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1 Introduction

This discussion paper1 examines the effect on electricity prices of electricity gen-
erators increasing their fuel costs from a carbon tax or equivalent carbon charge.
By looking at a very simple model of a single-node electricity pool market, we see
(not surprisingly) that a carbon tax will increase electricity prices in such a model2.
The degree of increase predicted by the model, however, depends on the type of
equilibrium model that is used to represent participant behaviour. For a Cournot
model with linear demand curves we see an increase in prices that is lower than the
carbon tax, but with constant elasticity demand curves the increase in price is more
than the tax with inelastic demand and less than the tax with elastic demand . In
the equilibrium for linear demand curves, it is not guaranteed that all generators
who emit CO2 will reduce their emissions when required to pay a tax. In a simple
symmetric supply-function duopoly model with capacities and a price cap under
uniform demand, the equilibrium with a CO2 charge increases average prices by
less than the charge, but increases the likelihood of prices hitting the cap.

2 Cournot Model

We first look at prices in a Nash-Cournot equilibrium. In the basic Cournot model,
we assume that each generator offers in a fixed quantity gi, i = 1, 2, . . . , n, which
costs Ci(gi). Suppose we have a demand function whereby the price for demand
G =

P
j gj is p(G). Each generator i assumes g−i =

P
j 6=i gj is fixed and optimizes

its profit which is
Pi = gip(G)− Ci(gi)

1This paper is a draft only and has not been submitted for peer review. The intention of
posting the paper is to stimulate discussion in modelling the effects of carbon charges. The author
welcomes any discussion or questions on this paper sent to him at the email address above.

2We make no such claim for a model with a transmission system and nodal pricing. Indeed it
can be shown that in some circumstances prices in such a system may decrease with the addition
of a carbon tax (see Downward, forthcoming).
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∂Pi
∂gi

= p(G) + gi
∂p

∂gi
− C 0i(gi) = 0

p(G) = C 0i(gi)− gi
∂p

∂gi

This gives a set of n simultaneous equations to be solved to yield the optimal offer
xi for each generator.

2.1 Linear Demand Curve

Suppose the price p is set by the inverse demand curve:

p(G) = A−BG

Now suppose generator i offers gi. Suppose the cost of generating this amount is

Ci(g) = Rig

Each generator i assumes g−i =
P
j 6=i gj is fixed and chooses generation g to optimize

his profit:

Pi(g) = gp(G)− Ci(g)
= g(A−BG)−Rig
= Ag −Rig − gB(g + g−i)

The first order condition is

∂Pi(g)

∂g
= A−Ri − 2Bg −Bg−i = 0

which gives (on setting g = gi)

2Bgi +Bg−i = A−Ri, i = 1, . . . , n,

2Bgi +B(G− g) = A−Ri, i = 1, . . . , n,

Bgi +BG = A−Ri, i = 1, . . . , n.

Summing the equations gives

BG+ nBG = nA−
nX
i=1

Ri

G =
nA−Pn

i=1Ri
B(n+ 1)

.

Now

Bgi = A−BG−Ri
=

A+ nR̄

n+ 1
−Ri
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so

gi =
A+ nR̄

B(n+ 1)
− Ri
B
.

Also

p(G) = A−BG = A− nA−
Pn
i=1Ri

n+ 1

=
A+

Pn
i=1Ri

n+ 1

=
A

n+ 1
+

nR̄

n+ 1

where R̄ is the average marginal cost. As n→∞, we have
p(G)→ R̄.

Also note that

p(G) = R̄ +
A− R̄
n+ 1

,

implying that the price markup over average marginal cost is additive and gets
smaller as R̄ increases. This indicates that increasing some Ri by adding a tax will
not give commensurate price increases. We investigate this in the next subsection.

2.2 Linear Demand Curve with Carbon Tax

Suppose for the moment that all thermal generators, i = 1, 2, . . . , k, must pay the
same carbon tax on their generation of αR̄, and the remaining n − k generators
are renewable and have zero carbon tax. Without a tax we have from the previous
subsection:

p(G) =
A

n+ 1
+

nR̄

n+ 1

With a tax of αR̄ we get

B(G+ gi) = A−Ri − αR̄, i = 1, 2, . . . , k

B(G+ gi) = A−Ri, i = k + 1, 2, . . . , n

BG+ nBG = nA−
nX
i=1

Ri − kαR̄

G =
nA−Pn

i=1Ri − kαR̄
B(n+ 1)

p(G) = A−BG = A− nA−
P
Ri − kαR̄

(n+ 1)

=
A+

P
Ri + kαR̄

n+ 1

=
A

n+ 1
+
nR̄+ kαR̄

n+ 1
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Observe that the increase in price is kαR̄
n+1
, which is less than αR̄, the fixed carbon

tax (per MWh) for each thermal agent.
This result is much the same if we extend the model so that different generators

incur different carbon taxes. In this case the thermal generators, i = 1, 2, . . . , k,
must pay a tax on their generation of αiR̄, and the remaining n− k generators are
renewable and have zero tax. Without a tax we get

p(G) =
A

n+ 1
+

nR̄

n+ 1

With a tax of αiR̄ we get

B(G+ gi) = A−Ri − αiR̄, i = 1, 2, . . . , k

B(G+ gi) = A−Ri, i = k + 1, 2, . . . , n

BG+ nBG = nA−
nX
i=1

Ri −
kX
i=1

αiR̄

G =
nA−Pn

i=1Ri −
Pk
i=1 αiR̄

B(n+ 1)

p(G) = A−BG = A− nA−
Pn
i=1Ri −

Pk
i=1 αiR̄

(n+ 1)

=
A+

Pn
i=1Ri +

Pk
i=1 αiR̄

n+ 1

=
A

n+ 1
+
nR̄+

Pk
i=1 αiR̄

n+ 1

Observe that the change in price is
Pk

i=1
αiR̄

n+1
. Thus the price has gone up by less

than
Pk

i=1
αiR̄

k
, which is the average carbon tax (per MWh) for each thermal agent.

For example is n = 2 and k = 1, we have an increase in price of αR̄
3
, or one third of

the carbon charge incurred by the emitting generator.
Recall that the equilibrium generation with no tax is

gi =
A+ nR̄

B(n+ 1)
− Ri
B
.

With a carbon tax we get the generation level of carbon emitters to be

Bgi = A−BG−Ri − αiR̄

so

gi =
A

B(n+ 1)
+
nR̄+

Pk
i=1 αiR̄

B(n+ 1)
− Ri
B
− αiR̄

B
.

The reduction in generation level of generator i is

A+ nR̄

B(n+ 1)
− Ri
B
− ( A

B(n+ 1)
+
nR̄ +

Pk
i=1 αiR̄

B(n+ 1)
− Ri
B
− αiR̄

B
)

=
αiR̄

B
−
Pk
i=1 αiR̄

B(n+ 1)

=
(n+ 1)αiR̄−Pk

i=1 αiR̄

B(n+ 1)
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and the total level of reduction of taxed generation is

kX
i=1

(n+ 1)αiR̄−Pk
i=1 αiR̄

B(n+ 1)
=

(n+ 1)
Pk
i=1 αiR̄ − k

Pk
i=1 αiR̄

B(n+ 1)

=
(n+ 1− k)Pk

i=1 αiR̄

B(n+ 1)
.

Observe that this is linear in αi so that under this model we might expect to achieve
any level of reduction in CO2 by applying a large enough αi to some generators.
If this is chosen to be too high we will have gi < 0, corresponding to a generator
becoming a net buyer of electricity. These purchases do not give any direct reduction
in CO2, and so the model is not valid in this range.
A second remark worth making is that for small αi we may get

(n+ 1)αiR̄−Pk
i=1 αiR̄

B(n+ 1)
< 0,

implying that in equilibrium some electricity generators might increase their emis-
sions under a carbon tax.
Finally, it is important to realize that these results apply to simple one-node

electricity systems. When a transmission network is present it is well known that
Nash-Cournot equilibria might fail to exist under an assumption of full rationality
of the players. Moreover, it is possible that in a transmission system, we might
find paradoxical examples whereby a tax on CO2 has the effect of decreasing elec-
tricity prices and increasing overall emissions. These paradoxes are investigated by
Downward in a forthcoming paper.

2.3 Constant elasticity demand curve

For a linear demand curve we observe that in equilibrium, electricity prices decrease
by less than the average carbon tax imposed on each thermal agent. We now revisit
this result for nonlinear demand curves. Consider the inverse demand curve where
γ measures the (constant) price elasticity of demand:

p(G) = p0

µ
G

G0

¶− 1
γ

, γ > 0.

Inverse demand curves for decreasing elasticity are plotted in Figure 1.
Suppose

Ci(gi) = Rigi.

This gives

p(G) = C 0i(gi)− gi
∂p

∂gi
.

Since

∂p

∂gi
= −p0G−

1+γ
γ
G

1
γ

0

γ
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Figure 1: Inverse demand for varying elasticity

we get

p0

µ
G

G0

¶− 1
γ

= Ri + gip0G
−1+γ

γ
G

1
γ

0

γ
, i = 1, 2, . . . , n.

a set of simultaneous equations to be solved.
Adding these equations gives

np0

µ
G

G0

¶− 1
γ

= nR̄+Gp0G
− 1+γ

γ
G

1
γ

0

γ

np0

µ
G

G0

¶− 1
γ

= nR̄+ p0G
− 1

γ
G

1
γ

0

γ

p0

µ
G

G0

¶− 1
γ

= R̄ +
p0
nγ

µ
G

G0

¶− 1
γ

p0(1− 1

nγ
)
µ
G

G0

¶− 1
γ

= R̄

µ
G

G0

¶− 1
γ

=
R̄

p0(1− 1
nγ
)

Thus the clearing price p satisfies

p(G) = p0

µ
G

G0

¶− 1
γ

=
R̄

(1− 1
nγ
)

Now consider a a carbon charge of αiR̄ on agents i = 1, 2, . . . , k. This increases R̄

by the fixed constant
Pk

i=1
αiR̄

n
. The price then increases by

∆p(G) =

Pk
i=1 αiR̄

n(1− 1
nγ
)
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=

Pk
i=1 αiR̄

(n− 1
γ
)
.

The average carbon charge paid by the emitting plant is
Pk

i=1
αiR̄

k
, and so the change

in price exceeds this if (n− 1
γ
) < k or

γ <
1

n− k .

This means that the markup in price depends on the price elasticity of demand. For
inelastic demand (small γ) this model predicts high markups from carbon charges.

3 Supply-Function Equilibrium Model

The results in the previous section show that the effect of a carbon tax on electricity
prices depends on the elasticity of demand. It is generally accepted, at least in the
short term, that electricity demand is very inelastic to price. This means that high
markups might result from carbon taxes under a Cournot model. An alternative
approach seeks an equilibrium in supply functions. We illustrate this with a simple
duopoly model.
Consider two agents i = 1, 2, who offer electricity to a pool market. Suppose

that their marginal costs are R1 = R2. Suppose that each agent has capacity K,
and that the market has a price cap P . Let demand have a uniform distribution on
[0, 2K]. Then a symmetric supply-function equilibrium is given by the offer curves

Pi(q) = Ri +
P −Ri
K

q.

A plot of the supply function equilibrium is shown in Figure 2 for K = 5 and P = 4.
The price is distributed uniformly between 1 and 4, with average 2.5.

0

1

2

3

4

5

1 2 3 4 5
q

Figure 2: Plot of supply function equilibrium for R1 = R2 = 1.
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Now consider the case where R1 < R2. This would occur if both generators had
marginal cost R1, but now generator 2 incurs a carbon charge of R2 − R1. The
supply function equilibrium has the following form:

P1(q) =

(
R2 0 ≤ q ≤ R2−R1

P−R1 K
R1 +

P−R1
K
q R2−R1

P−R1 K ≤ q ≤ K

P2(q) =

(
R2 +

P−R1
K
q 0 ≤ q ≤ P−R2

P−R1K
P P−R2

P−R1K ≤ q ≤ K
This equilibrium is shown in Figure 3 for K = 5 and P = 4. Here the blue curve is
player 1 and the red curve is player 2.
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Figure 3: Plot of supply function equilibrium for R1 = 1 and R2 = 2.

An interesting feature of this equilibrium is that player 1 bids their price up
to the lowest marginal cost of the competitor for low demand outcomes (in effect
acting as if they were subject to the carbon tax as well). The player who is subject
to the tax bids at the price cap at the top of their stack.
The industry stack is

P1(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R2 0 ≤ q ≤ R2−R1

P−R1 K
R2 +

(P−R2)
(K+

P−R2
P−R1K−

R2−R1
P−R1 K)

(q − R2−R1
P−R1 K)

R2−R1
P−R1 K < q ≤ K + P−R2

P−R1K

P K + P−R2
P−R1K < 2K

as shown in Figure 4.
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Figure 4: Industry stack for asymmetric supply function equilibrium

This gives the distribution of electricity prices shown in Figure 5.

1 2 3 4 51 2 3 4 5

1/6 1/6

1/3

Electricity Price

Figure 5: Distribution of electricity price before (blue) and after (red) carbon charge

It is easy to see from this that that the price is distributed between 2 and 4,
with average price 3. The price has increased by 0.5 which is less than the carbon
charge. There is now a probability of 1

6
that the price hits the cap, and the price

equals (its lowest value of) 2 with same probability.

4 Conclusions

It is not clear what conclusions can be drawn from these simple examples, except
possibly that care should be taken in any game-theoretical analysis of this issue. The
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results obtained will depend critically on the assumptions made about the particular
oligopoly model. It is well known that supply-function equilibrium models predict
more competitive behaviour than Cournot models with the same demand curves,
and so one might expect less price-impact from carbon charges in the former model.
Even so, it is surprising that this impact is not more dramatic for the inelastic
demand case that we have presented.
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