We state this result formally as the
following lemma.



Lemma 2 For allt there is some m; such that D,’f has cardinality at most m;.

Proof: We use induction on ¢. First, if (7, p) € Dk then p = 0 and 7 is an extreme
point of {m | AJw < cr} of which there is only a finite number. So |D%| < my, for
some mr.

Now suppose |Df| < my. Then the vector

qt
_ . nT il ]
= E :ptz B,_y mi(xi_y)
i=1

takes at most (m;)% values. This means that £F |, the set of extreme points of

k—1 k—1
{(me-1,p-1) | Aymea + Y Blply <cn, D pli=1}
=1 =1

has cardinality no more than m;_, say, independent of k. But £F ; D DF | which
establishes the result. O

Now a general class of sampling-based decomposition algorithms is defined, for
which we will show convergence to the optimal solution. The algorithms work in the
following way:

Multi-stage Sampled Benders Decomposition (MSBD)
Step 0: (Initialisation) Set iteration counter k = 1.

Step 1: (Candidate solutions)
In each iteration k, a complete sample path {wt } =2 o of the scenario tree
is constructed independently of previous iterations. For thls path the approx-
imate problems are solved up to stage T — 1, to yield the primal solutions

(z¥,0%.1) of the problem [AP}).

Step 2: (Cut generation)
For each stage t = 2,...,T sampled cuts are generated at z¥_; with sample QF.

Step 3: Set k =k + 1 and go to Step 1.

Note that at each stage ¢, two samples are used in each iteration. Unless QF =
{wk}, these samples may be different. Observe also that they need not be indepen-
dent, in fact one might choose QF = {w¥}. However in order to yield a convergence
result for MSBD we will require the following two properties of the sampling proce-
dure.

Definition 3 (Cut Sampling Property)
MSBD is said to fulfill the cut-sampling property (CSP) if for each stage t, {k |
= 0} is finite.

Definition 4 (Sample Intersection Property)
MSBD is said to fulfill the sample-intersection property (SIP) if for each stage t,
and every outcome wy; € s, Prl(wy € Q)N (wF = wy;)] > 0 for every k with QF # 0.
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The cut-sampling property entails that eventually the algorithm will compute
(mi(zk ), pi(zk_,)) for at least one outcome wy; at every stage. The sample-intersection
property guarantees that the outcomes that are used to compute cuts will (with posi-
tive probability) include some information from the outcome in the sample path that
is constructed in Step 1. SIP holds for example if w* and QF are sampled indepen-
dently, or alternatively if QF is chosen so as to always 1nclude wF (as in CUPPS).

Lemma 5 Suppose that MSBD satisfies SIP. Then it fulfills CSP if and only if for
any stage t and every infinite subsequence {z¥_,}rcs generated by the algorithm, for
eachi=1,...,q the subsequence {xF_; }rey. with J; = JN{k|wy € OF and wf = wy;}
is infinite with probability one (wpl).

Proof. For some arbitrary stage ¢, let {z¥_; }xcs be an infinite subsequence gener-
ated by the algorithm and suppose {k|Q2¥ = 0} is finite (by CSP). Then the intersec-
tion JN K (where K denotes {k|QF # (}) is infinite . Furthermore, by SIP for every
k € JN K we have Pr[(wy € QF) N (wF = wy)] > 0 Vi. Due to the Borel-Cantelli
Lemma (see e.g. [2]) the set J; C JN K with wy; € QF and w® = wy; for all k € J; is
infinite wpl.

Suppose now that CSP does not hold. Then for some stage ¢ the set K’ = {k|Q2¥ =
@} is infinite. Then for any subsequence J' of K', Q¥ =0 Vk € J'.

Lemma 6 The sampled cuts are valid cuts. Furthermore, the following relations
hold:

Ozl ) > 6F VkeN,Vt=2,...,T,
Qi-1(Tt—2,we—1) > t_l(.’Et 9, Wi—1) VT2, wi—1,Vk €N, VE=2,...,T.

Proof: The proof of this lemma can be obtained equivalently to Lemmas 4.1 and

Lemma 7 Suppose that MSBD satisfies SIP and CSP. Then for any convergent
sequence {x¥_ Yres generated by MSBD there exists wpl a sequence {A*}re; and g
disjoint subsequences of J indexed by r; € J; with:

1. 05 > 3% py O (2l ), wy) + AF;

2. J; CJIN{k| wy € QF Wk =wy};

3. r; < k for all but a finite number of k, and r; — 00 as k — 00;
4. limy_o |AF| = 0.

Proof: Consider stage t € {2,...,T — 1} (Stage T can be treated in a similar
way).



Let {x,’f_l} ey D€ a convergent sequence and consider iteration k € J. All cuts
generated up to this iteration must be satisfied, so for all r < k:

ef Z at,r_(ﬁ:)-rxf—l

qt
= Y pu [(mi(@_)) T (ws — Biazty) + (0f) T pilal_y)]
=1

qt
= Zpti [(wi(2}_1)) T (wri — Bioami_y) + (0f41) T ph(af_1)] + A,
=1
with
qt .
Af =Y pes (wl(el-0) Beoa(wfoy — ).
=1

From Lemma 5, for each 7 = 1,...,¢; the set J has an infinite subset J; wpl,
such that wy; € 2} and wi* = wy; for all r; € J;. Choose r; as the largest member of
the set J; which is smaller than k. Since the sets J; are infinite, r; — 00 as k — 00.

Since the dual optimal solution of iteration r;, (wi(x},), pi(z} )), is dual feasible

in iteration r = max{r;| i = 1,..., ¢}, we have
qt
6y > pu (i) (Wi — Biaai_y) + (0f1) T Ai(fis)] + A (1)
i=1

Here we adopt the convention that pi(z}’;) has zero components added to give it
dimension r. This means that (af,,)" pi(z}i,) = (af’,) T pi(z}:,) so the right-hand
side of (1) becomes

qt
Y i [(w(ei) T (i — Bioazity) + (o) TAi(aii)] + Af + A
=1

qt
= Y pu CP(aliy, wi) + Af + AL,
i=1

where p
t
Af = Y prslmi(eit 1)) Beoa(eity — i),
i=1

Now

qt
[AY <D pei (|7t || Be-alaiog — 2]
i=1

and since the dual extreme points are bounded (because Df is a bounded set), and
the sequence {zf ,}, ., s convergent, we have (with r — 0o as k — oo):

Jim |af] =

Similarly, .
i, |83] =0

This completes the proof. o



3 Convergence of the algorithm

In this section we prove the convergence of algorithms that satisfy SIP and CSP, by
induction on the stage t. Following [3], we first prove two lemmas that establish this
induction.

Lemma 8 Suppose MSBD satisfies CSP and SIP. Assume for any given infinite set
K CNN that

o Wi_, =wh_, for some given w%_, for any k € K;

e the sequence {x’r}_Q} wek COMverges to some given vector e _,.
Then wpl there exists an infinite set J C K such that

(a) the sequence {x’r}_l} ke COTvETges to some vector xﬁ}_l;
(b) the sequence {91’—7’}19 o converges to Or(z2_,);
(c) the sequence {Ck_(zh_y,wh 1)}, <, converges to Qr_1(Th_, wh_y)-

Proof:
(a)

By assumption the primal feasible sets are bounded. But every infinite bounded
sequence has a convergent subsequence. Denote z2_, as the corresponding limit and

J as the corresponding index set.

(b)
From Lemma, 6 and Lemma 7 we have wpl a sequence {A*}xc; and subsequences
of J indexed by r; with

qr
Or(zp_y) > 65 > ZpTi Cr (z_y, wri) + A
=1

qr
= Or(ah )+ _pri [CF(af_y,wri) — Qr(@h_i,wrs)] + A
=1

qr
= Or(zh_ )+ ZpTz [Qr(zh_y, wr:) — Qr(zh_y, wrs)] + AF,

i=1
which yields
6% — Qr(eh_y)| < |Af],
with r
A} = ZPTi [QT(x?_pri) - QT(x’:?"—lawTi)] +AF,
=1
Now

qT
AF < D pr |Qr(ahiy, wri) — Qr(zh g, wri)| + |AF|
=1

— 0 (as k — 00),



since the function Qr(xr_1,wr) is continuous in xr_q, {x’r}_l} keJ is a convergent
sequence, and r; — 0o as kK — o0o. This leads to the following intermediate result:

07 — Qr(zf_y)| < |A}|  with lim [A}|=0.
Furthermore, due to continuity of Qr(zr—_;) in zr_1, we have
,}E{}o |QT(x’:7’—1) - QT(£2’—1)| =0.
Therefore

|9’:7’ - QT(£2’-1)|

IA

|9’:7’ - QT(x]:?’—1)| + |QT(x’:7’—1) - QT(£2’-1)|

|Af[ + |Qr(#t-) — Qr(z7-)|
— 0 (ask — 00).

IA

Hence the sequence {91}} rey converges to Or(z%._,) with probabilty 1 which shows
part (b).
(c)

Considering Lemma 6 and Lemma 7 again we have

v

Ck—1(x’:7’—2; WE.I)’—1)
k
C’:Fr—1x’:7’—1 + 07
C’jr——1x’:7’—1 + QT(x”}—l) + A’f

Qr-1(zh_o,wy_y) + Af,

QT—l(x”_"[;’—% wg’—l)

AVARLY]

where the last inequality comes from the fact that x%_, is also feasible for the problem
[LPr_q] with z7_y = z%_, and wr_; = w%_;. This implies that

|C’_l[c’—1(xl’_'?’—2uw2’—1) - QT—l(x’{"[;’_ggwgv_ln S |A’f| .

Since the function Qr_1(zr_s,wr_1) is continuous in zr_s, and the sequence
k . . X .
{z5_,} v 18 convergent in K (hence also in J):

khm |QT_1($’:7’—25W2’—1) - QT—1($%_2JW2’—1)| =0.
—00
Therefore

|C,_l[",_1(x’,__‘[’,_2, wg’—l) - QT—l(xg’—% wg’—l)|
|Crf,“1_1(x’}_2,w21_1) - QT—l(xlf’—2aW2’—1)| + |QT_1(x’}_2,w21_1) - QT_1(x21_2,w21_1)|
|A’f| + |QT_1(x"_5[;1—23 wg’—l) - QT—l(xg’—% wg’—l)|

— 0 (ask — 0).

<
<

This means that the sequence {Ck_; (z4_,, w§_;)}, ., converges to Qr_1(z%_s, w_;)
Wpl. O



Lemma 9 Suppose MSBD satisfies CSP and SIP. For any givent (1<t <T-1),
and any given set K C IN, suppose

o Wb =0 for some given w? for any k € K ;

e the sequence {x,’f_l} wei Comverges to some given vector zd .
Then there exists an infinite set J C K such that

(a) the sequence {x,’f converges to some vector x? wpl;

Yres

(b) the sequence {9f+1}ke , converges to Qqy1(x]) wpl;
(c) the sequence {CF(zf i, w))}, , converges to Qu(z)_;,w]) wpl.

Proof: The lemma is proved by induction on ¢. When ¢ = T — 1, this lemma
is exactly Lemma 8 and hence holds. Suppose the lemma holds for ¢, then we
need to prove it for ¢ — 1. Therefore, assume now that for a given set K C IN
Wf_t ? wi_y Vk € K, and {zf »}, . — 7).

a

In iteration k € K, the algorithm solves the problem [APF ;| with z;_o = zF ,
and w;_; = w?_;, and gets the solution (z¥_,,6%). Since the feasible set is bounded,
the sequence {x,’f_l} wex Das a convergent subsequence. Denote the corresponding
limit as z9_; and the corresponding index set as L.

Now the set J is constructed in a way that the induction hypothesis can be
applied. As shown in Lemma 5 for each ¢ = 1,..., ¢, the set L has wpl an infinite
subsequence L;, such that for w* = wy; and wy; € QF for all k € L;.

Foreachi =1,...,q;, by the induction assumption that the lemma, holds for stage
t and by the facts that wf = wy; for all k € L;, and that the sequence {z¥_,} ver (and
hence the sequence {x,’f_l } ke Li) converges to some vector z2_, , there must exist an in-
finite subset J; of L;, for each i = 1,..., ¢, such that the sequence {CF(z¥_|,wy;)} ked;

converges to Q¢(z}_;,ws;) wpl. Therefore with & € Ji:
Jim |CF (2f1, wis) — Qula_y, wis)| = 0. (2)

Define J = U, J;. Clearly, J C L, hence the sequence {x,’f_l} ey converges to T,
wpl.

(b) and (c)

From Lemma 6 and Lemma 7 we have for k € J:

qt
Qu(zf_y) 2 91’:6 2 sz‘t Cti(aiiy, wy) + A*  with lim |Ak| =0,
1 k—o00

where the r; are elements of J; = J N {k| wy; € QF,w¥ = wy}. This is equivalent to
qt
Qt(xf—l) > 91]:6 > Qt(xf—l) + Zpit [C:i(x:i—bwti) - Qt(xf—lawti)] +AF,
=1
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whence
|6F — Qa(at_y)| < |A],
with

qt
At = sz‘t [C? (T, wi) — Qt(xf—lawti)] + A,
=1

qt
AF] < D pa [OF @y, wa) — Qulaty,wi)| + A
i=1

qt
< sz’t {|C:i(x:i—1:wti) - Qt($?_1,wti)| + |Qt(x?—1awti) - Qt(xf—bwti”} + |Ak| .
i=1

If kK — oo, then r; — 00, and from (2) we have for r; € J;:
lim |7 (27, wi) = Qu(al_y, we)| =0 (wpl).

Furthermore, due to continuity of Q¢(x;—1,w;) in x;—;, and convergence of the se-
k 0 .
quence {xt—l}keJ — Ty 4

Jim |Qe(a)_1, wii) — @i}y, wei)| = 0.
Therefore lim;_,o |A¥| =0 (wpl), and so
|9,’5c — Qu(zf )| 2 0ask — o0 (wpl).
Continuity of Q; gives
,}EEO | Qe(at_y) — Qu(P_1)| =0,

and therefore wpl:
|9,’5C — Qu(zp_ )| — 0 (as k — o0).

Hence the sequence {65} vy converges to Q;(z_;) wpl, which shows part (b).
Now, for (c), using the same argument as in the proof of Lemma 8, we obtain

|Cf_1(xf_2,w?_1) - Qt—l(xf—2aw1(:)—1)| < |A’f| g
and by continuity
;}LIEO |Qt—1(xf—2a W?—l) - Qt—l(x?—m W?—1)| =0.
This yields wpl:
|Cf_1(xf_2,w?_1) - Qt_l(x?_2,w?_1)| — 0 (as k — o0),

which means that the sequence {Cf ;(2F 5,w) 1)}, converges to Q;_1(z_p, i ;)
Wpl 0
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Theorem 10 Suppose MSBD satisfies CSP and SIP. The sequence of the solution
values {CF}, . of the problem [APf] converges to Q1 wpl.

Proof: In the approximated first-stage problem [AP}] the constraint A;z; = by
can be formulated as Ayx; = wy — Byxo with wy = by, ¢ = 0 and any given By. The
value CF can be seen as a trivial function C¥(xg,w;). The result then follows from
Lemma 9 equivalently to [3], Theorem 5.1.

Theorem 11 Suppose MSBD satisfies CSP and SIP. Then any accumulation point

of the sequence {x’f} ren U5 an optimal solution of the problem [LP;] wpl.

Proof: See [3]|, Theorem 5.2. o

4 Convergent sampling algorithms

The class of algorithms described in the previous sections is quite general and includes
a wide range of approaches. One subclass (which includes CUPPS) follows a forward
pass for both getting candidate solutions and generating cuts for the next iteration.
An alternative (such as SDDP) generates cuts in a backward pass. That means that
while generating the cuts for stage ¢ in iteration k, the cuts that were generated
for stage t + 1 in iteration k are already taken into account (which may lead to an
improvement in the speed of convergence). Under CSP and SIP, the convergence
result above remains the same for the backward-pass algorithms, if one observes that
the sampled cuts should be modified so that one cut constraint additional to [APF]
is considered when obtaining the dual variables (7i(z¥ ,), pi(zF _,)).

The analysis of the previous section considers algorithms which use only one path
of the tree per iteration. The class of algorithms can be extended to the multipath
case of ny sample paths, whereby in iteration k there are nj paths sampled. If, say,
the last of the paths is sampled independently from stage to stage, then this can be
thought of as a single iteration of the algorithm with one path with (possibly) extra
cuts added on the backward pass.

In fact the following general multipath scheme is possible: in iteration k£ a candi-
date solution for the first stage is determined and a cut for stage 1 is generated. In

the second stage nX scenarios are sampled. Then of the n% scenarios s§ are chosen,

and candidate solutions z% are determined. Of these s§¥ candidate solutions, c§ are
chosen at which the algorithm will generate cuts for stage 2. For each of the s¥ can-
didate solutions, n¥ samples are considered at stage 3. Then of the s - n% samples
sk samples are chosen, and of these cf cuts are generated for stage 3 etc.

Therefore n¥ is the number of samples in stage ¢ for each sample s¥ ; of stage
t — 1, s¥ the number of samples of which to proceed to the next stage, and cf the

number of cuts generated for stage t. The following relations hold:

skomk > > >0 vt>2vi,
k
nf > 1 W,V
s =1 Vk.

12



Observe that not all possible choices of these parameters satisfy the condition
CSP. For example, if for some ¢t > 2, ¢* = 0 Vk, then there is no guarantee of
convergence.

We conclude this section by showing how MSBD algorithms from the literature
fit into this framework. The results are summarized in Table 1.

Example 1 SDDP

Stochastic Dual Dynamic Programming (SDDP) was introduced in [6]. In SDDP n
scenario paths are sampled in each iteration. In a forward pass, for each stage in each
scenario a candidate solution is calculated by solving [APF]. Then, in a backward
pass, in each stage t the entire single-period subtree (QF = Q) is solved and a cut is
generated for stage t — 1. Thus SDDP is a multipath scheme with ny =n Vk.

Example 2 CUPPS

The Convergent Cutting-Plane and Partial Sampling (CUPPS) algorithm is given
in [3]. In each iteration it samples only one scenario (QF = {wF}). Calculating
candidate solutions and generating cuts are both performed in the forward pass.

Example 3 AND

The Abridged Nested Decomposition (AND) is described in [4]. Like SDDP QF = Q,
and like SDDP it involves sampling in the forward pass, but the main difference is
that it does not proceed forward from all solutions of the realizations sampled in each
stage. Instead, in each stage nf successors are sampled as in the general multipath

scheme. Of these nodes, s¥ < nf nodes are sampled from which to proceed, and
k_ ok
¢ =s; VkVt.

Example 4 ReSa

The Reduced Sampling method (ReSa) was developed in [5]. The basic structure is
the same as in SDDP. First some scenarios of the tree are sampled. The difference
from SDDP lies in the backward pass. In ReSa, in each stage the subtrees are solved
to generate a cut only for some (randomly chosen) scenarios. Therefore fewer sub-
problems have to be solved than for SDDP, but one also gets fewer cuts per iteration.
ReSa is a general multipath scheme, with nf = s > cf. The cuts are generated by
solving entire single-period subtrees (QF = Q). Ifck> 0 for all t and all k sufficiently
large then ReSa satisfies the cut-sampling property and so converges wpl.

Algorithm | Forward / Backward Sampled Cut Multipath scheme
SDDP B QF = Q, ne=n Vk
CUPPS F QF = {wk} -
AND B Ok =Q, sk=cf VEWt
ReSa B QF =, nf=s*" VEWt

Table 1: Examples of convergent algorithms
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5 Conclusions

This paper presents a general convergence result for multi-stage stochastic Benders
decomposition codes that use sampling. Although we make no assertions in this
paper about the rate of convergence of these algorithms, this theory provides some
guidance for researchers who select parameters to tune these algorithms. To ensure
convergence wpl in ReSa, for example, one should ensure in accordance with the
cut-sampling property that the algorithm (eventually) computes at least one cut for
each stage in the backward pass.

A key restriction on the algorithms we study is the sample-intersection property,
which guarantees that some proportion of random outcomes obtained by sampling
moving forwards in time are chosen for cut calculation. It is not hard to see why such
a condition might be needed. Certainly one can conceive of (perverse) algorithms
that only compute cuts when the z¥ values lie in certain subsets of the feasible region
of [APf]. Since the optimal solution might have z; lying outside this subset, there
is no reason to suppose that the algorithm would converge wpl even if the subsets
where cuts are computed are visited infinitely often.

The convergence proof above uses a bound on the optimal dual variables for
[APF], that comes from their construction as extreme-point solutions. A possible
extension is to allow the calculation of cuts for wy; € F to be inexact, in the sense
that the dual variables (7%, oF) are computed to be within €¥ of optimality (see [8]).
Under the assumption of a bounded dual feasible region for each problem [AP}F], it
is easy to extend our results to show convergence under the sampling property wpl
if €f — 0 for each ¢.
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