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We consider dynamic programming (DP) approximations to hydro-electric reservoir schedul-
ing problems. The first class of approximate DP methods uses decomposition and multi-
modeling heuristics to produce policies that can be expressed as the sum of one-dimensional
Bellman functions. This heuristic allows us to take into account non-convexities (appearing
in models with head-effect) by solving a MIP at each time stage. The second class of methods
uses cutting planes and sampling. It is able to provide multi-dimensional policies. We show
that the cutting plane methods will produce better policies than the first DP approximation
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1. Introduction

The mid-term hydro-thermal scheduling problem involves determining a policy
of releasing water from reservoirs for hydro-electricity generation and generating
from thermal plant over some planning horizon of months or years so as to meet
the future demand for electricity at lowest expected fuel cost. The first models
(dating back to [9],[8]) for these problems used dynamic programming, a tool that
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was confined to systems with one or two reservoirs, unless reservoir agregation
heuristics (see e.g. [13],[2]) are used.
An effort to model systems with multiple reservoirs led to the development in

the 1980s and 1990s of various multi-stage stochastic linear programming models
(see e.g. [7]) using scenario trees. Stochastic Dual Dynamic Programming (SDDP)
[10] was developed as a response to the problem of dealing with a rapidly growing
scenario tree. This method approximates the future cost function of dynamic pro-
gramming using a piecewise linear outer approximation, defined by cutting planes
or cuts computed by solving linear programs. This avoids the curse of dimensional-
ity that arises from discretizing the state variables. The intractability arising from
a branching scenario tree is avoided by essentially assuming stagewise indepen-
dent uncertainty. This allows cuts to be shared between different states, effectively
collapsing the scenario tree.
There has been little published work comparing the SDDP methodology with

classical dynamic programming. A relatively old paper by Archibald et al [1] shows
that nested Benders decomposition outperforms classical dynamic programming in
some computational tests on models with a small number of stages and scenar-
ios, but becomes intractable as these grow. Our contribution is to demonstrate
some advantages of SDDP-type algorithms in comparison with dynamic program-
ming when the problem has many stages, so that nested Benders decomposition is
computationally intractable, at least in its standard scenario-tree form.
In some electricity systems hydro-thermal scheduling problems are solved using

price decomposition (see e.g. [6]). In a deterministic setting this method gives a
subproblem to be solved for each thermal unit and each hydro river-chain. These
subproblems can in principle be coordinated by price to yield an overall generation
plan that meets demand in every period at minimum total cost. The coordination
problem has been less well studied under inflow uncertainty (although see e.g.
[3]). Here subproblems must be coordinated by a random price process to yield an
overall generation plan that meets demand at minimum expected cost. A similar
set of (sub)problems arises when river-chains are operated by different agents in
a competitive electricity pool market, where the prices over time come from the
pool. In both these settings the river-chain optimization subproblem is a challenging
problem to solve, since it must handle uncertainties in prices and inflows. Indeed it
is a variant of the hydro-thermal scheduling problem in which the electricity price
is modeled as the (random) marginal cost of an infinitely large thermal unit.
In this paper we compare two approaches to solving this problem and analyse

their differences. The first approach uses a stochastic dynamic programming heuris-
tic applied to a low-dimensional approximation of the state space. We discuss the
form of the approximation and demonstrate biases in the marginal values of wa-
ter. The second method is the Dynamic Outer Approximation Sampling Algorithm
(DOASA) algorithm described in [12], which is a special version of SDDP. We de-
scribe how the DOASA algorithm overcomes some of the biases of the former. The
optimal value functions derived from the two methods are tested numerically on
two river-chains.
The paper is laid out as follows. In the next section we describe the stochastic

control problem that we wish to solve. This problem is illustrated in the following
section by two example river-chains (RC1 and RC2) operated by EDF in France.
The networks describing these river-chains have different topologies and so one
can use different heuristics to compute approximately optimal release policies for
the reservoir control problem, with a view to computing estimates of water values
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for short-term optimization1. The heuristics (called MORGANE) are described in
section 3. In section 4 we give a brief description of the DOASA algorithm and
then describe how the forward simulation step of this method can be used to
evaluate both the DOASA release policy, and the corresponding release policies
that arise by applying MORGANE. In section 5 we present the results of applying
the MORGANE heuristics to the example systems and compare this with the
results of applying DOASA.

2. The hydroelectric river-chain model

We consider a river-chain represented by a network of n nodes (reservoirs and
junctions) and m arcs (canals or river reaches). The topology of the network can
be represented by the n×m incidence matrix A, where

aij =







1, if node i is the tail of arc j
−1, if node i is the head of arc j
0, otherwise.

By adding dummy nodes if necessary, we can ensure that every pair of nodes is
joined by at most one arc. Let x (t) denote a vector of reservoir storages in each
node at the beginning of week t, and ω(t) a vector of uncontrolled reservoir inflows
(in cubic metres) that have occurred in week t. We let h(t) be a vector of flow rates
(cubic metres per hour) in the arcs in the network, and p(t) a vector of electricity
prices at time t. Here we adopt the convention that these prices are applied to each
flow in the network, and are adjusted to account for conversion factors. Thus if
arc j does not represent a generating station then pj(t) ≡ 0, and if j is a station
then pj(t) is the spot price of electricity multiplied by a scale factor ηj for that
station (converting cubic metres of water passing though the station into MWh).
Some flows represent spill (with ηj = 0) from reservoirs to the river reach below a
station.
We also need to allow for more than one price period within a week. In our exper-

iments we use K = 21 blocks in a week, each of duration (dk)k=1,...,K hours. These
account for variations in price between peak and off-peak times. To model this we
assume that p(t) and h(t) are of dimension mK, where the first K components of
each vector correspond to arc 1, and so on. We then define the m×mK matrix

D =











d1 d2 . . . dK 0 0 . . . 0 . . . . . . 0 0 . . . 0

0 0 . . . 0 d1 d2 . . . dK . . . . . .
...

...
...

...
... . . . . . . 0 0 . . . 0
0 0 . . . 0 d1 d2 . . . dK











so that the total quantity of flow through arc j in week t is Dh(t), and the revenue
earned is p(t)⊤h(t), where component K(j−1)+k of p(t) now equals the electricity
price/MWh in block k in week t multiplied by both dk and ηj .
The hydro-electric river-chain problem we wish to solve seeks to construct a pol-

icy for generating electricity from the river-chain so as to maximize the expected
revenue. We assume in this paper that the uncontrolled reservoir inflows are the

1A deterministic optimization is operated on the short-term (within a day) using a more accurate model
in order to provide the actual feasible releases to be performed.
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only uncertain parameters, and that these are stagewise independent. In each real-
ization of uncertainty, the policy we seek will give a set of reservoir releases defined
by h(t) that generate electricity. The policy is defined in terms of a dynamic pro-
gramming Bellman function E[Vt(x, ω(t))] where Vt(x, ω(t)) gives the maximum
expected revenue that can be earned in weeks t, t + 1, . . . when reservoir storage
x(t) = x and week t’s inflow is known to be ω(t). Here

Vt(x, ω(t)) = max p(t)⊤h(t) + E[Vt+1(x(t+ 1), ω(t+ 1))]

s.t. x(t+ 1) = x−ADh(t) + ω(t),

0 ≤ h(t) ≤ b, 0 ≤ x(t+ 1) ≤ r.

We place a limit on the time horizon of t = T , and specify a future value function
VT+1(x(T + 1), ω(T + 1)) to give a bounded problem.

3. River-chain optimization and multi-modeling

In this section we present the MORGANE dynamic programming heuristics as
applied to two river-chains. These heuristics are applied in order to keep some
advantages of the stochastic dynamic programming method. In fact, they allow
us to model non-convexities in the problem without, as far as the stage problems
are solved, losing the theoretical validity of the method. Nevertheless dynamic
programming is faced with the curse of dimensionality, and so the heuristics seek
to avoid this by reducing the dynamic programming calculations to a sequence of
one-dimensional problems.
The river-chains are called the RC1 Valley, and the RC2 river-chain. Due to

confidentiality issues the names of the river-chains and reservoirs are anonymized.
Schematic representations of these are shown in figures 1 and 2. The RC1 system
has three main reservoirs feeding a chain of two essentially run-of-river generating
stations. The RC2 system is a chain of stations some of which have headpond
reservoirs with significant storage capacity.

R1 R2 R3

RoR1

RoR2

Figure 1. The RC1 river system

The MORGANE model treats these river-chains slightly differently. For the RC1
system, MORGANE computes marginal water values for each of the three main
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R’1

RoR’1

R’2

RoR’2

RoR’3

Figure 2. The RC2 river system

reservoirs by performing a stochastic dynamic programming algorithm for each
of these reservoirs considering that the storage level of the other reservoirs are
constrained to be at given levels at the end of each week. In the RC2 system,
MORGANE applies a different heuristic that consists of decomposing the river-
chains into two parts: an upstream one and a downstream one. Applying the first
heuristic to the upstream part generates a controlled flow feeding the downstream
part. Again the first heuristic is applied to the downstream section in order to
compute water values for the reservoir at the top of this section.

3.1. Heuristic 1: constrained multi-modeling

The curse of dimensionality means that computing multi-dimensional policies using
dynamic programming is numerically intractable. The idea of Heuristic 1 is to
compute a multi-dimensional policy as the sum of one-dimensional ones. In this
approach, each reservoir present in the considered river-chain is operated as if the
other reservoirs have storage level targets to reach at the start and end of each
stage. This target is an a priori fixed proportion of the maximum storage capacity.
Solving a hydroelectric river-chain model, composed of n interconnected reser-

voirs, thus amounts to solving n sub-problems. Each sub-problem is solved using
dynamic programing, resulting in n revenue-to-go functions.

We denote by V
[i]
t (xi, ω(t)) the maximum expected revenue that can be earned

in weeks t, t + 1, . . . , T , when reservoir i storage is xi(t) = xi and reservoir j 6= i
storage is xj(t) = xj(t+ 1) = αjrj , αj ∈ [0, 1] at the start and end of each time
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stage. Week t’s inflow is known to be ω(t). Here

V
[i]
t (xi, ω(t)) = max p(t)⊤h(t) + E[V

[i]
t+1(xi(t+ 1), ω(t+ 1))]

s.t. xi(t) = xi,

x(t+ 1) = x(t)−ADh(t) + ω(t),

xj(t) = αjrj , ∀j 6= i

xj(t+ 1) = αjrj , ∀j 6= i

0 ≤ h(t) ≤ b, 0 ≤ xi(t+ 1) ≤ ri.

The multi-dimensional Bellman function that will allow us to recompute an overall
policy will be the sum of one-dimensional Bellman functions:

Vt(x(t), ω(t)) =
n
∑

i=1

V
[i]
t (xi(t), ω(t)).

It is obvious that this heuristic is sub-optimal in the sense that the sub-problems
have less flexibility than the original problem formulation. Nevertheless, this heuris-
tic allows us to maintain the advantages of classical dynamic programming. In
particular, no convexity assumptions are needed in order to perform this heuris-
tic as long as we can solve the (MIP) sub-problems with a reasonable amount of
computational effort.

3.2. Heuristic 2: geographical decomposition

The previous heuristic is adapted to parallel reservoirs feeding into the same turbine
or run-of-the-river installations. In fact in that kind of configuration the strategies
of the different reservoirs defined by the heuristic are optimal if the downstream
constraints are never binding. We discuss this issue in more depth in the Appendix.
For a cascade type river-chain this decoupling is typically not possible, and a

geographical decomposition can be applied between downstream and upstream
using the special structure of the river network.
For the RC2 river-chain the matrices describing the network can be decomposed

as an upstream part containing p = 2 reservoirs, and a downstream part containing
n− p = 3 reservoirs, so

A =

[

A[1] B[1]

B[2] A[2]

]

=













−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1













and

D =
[

D[1] D[2]
]

.

Heuristic 2 looks for strategies depending only on two reservoir levels: the topmost
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one (reservoir 1) and the most valuable1 one in the middle of the chain (reservoir
p+ 1).
First, we use heuristic 1 in order to compute a policy for the topmost reservoir

while fixing the releases of the other reservoirs in order to meet an a priori fixed

target at the start and end of each time stage. We denote by V
[1]
t (x1, ω(t)) the

maximum expected revenue that can be earned in weeks t, t + 1, . . . , T , when the
topmost reservoir storage is x1(t) = x1 and reservoir j 6= 1 storage is xj(t) =
xj(t+ 1) = αjrj , αj ∈ [0, 1]. Week t’s inflow is known to be ω(t). Here

V
[1]
t (x1, ω(t)) = max p(t)⊤h(t) + E[V

[1]
t+1(x1(t+ 1), ω(t+ 1))]

s.t. x1(t) = x1,

x(t+ 1) = x(t)−ADh(t) + ω(t),

xj(t) = αjrj , ∀j 6= 1

xj(t+ 1) = αjrj , ∀j 6= 1

0 ≤ h(t) ≤ b, 0 ≤ x1(t+ 1) ≤ r1.

Second, we use the previously computed releases h[1](t) ∈ R
p feeding the down-

stream part, in order to optimize the second part of the river-chain. Hence, we

denote by V
[2]
t (xp+1, ω(t)) the maximum expected revenue that can be earned in

weeks t, t+1, . . . , T , when the storage of the topmost reservoir (in the downstream
section) is xp+1(t) = xp+1, and reservoir j > p storage is xj(t) = xj(t + 1) =
αjrj , αj ∈ [0, 1]. Week t’s inflow in the downstream part of the river is denoted

by ω[2](t). Here

V
[2]
t (xp+1, ω(t)) = max p[2](t)⊤h[2](t) + E[V

[2]
t+1(xp+1(t+ 1), ω[2](t+ 1))]

s.t. xp+1(t) = xp+1,

x[2](t+ 1) = x[2](t)−A[2]D[2]h[2](t)

−B[2]D[1]h[1](t) + ω[2](t),

xj(t) = αjrj , ∀j > p

xj(t+ 1) = αjrj , ∀j > p

0 ≤ h[2](t) ≤ b, 0 ≤ xp+1(t) ≤ r.

The Bellman function that defines our policy will then be the sum of the one-
dimensional Bellman functions:

Vt(x(t), ω(t)) = V
[1]
t (x1(t), ω(t)) + V

[2]
t (xp+1(t), ω(t)).

While simulating the generated policy for the remaining reservoirs, we add to the
simulator the target constraints at the beginning and end of each stage.

1It could be the biggest one, or the most valuable one from the operator’s point of view.
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As in the previous case, this heuristic is sub-optimal in the sense that the sub-
problems have less flexibility than the original problem. But, as in the previous
heuristic, we are able to keep some of the dynamic programming advantages (deal-
ing with non-convexities).

4. Dynamic Outer Approximation Sampling Algorithm

The DOASA code [12] is based on the SDDP technique of Pereira and Pinto [10].
To solve a maximization problem, DOASA approximates E[Vt(x, ω(t))] using a
piecewise linear outer approximation that is updated using samples of the inflow
process. Of course, this approximation is available only if convexity assumptions are
made on the considered problem. Weekly prices are represented by a price duration
curve with 21 blocks, and ω(t) is sampled from historical inflow observations.
The DOASA code yields an outer approximation to E[Vt(x, ω(t))] at each stage

t by solving the single-stage approximating problem:

SP (x, ω(t)): max p(t)⊤h(t) + θt+1

s.t. x(t+ 1) = x−ADh(t) + ω(t), [πt]

0 ≤ h(t) ≤ b, 0 ≤ x(t+ 1) ≤ r,

αk
t+1 +

(

βk
t+1

)⊤
x(t+ 1) ≥ θt+1, k ∈ C(t+ 1).

The flow balance constraints at each node i have dual variables πt. These are used
to compute the inequality constraints

αk
t +

(

βk
t

)⊤

x(t) ≥ θt, k ∈ C(t)

which are the cuts defining an outer approximation of the future value function.
For simplicity of notation, we have represented this construction as applying to
all nodes i, but in practice we compute cuts only for the reservoirs with positive
storage capacity.
At iteration k of the algorithm the cut coefficients are computed as follows.

(1) Solve the stage problem SP (xk(1), ω(1)) for the known realization ω(1),
giving optimal solution xk(2) and optimal value V1(x

k(1), ω(1)).
(2) For t = 2, 3, . . . , T , solve the stage problem SP (xk(t), ω(t)) for a sample

realization of ω, recording the solution xk(t+ 1).
(3) For t = T, T − 1, . . . , 2, solve the stage problem SP (xk(t), ω(t)) for every

realization of ω(t), recording the solution value Vt(x
k(t), ω(t)) and duals

πt(x
k(t), ω(t)), and adding the cut

θt ≤ αt + β⊤

t x(t)

to every problem at stage t− 1, where

βt = E[πt(x
k(t), ω(t))]
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and

αt = E[Vt(x
k(t), ω(t))]− β⊤

t (x
k(t))

The algorithm terminates after little progress is observed in the upper bound
estimate V1(x

k(1), ω(1)). The policy defined by the cuts can then be simulated,
and its expected revenue estimated by a sample average. This gives an estimate of
a lower bound on the optimal value that can be checked against the upper bound.
In contrast to SDDP that runs many forward passes simultaneusly, DOASA

performs a single forward pass in each iteration. This can be shown to be more
effective at delivering good solutions when stopping the algorithm early [4].

5. Experiments

DOASA and MORGANE were applied to data from the two valley systems RC1
and RC2. In both systems, MORGANE was applied subject to the following re-
strictions1:

(1) There are no constraints on reservoir levels apart from them ranging be-
tween 0 and their full capacity.

(2) All generating plant are assumed to be available at full capacity throughout
the year. Real problems include randomness on the availability of these
plants.

(3) Electricity prices were assumed to be known in advance, and set to their
average over all the scenarios that had been generated. Each river-chain
used a different set of average prices. Prices were for 21 blocks of time during
the week representing peak, offpeak, and shoulder periods. The number of
hours in each block varies with the day of week, and the river valley.

(4) A set of 41 weekly inflow sequences was used to represent the reservoir
inflow distribution, assumed to be stagewise independent.

(5) The factors for converting flow to electricity in each station were set to be
constant (i.e. we assume that they do not vary with reservoir head level.)
in a first experiment and vary in a second one.

Under these restrictions MORGANE was solved over a 104 week horizon and
marginal water values were computed for each reservoir at the end of each week.
The marginal water values for week 52 were then converted into cuts and provided
to DOASA as end conditions. DOASA was then applied over the first 52 weeks of
the planning horizon.

5.1. Converting marginal water values to cuts

Upon terminating, MORGANE provides marginal water values for each reservoir as
a function of their level. This function for reservoir i = 1, . . . , n is represented as a
list of reservoir levels and marginal water values denoted (xik, βik), k = 0, 1, . . . ,K.
This can be converted into cuts by choosing an arbitrary future value αi0 from an
empty reservoir at time t, and then computing αik recursively using

αik = αik−1 + (βik−1 − βik)xik, k = 1, 2, . . . ,K

1These restrictions are not in favor of the MORGANE heuristics. In fact the heuristics are able to take
into account stochasticity and time dependancy on the prices, end non convexity constraints.
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as shown in Figure 3.

Figure 3. Converting marginal water values to cuts

The future-value function E[VT+1(x(t + 1), ω(t + 1))] is then represented as the
sum of the individual reservoir value functions. Thus

E[Vt+1(x(t+ 1), ω(t+ 1))] =
n
∑

i=1

max
k=0,1,...,K

{αik + βikxi(t+ 1)}

We model this in DOASA using a multi-cut representation

θt+1 =

n
∑

i=1

θt+1(i)

αik + βikxi(t+ 1) ≥ θt+1(i), k = 0, 1, . . . ,K, i = 1, 2, . . . , n.

Depending on the choice of αi0 this representation gives a different level for
E[Vt+1(x(t+1), ω(t+1))], but accurately reproduces the marginal water values for
each storage level at which they are recorded by MORGANE, under the assumption
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that the MORGANE files of marginal water values give these values at the lowest
possible storage level that they apply (i.e. the step function is continuous from
the right). We remark that the above construction can be used for representing the
MORGANE policy at any stage t ≤ T . We thus use this both for providing a future
cost function to DOASA at t = 52, as well as for simulating the MORGANE policies
in our experiments, so that the same code is used to simulate both MORGANE
and DOASA policies.

5.2. Modelling variations in head

Recall that for generating stations pj(t) denotes the spot price of electricity multi-
plied by a scale factor ηj for that station (converting cubic metres of water passing
though the station into MWh). In practice the scale factor ηj is a function of net
head, namely the difference in height of the headwater and tailwater of the turbine
generating electricity. A common model (see [11]) assumes that ηj is net head times
some efficiency term that depends on flow rate. If we assume that the tailwater
height and flow rate is constant then ηj is linear with head level. The headwater
height then depends on the volume of water x stored in the reservoir upstream of
the station as a concave function since the area of the reservoir increases with head
height.
In MORGANE the relationship between conversion factor and head is expressed

using a finite set of hydro production functions that depend on reservoir level x.
Each production function is modelled using two linear pieces defined by the most
efficient flow rate he and the maximum flow rate hm, both of which depend on x.
When the reservoir volume is x, the power generated by flow rate h is

E(h, x) = maxh1,h2
ηe(x)h1 + ηm(x)h2

s.t. h1 + h2 = h,
h1 ≤ he(x), h2 ≤ hm(x)− he(x).

If values of ηe(x) and ηm(x) are specified for a range of reservoir volumes then
we may compute E(h, x) by linearly interpolating these values and solving the
maximization problem above.
The term p(t)⊤h(t) in the objective function of our stage problem becomes

p(t)⊤E(t), where p(t) and E(t) are of dimension mK, and have components that
correspond respectively to spot price at time t in each time block and network arc,
and to E(h, x), where h is the station flow in that time block and network arc, and
x is the storage in the upstream reservoir at time t.
The DOASA code now yields an outer approximation to E[Vt(x, ω(t))] at each
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stage t by solving the approximating problem:

SP (x, ω(t)): max p(t)⊤E(t) + θt+1

s.t. x(t+ 1) = x−ADh(t) + ω(t), [πt]

0 ≤ h(t) ≤ b, 0 ≤ x(t+ 1) ≤ r,

E(t) = ηe(x)h1 + ηm(x)h2

h1 + h2 = h(t),

h1 ≤ he(x), [ρt]

h2 ≤ hm(x)− he(x), [σt]

αk
t+1 +

(

βk
t+1

)⊤
x(t+ 1) ≥ θt+1, k ∈ C(t+ 1).

Even though SP (x, ω(t)) is a convex problem for fixed x, this does not guarantee
that the optimal value function Vt(x, ω(t)) is concave as a function of x, even if
ηe(x) and ηm(x) are concave. Indeed it is conceivable that the marginal value of
water might increase as reservoirs fill up if the increase in head makes each cubic
metre of water more valuable for generation.
A valid outer approximation of Vt(x, ω(t)) by cutting planes requires that it is

concave. If we apply the DOASA algorithm to this model then the value of the
first-stage problem can no longer be guaranteed to be an upper bound on the value
of an optimal policy. Of course it is possible to construct a concave approximation
of each production function (see [5]) and use this. However we simply assume that
the lack of concavity of these functions is not too severe, so that the cuts computed
by DOASA give a reasonably good policy even if the value function is not concave.
To account for head effects in stage 3 of DOASA we now solve SP (x, ω(t)) giving

hk1(ω(t)) and hk2(ω(t)) and duals πt(x
k(t), ω(t)). We can then add the cut

θt ≤ αt + β⊤

t x(t)

to every problem at stage t− 1, where

βt = E[πt(x
k(t), ω(t)) + p(t)⊤g(xk(t), ω(t))]

and

g(x, ω) = η′e(x)h
k
1(ω) + η′m(x)hk2(ω).

This calculation ignores the dependence of he and hm on x which could be included
as extra terms in βt, namely

E[
(

ρt(x
k(t), ω(t))− σt(x

k(t), ω(t))
)⊤

h′e(x
k(t)) + σt(x

k(t), ω(t))⊤(h′m(xk(t)))],

where ρt and σt are the dual variables corresponding to the bounds on h1 and h2
as shown in the formulation above.
When head effects are modelled, the forward pass in DOASA must also be
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changed so as to use the appropriate interpolated production functions correspond-
ing to the state variable that is visited in the forward simulation.
The policies obtained by computing 100 of these cuts in DOASA were simulated

against the policies obtained from MORGANE to give the plots shown in Figures
7 for the RC1 and 8 RC2 systems.

6. Numerical results

We present in this section two different experiments over the two river chains (RC1
and RC2). In the first experiment we assume that the head is a fixed constant in the
production functions. The results concerning this first experiment will allow us to
study the proposed MORGANE heuristics versus DOASA. The other experiments
is presented to illustrate section 5.2 were we take into account head variations.

6.1. Experiment 1: fixed head

In this experiment DOASA was run for 100 iterations, giving 100 cuts at each
stage. Since MORGANE has approximately 40 marginal water values for each of
three reservoirs, we claim that this gives a commensurate level of discretization.
DOASA takes about one minute per iteration, and so it must be run for nearly two
hours on this problem, while MORGANE takes about 10 minutes. The progress of
the DOASA upper bound for a fixed head level model is shown in Figure 4.

• For the RC1 system, the minimum (scaled) upper bound is 434.740. The DOASA
policy when simulated over 100 out-of-sample stagewise independent inflow se-
quences gives an expected value of 434.600 with a standard error of 0.139, which
indicates that the DOASA policy is close to optimal.

• For the RC2 system1 , the minimum (scaled) upper bound is 716.785. The
DOASA policy when simulated over 100 out-of-sample stagewise independent
inflow sequences gives an expected value of 716.454 with a standard error of
0.834, which indicates that the DOASA policy is close to optimal2.

The DOASA policy was then simulated over the 41 inflow sequences that were
used to construct the policy. Since these sequences display some stagewise depen-
dence, this is a sterner test of DOASA which assumes that inflows are stagewise
independent.

• For the RC1 river system, the average optimal value over these scenarios was
434.161 with a standard error of 0.521 for the RC1 river system. This is lower
than the out-of-sample expected value of 434.600, but very close. Recall that the
upper bound of 434.740, is an upper bound on the value of the DOASA policy
that assumes independence, so we cannot deduce that this is a bound on the best
policy that took advantage of information about possible persistence in inflows.
The policy from MORGANE was also simulated over the same inflow sequences.
In 95% of scenarios the values from DOASA were larger (see figure 5).

• For the RC2 river system, the average optimal value over these scenarios was
714.068 with a standard error of 3.451. The policy fromMORGANE was also sim-
ulated over the same inflow sequences. This required some care as MORGANE

1This has a different network topology, and so it provides a useful comparison of the effect of river-chain
topology on the policies from the two methodologies. As before, DOASA was run for 100 iterations, giving
100 cuts at each stage.
2An experiment with 200 cuts gave a smaller upper bound of 716.700 and an estimated value of 716.467
with a standard error of 0.833.
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Figure 4. Upper bound for revenue plus true value for RC1 DOASA policy assuming fixed head (RC1
left, RC2 right).

provides water values only for reservoir R’1 and reservoir R’2. We therefore as-
sumed in computing each week’s releases that the terminal values of the reservoir
levels of the other reservoirs are set at 50% of their capacities. The simulation
of the MORGANE policy then gives an average optimal value of 712.543 with a
standard error of 3.389. In 85% of scenarios the values from DOASA were larger
(see figure 5).

Some insights into the reason for the difference between the policies can be seen
by examining the marginal water values. Since both policies share the same value
function at stage T , their stage T optimization problems should deliver the same
water value functions at stage T − 1. The actual values of these are shown for two
sets of reservoir storage levels in table 6.1 and 6.1.

Reservoir R1 Reservoir R2 Reservoir R3

Storage (m3) 13,818,000 3,577,000 14,520,000
DOASA (e/m3) 0.151 0.176 0.150
MORGANE (e/m3) 0.159 0.190 0.155

Storage (m3) 13,818,000 7,114,000 14,520,000
DOASA (e/m3) 0.154 0.161 0.148
MORGANE (e/m3) 0.159 0.163 0.155

Table 1. Marginal water values (euros per cubic metre) computed from DOASA and MORGANE for end of

stage 51 for each of the storage reservoirs assuming fixed head.

• For RC1, the marginal values computed by DOASA are lower than those com-
puted by MORGANE. This can be explained by observing that MORGANE
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Figure 5. Cumulative plot of the difference in value between the DOASA solution and the MORGANE
solution for RC1 (left) and RC2 (right)over 41 scenarios assuming fixed head.

Reservoir R’1 Reservoir R’2

Storage (m3) 203,500,000 79,000,000
DOASA (e/m3) 0.0359 0.0167
MORGANE (e/m3) 0.0344 0.0159

Table 2. Marginal water values (euros per cubic metre) computed from DOASA and MORGANE for end of

stage 51 for each of the storage reservoirs assuming fixed head.

assumes that all other reservoirs terminate at 50% of capacity when computing
marginal values for the reservoir in question. This adds an extra constraint on
releases from these reservoirs over the week. Suppose that these constraints re-
sult in no other capacity constraints being binding. Then the marginal value of
extra water in reservoir R1 (serving the most efficient station) will be the rev-
enue earned by passing this down the river chain through generating stations.
If however the optimal policy means that river reach capacity constraints below
the run of the river RoR1 station are binding then the marginal value of extra
water in reservoir R1 will be the revenue earned by it minus the loss in revenue
from reducing the flow in the other stations that are less efficient, so as to sat-
isfy the constraint. In this way the marginal water values for each reservoir can
depend on the water levels in other reservoirs, as well as on the level of their
own. In other words, if the other reservoirs are full it is more likely that the ca-
pacity constraints will bind and so the water value in reservoir R1 will be lower
than the value obtained when the other reservoirs are empty. We examine this
nonseparability of the value function in more detail in the Appendix.

• In the RC2 system, the water values for reservoir R’1 under the DOASA policy
are higher than those for MORGANE, since if reservoir R’2 is constrained to be at
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50% of its value at the end of the current week, then this precludes transferring
water through reservoir R’2 to later weeks. Thus if prices are high now and
reservoir R’2 is constrained downstream, then we cannot generate in period 1
without spilling, which could be avoided if water can be transferred by storing
it till a later period. We examine the separability of the value function for the
cascaded system in the Appendix.

Despite the differences in marginal water values, the policies of DOASA and
MORGANE perform similarly. The average storage levels over the 41 scenarios are
shown in figure 6

0

5000000

10000000

15000000

20000000

25000000

30000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

MORGANE Reservoir R1

MORGANE Reservoir R2

MORGANE Reservoir R3

DOASA Reservoir R1

DOASA Reservoir R2

DOASA Reservoir R3

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152

MORGANE R'1

MORGANE R'2

DOASA R'1

DOASA RoR'1

DOASA R'2

DOASA RoR'2

DOASA RoR'3

Figure 6. Comparison of average stock levels in each reservoir (over 41 scenarios) for the DOASA and
MORGANE policies (RC1 left and RC2 right) assuming fixed head.

6.2. Experiment 2: variation in head

In this experiment DOASA was run for 100 iterations, giving 100 cuts at each stage
on the same reference as the previous section. Head effect was taken into account
while optimizing the river chains and while simulating the obtained policies as
described in section 5.2. For the RC2, cuts using DOASA are computed assuming
that the three smallest reservoirs (i.e. those without storage) can vary their level
between bounds. The Morgane policy assumes that these reservoirs are fixed at
their midpoint levels at the end of each week. So for comparison we conducted two
computational experiments on the RC2 as follows.

(1) We simulate the Morgane policy, first with free endpoints on the three small
reservoirs, and then with fixed weekly endpoints.

(2) We simulate the DOASA policy, first with free endpoints on the three small
reservoirs, and then with fixed weekly endpoints.

In these experiments, DOASA behaves better than the MORGANE heuristics,
especially if allowed more flexibility in the small reservoirs. However even if this is
restricted, the DOASA policy is better than MORGANE showing on average :
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• DOASA constrained saves 2M over Morgane constrained

• DOASA unconstrained saves 3M over Morgane unconstrained

• DOASA unconstrained saves 3.79M over Morgane constrained
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Figure 7. Cumulative plot of the difference in value between the DOASA solution and the MORGANE
solution for RC1 with head effect over 41 scenarios.
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Figure 8. Cumulative plot of the difference in value between the DOASA solution and the MORGANE
solution for RC2 with free end-points (left) and constrained end-points (right) over 41 scenarios.

7. Conclusions

The aim of this paper is to compare a stochastic dynamic programming based
heuristic that can handle non-convexities appearing in real problems (MORGANE)
to an outer approximation method that needs some convexity assumptions. The
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set of experiments chosen in this paper demonstrates that constructing DP policies
using multi-variate Bellman functions gives better results than methods that ignore
the cross terms. The source of DOASA’s advantage is from using a polyhedral
surface that is not a separable sum of one-dimensional curves. When this feature is
absent, for example when downstream constraints are never binding, the policies are
equivalent. In practice, however there are always periods when these constraints
are significant, and these periods cause the policies to diverge. We still need to
conduct experiments in order to confirm these results while prices are stochastic
and while the time dependency is taken into account (MORGANE can handle this
dependency but not DOASA due to convexity issues). Experiments while we have
more complicated constraints (storage constraints, solid water, etc.) are still to be
made.
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Appendix A. Approximations made by the multi-modeling heuristic

In this appendix we examine the implications of the approximations used by MOR-
GANE for computing marginal water values. The analysis is different for each
system, so we discuss each in turn.

A.1. RC1 river chain

The MORGANE approximation of the RC1 system assumes that Vt(x1, x2, x3)
is additively separable. To examine the separability of Vt(x1, x2, x3), consider a
simplified version of RC1 with two reservoirs having capacity a1 and a2 and releases
y1 and y2 through stations with price per unit of water flow of p1 and p2. Like RC1,
the tailwater shares a common channel with capacity k. We wish to investigate the
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form of Vt(x1, x2) when

Vt+1(x1, x2) = − (x1 − a1)
2 − (x2 − a2)

2 .

This gives

Vt(x1, x2) = maxy1,y2
p1y1 + p2y2 − (x1 − y1 − a1)

2 − (x2 − y2 − a2)
2

s.t. y1 ≤ x1
y2 ≤ x2
y1 + y2 ≤ k
y ≥ 0

After some algebra, it can be shown that Vt(x1, x2) can be separated into a sum
V 1
t (x1) + V 2

t (x2) for all values of x1, x2 except for those satisfying the following
three conditions:





(

x2 −
(

a2 −
1
2p2

))

+
(

x1 −
(

a1 −
1
2p1

))

> k
(

x1 −
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2p1

))

,
(

x2 −
(

a2 −
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2p2

))

> 0
∣

∣

(

x2 −
(

a2 −
1
2p2

))

−
(

x1 −
(

a1 −
1
2p1

))
∣

∣ < k



 .

In this exceptional case,

Vt(x1, x2) = −
1

2
(x1 + x2)

2

+

(

k + a1 + a2 +
1

2
p1 −

1

2
p2

)

x1 +

(

k + a1 + a2 −
1

2
p1 +

1

2
p2

)

x2

+

(

1
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1
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2
2

)

which contains the cross term −x1x2, and so is not separable.

A.2. RC2 river chain

We now look at the water value calculations that MORGANE makes for a sys-
tem like the RC2. We show by example that fixing the final water levels of other
reservoirs (as MORGANE does) in order to compute the marginal water value of
a given reservoir can lead to a smaller number than the true value. Consider a
system of two reservoirs in casade as shown in figure 2.
Let x(t) ∈R2 be the stock level at the start of period t in each reservoir (having

capacity a ∈R2 )and let u(t) ∈R2 denote the release from each reservoir, h(t) ∈R2

the stochastic inflow, and s(t) ∈R2 the spill. All of these depend on time. Suppose
that we control this system using a value of water for reservoir 1 only, and setting
a target in each stage on the level in reservoir 2. Given an expected future value
function Vt+1(x1), the releases u(ω) are chosen to solve

max p1u1 + p2u2 + Vt+1(x1 − u1 − s1 + h1(ω))
s.t. a2/2 + h2(ω) + u1 − u2 − s2 = a2/2

0 ≤ ui ≤ bi
0 ≤ si ≤ di
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We then compute

Vt(x1) = E(p1u1(ω) + p2u2(ω) + Vt+1(x1 − u1(ω)− s1(ω) + h1(ω))

We will test this approximation in a deterministic framework, and study the
marginal water value of reservoir 1. To do this consider two periods t = 1, 2 with
no residual water value, and consider the additional value of an extra amount δ of
water in reservoir 1 at the start of period 1. This can be computed by finding

Q(δ)= max
∑2

t=1

∑2
i=1 p(t)ui(t)

s.t. x1 + δ + h1(1)− u1(1)− s1(1) = x1(2)
x2 + h2(1) + u1(1)− u2(1)− s2(1) = x2(2)
x1(1) + h1(2)− u1(2)− s1(2) = x1(3)
x2(1) + h2(2) + u1(2)− u2(2)− s2(2) = x2(3)
0 ≤ xi(t) ≤ ai
0 ≤ ui(t) ≤ bi
0 ≤ si(t) ≤ di

Suppose the problem data are given as

p(t) x1(t) x2(t) h1(t) h2(t)
t = 1 2 1 0 0 0
t = 2 1 - - 0 2

Then

Q(0)= max 2u1(1) + 2u2(1) + u1(2) + u2(2)
s.t. 1− u1(1) = x1(2) + s1(1)

0 + 1 + u1(1)− u2(1) = x2(2) + s2(1)
x1(1)− u1(2) = x1(3) + s1(2)
x2(1) + u1(2)− u2(2) = x2(3) + s2(2)
0 ≤ xi(t) ≤ 1
0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 2
0 ≤ si(t) ≤ 3

This has solution

u1(t) u2(t) x1(t+ 1) x2(t+ 1) s1(t) s2(t)
t = 1 1 2 0 1 0 0
t = 2 0 1 0 0 0 0

with return 7. Now if we increase x1 to x1+ δ, then Q(δ) = 7+3δ, so the marginal
water value at reservoir 1 is 3. However if we constrain the storage to be one half
capacity at the end of period 1 then we have Q(δ) = 7+ 2δ, so the marginal water
value at reservoir 1 is 2, which is less than its value in the unconstrained case.


