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Abstract

We discuss the effects of setting penalty costs on artificial vari-

ables in electricity dispatch software. It is shown under a feasibility

assumption that a choice of these can be made to give no shortfalls in

grid security and energy, but a possible shortfall in spinning reserve.

1 Introduction

This note is concerned with the effects of choosing penalty costs on artificial
variables in linear programs. It is well known in the folklore of linear pro-
gramming that if there is a feasible solution to a linear program then one
may set the costs of artificial variables using the “Big-M” method so as to
ensure that no artificial variables are positive at the optimal solution. The
question we wish to address in this paper is whether one can choose different
M values for different artificial variables to guarantee that certain artificial
variables are 0 when the linear program does not have a feasible solution.

The motivation for considering this question comes from the use of linear
programming models to compute a security-constrained electricity dispatch
in nodal electricity pools (see [1]). In these models there are different artificial
variables representing energy shortfalls at the nodes, shortfalls in various
grid-security constraints, and a spinning reserve shortfall. In situations in
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which these dispatch problems have no feasible solution, at least one of these
artificial variables will be strictly positive at optimality. We show that as
long as the system has sufficient energy to meet demand and grid security
constraints then there is a choice of M values that ensures that only spinning
reserve shortfall variables are positive at optimality.

2 Security-constrained dispatch

The dispatch model we consider is a linear program based on a DC-load flow
model. This has the following form.

P: minimize c⊤x+ b⊤y +M⊤
1 v +M2w +M⊤

3 s

Ax+Bu+ v = D,∑m2

k=1 yk + w = βz,

z ≥
∑

j∈J(g) xj , g = 1, 2, . . . , n,∑
j∈J(g) xj +

∑
k∈K(g) yk ≤ Lg, g = 1, 2, . . . , n,

Hu− s ≤ f,

0 ≤ xj ≤ Qj, j = 1, 2, . . . ,m1,

0 ≤ yk ≤ Rk, k = 1, 2, . . . , m2,

u ∈ U , v ≥ 0, w ≥ 0, s ≥ 0.

Here there are n generators who together make offers of tranches of energy
Qj at price cj , j = 1, 2, . . . , m1, and offers of reserve Rk at price bk, k =
1, 2, . . . , m2. Observe that a generator in this context is simply any entity
that offers a stack, and does not necessarily reflect any particular ownership
or physical constraints. For example a station of four large units that offers
by unit is considered to be four generators in our model. Each offer j and k is
associated with a generator g using the sets J(g) and K(g) that respectively
give the offers of reserve and energy associated with each generator. Each
generator g has a capacity Lg.

The amount of energy dispatched from offer j is represented by xj and
the amount of reserve dispatched from offer k is denoted yk. The energy
requirement is given by the vector D, and the first set of constraints define
an energy flow balance at each node. Here u defines a vector of link flows
that are constrained to lie in the convex set U , representing, for example,
capacity constraints and loop-flow conditions imposed by the DC-load flow
assumption. The linear inequalities Hu− s ≤ f (where H is a fixed matrix
and f is a given vector) represent grid security constraints that are added
to ensure that the dispatch is robust in case of line outages. We represent
any shortfalls in these constraints by s, which is penalized in the objective
function by M3.
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The matrices A and B aggregate dispatch and link flows into a net flow
into each node. We represent the shortfall of energy at each node by the
vector v. The matrix B can be constructed to account for linear or piece-
wise linear line losses. In the latter case it is well known that the dispatch
problem is not convex (see e.g. [2]). In most practical circumstances the
linear program delivers a suitable dispatch, but should nodal prices become
negative then the linear program can produce dispatch solutions that are
physically impossible, and some form of enumeration is required to deliver
the globally optimal solution to what is a non-convex optimization problem.
Nevertheless we shall assume throughout this note that P does deliver the
optimal dispatch, and leave the analysis of the special cases when it does not
to a subsequent paper.

The spinning reserve requirement in this model is defined by the term βz,
where β is a nonnegative adjustment factor that accounts for the availability
of free reserve on the system, and z is the maximum risk, defined here to
be the largest amount of energy dispatched to any generator. We represent
the shortfall of reserve by the single variable w. (In practice there may be
different types of spinning reserve but for simplicity we restrict attention to
only one.)

If P has no feasible solution with v = 0 and s = 0 then there is no
way of meeting the energy and security requirements without allowing some
shortfall in energy or grid security, so we turn our attention to the situation
in which P has a feasible solution in which v = 0 and s = 0.

Proposition 1 Suppose that P has a feasible solution with v = 0 and s = 0.
Then there are values of M1, M2 and M3 that will give v = 0 and s = 0 in
an optimal solution.

Proof. Consider the finite set of all basic feasible solutions to P for which
v �= 0. Over all such solutions let

δv = min{vi|vi > 0}.

Similarly define

δs = min{si|si > 0},

where the minimum is taken over all basic feasible solutions to P for which
s �= 0. (If either of these sets of solutions are empty then any choice of M1,
M2 and M3 will give v = 0 or s = 0 respectively.)

Now given any value of M2, define the vector M1 so that each component
e⊤i M1 satisfies

e⊤i M1 >
(M2β +m1max{cj}+m2max{bk})max{Lg}

δv
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and let the vector M3 be defined so that each component e⊤i M3 satisfies

e⊤i M3 >
(M2β +m1max{cj}+m2max{bk})max{Lg}

δs

Suppose with this choice ofM1,M2 andM3 that P has an optimal solution
(x, y, z, v, w, s) with vi > 0 for some i. Then vi ≥ δv. We know that P has a
feasible solution (x̄, ȳ, z̄, 0, w̄, 0). The objective value of this is

c⊤x̄+ b⊤ȳ +M2w̄ ≤ max{Lg}(m1max{cj}+m2max{bk}) +M2w̄

≤ max{Lg}(m1max{cj}+m2max{bk}) +M2βz̄

≤ max{Lg}(M2β +m1max{cj}+m2max{bk})

< e⊤i M1δv

≤ e⊤i M1vi

≤ c⊤x+ b⊤y +M⊤

1 v +M2w +M3s,

which contradicts the optimality of (x, y, z, v, w, s). A similar argument
shows that assuming that P has an optimal solution (x, y, z, v, w, s) with
si > 0 for some i yields a contradiction. So the above choices of M1, M2 and
M3 guarantee that v = 0 and s = 0 in an optimal solution.

The proposition above demonstrates the existence of M1, M2 and M3

that guarantee that v = 0 and s = 0 in an optimal solution to P. To use
these penalties in practice we require values for δv and δs, which are difficult
to compute. In fact it is easy to see that the values M1, M2 and M3 in
the proposition are larger than actually required. In cases where degeneracy
is not an issue it is possible to compute the minimum values required to
ensure that v = 0 and s = 0 in an optimal solution to any given instance
by fixing M2 and solving P with sufficiently large values of M1 and M3 to
give v = 0 and s = 0 in an optimal solution. Since these zero variables are
non basic at optimality (assuming non degeneracy) then the dual variables
(say, π and ρ respectively) on the energy and security constraints give infimal
values for M1 and M3 that should be chosen to ensure v = 0 and s = 0 in an
optimal solution. (This is because their reduced costs M1 − π and M3 − ρ

will remain positive.) Thus as long as each component of M1 is larger than
corresponding components of π and each component of M3 is larger than
corresponding components of ρ, we will have v = 0 and s = 0 in an optimal
solution to P.

3 The single-node case

In this section we examine a simpler linear programming model for which
an explicit expression for M1 and M2 can be derived. We adopt the same

4



notation, but now assume that all offers and load are located at a single node.
This removes the need for the variables u and the grid security constraints.

Q: minimize c⊤x+ b⊤y +M1v +M2w∑
g

∑
j∈J(g) xj + v = D,∑m2

k=1 yk + w = βz,

z ≥
∑

j∈J(g) xj, g = 1, 2, . . . , n,∑
j∈J(g) xj +

∑
k∈K(g) yk ≤ Lg, g = 1, 2, . . . , n,

0 ≤ xj ≤ Qj , j = 1, 2, . . . , m1,

0 ≤ yk ≤ Rk, k = 1, 2, . . . , m2,

v ≥ 0, w ≥ 0.

We assume throughout this section that c ≥ 0 and b ≥ 0.
First observe that when

∑
g Lg < D every feasible solution to P will have

∑

g

∑

j∈J(g)

xj ≤
∑

g

Lg < D

and so v > 0 in every feasible solution to P, no matter how large we make
M1. So

∑
g Lg ≥ D is a necessary condition for P to have a feasible solution

with v = 0. It is easy to see (by choosing y = 0) that it is also sufficient. So
we shall henceforth assume that

∑
g Lg ≥ D, i.e. the total capacity of the

market is big enough to meet the demand for energy.
We first show that as long as M1 and M2 are chosen large enough then we

can assume that the solutions we will work with have
∑

j∈J(g) xj+
∑

k∈K(g) yk =
Lg for every g.

Proposition 2 There exists some constant M such that if M1, M2 > M

then any optimal solution to Q with
∑

j∈J(g) xj +
∑

k∈K(g) yk < Lg has v = 0,
w = 0.

Proof. Suppose (x, y, z, v, w) is an optimal solution to Q with v > 0, and∑
j∈J(g) xj +

∑
k∈K(g) yk < Lg for some g. Choose

δ =
Lg −

∑
j∈J(g) xj −

∑
k∈K(g) yk

1 + β

and let j be any element of J(g) and k be any element of K(g). Then there
exists a feasible solution

(x+ δej, y + βδek, z + δ, v − δ, w)
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for Q with objective function value

c⊤x+ cjδ + b⊤y + βδbk +M1v −M1δ +M2w.

The increase in objective is cjδ + βδbk −M1δ which is strictly negative as
long as M1 > maxj{cj}+ βmax{bk}.

Similarly if w > 0, and
∑

j∈J(g) xj +
∑

k∈K(g) yk < Lg for some g, then
choose

δ = Lg −
∑

j∈J(g)

xj −
∑

k∈K(g)

yk

and let k be any element of K(g). Then there exists a feasible solution

(x, y + δek, z, v, w − δ)

for Q with objective function value

c⊤x+ b⊤y + bkδ +M1v +M2w −M2δ.

The increase in objective is bkδ −M2δ which is strictly negative as long as
M2 > maxk{bk}.

Thus if we choose M = maxj{cj}+ (1 + β)max{bk} then either v > 0 or
w > 0 yields a contradiction.

We shall assume from now on that M1 and M2 are chosen sufficiently
large so that any optimal solution to Q with positive artificial variables has∑

j∈J(g) xj +
∑

k∈K(g) yk = Lg for every generator g. This makes sense from
the interpretation of M1 and M2 as penalty costs on constraint violation.

Proposition 3 Any optimal solution to Q with y = 0 has v = 0.

Proof. If an optimal solution has y = 0 , then
∑

j∈J(g) xj = Lg for every

g. Thus
∑

g

∑
j∈J(g) xj =

∑
g Lg ≥ D, and so v = 0.

Proposition 4 There exists some constant M such that if M1−(1+β)M2 >

M then any optimal solution to Q with y �= 0 has v = 0.

Proof. Suppose (x, y, z, v, w) is an optimal solution to Q. Suppose for
some k that yk > 0 and v > 0, and choose δ = min{yk, v}. Now choose some
j in J(g) where g is such that k ∈ K(g). Then there exists a feasible solution

(x+ δej , y − δek, z + δ, v − δ, w + (1 + β)δ)
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for Q with objective function value

c⊤x+ cjδ + b⊤y − bkδ +M1v −M1δ +M2w +M2(1 + β)δ.

The increase in objective is

cjδ − bkδ −M1δ +M2(1 + β)δ

= −(bk − cj +M1 −M2(1 + β))δ

Now let M > maxj{ci}. Thus

M1 −M2(1 + β) > M

≥ cj − bk

and so the increase in objective is negative, contradicting the optimality of
(x, y, z, v, w).

It follows that if we choose M2 = maxj{cj} + 1 + (1 + β)max{bk} + 1
and M1 = (1+ β)M2+maxj{cj}+1 as penalty parameters on w and v then
any optimal solution to Q will have v = 0, as long as there is enough offered
energy to meet demand.
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