
On coincident-peak and anytime-peak

transmission charges

Andy Philpott
Electric Power Optimization Centre

The University of Auckland

January 8, 2007

Abstract

We develop a generalized Nash equilibrium model with two players

to compare the effects of using coincident-peak transmission charges

with anytime-peak transmission charges. Players are assumed to be

able to shift load between periods with a cost that grows quadrat-

ically with the amount shifted. When the shifting costs are large

compared with peak charges, the model has a unique equilibrium.

Coincident-peak charging and anytime-peak charging give different

outcomes when the peak load for one purchaser does not coincide with

the coincident peak. Coincident-peak charges favour purchasers whose

peaks do not coincide with the system peak. They are more effective

than anytime-peak charges at decreasing peak loads and therefore low-

ering peak charges.

1 Introduction

In this paper we use a simple game-theory model to compare two different
peak pricing regimes in an electricity transmission network. In this model
the transmission network owner wishes to recover the costs of the network
by charging consumers for their peak consumption of electricity. We assume
a horizon of two years in each of which there is two trading periods. The
transmission network owner estimates the costs to be recovered at the start
of each year, and then these are divided amongst the purchasers. We assume
that these costs are proportional to the network owner’s estimate of peak
load in this year (which may differ from that actually realized).
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We assume throughout the paper that purchasers respond only to peak
load transmission charges (i.e. they do not respond to high energy charges).
Of course this is a simplification, and they will attempt to respond to both
high energy prices and peak-load transmission prices. A simple model that
examines this from the perspective of the grid owner and the energy supplier
is analysed in [3].

There are a number of approaches that the network owner might adopt
to determine how much to charge each purchaser to recover the estimated
total cost for each year. In this paper we compare two models:

1. the coincident peak tariff model charges each customer in proportion
to his load at the system peak time;

2. the anytime peak tariff model charges each customer in proportion to
his individual peak load;

It is easy to see that the charging regimes give the same network charges
when the peak load for each purchaser coincides with the system peak. When
the peak load for some purchaser is at a different time from the system peak
(we call these off-peak purchasers), then the two systems might give different
allocations of cost. It is easy to see that an off-peak purchaser would prefer
a coincident peak tariff model, while others whose charges coincide with the
system peak prefer an anytime-peak model.

It is not obvious which tariff model is preferred when purchasers can
shift load between periods. For example, a purchaser with a high load in
a system-peak period might prefer a coincident-peak tariff model because
they can shift load inexpensively out of the system peak. A different (less
flexible) purchaser with a high load in a system-peak period might prefer an
anytime-peak model which discourages the first customer from avoiding their
(coincident) peak charges by load shifting. Our contribution in this paper is
to illuminate situations such as these.

There is a long literature (see [1] for a recent survey) on peak-load pric-
ing. This literature is primarily devoted to the welfare effects of different
coincident-peak-load pricing schemes. Our focus in this paper is on compar-
ing coincident-peak and anytime-peak schemes, and investigating the incen-
tives that they give to agents to shift consumption. We do not explicitly
compare welfare effects, although some conclusions about these can be made
by observing the outcomes of some simple examples.

The paper is laid out as follows. In the next section we describe an
equilibrium model for a coincident-peak tariff system in which each purchaser
can shift load between trading periods (at some cost). In section 3 we repeat
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this analysis for any-time peak tariffs. In sections 4, 5, and 6 we work through
three examples that compare outcomes under each tariff system. Section 7
shows that our model can produce many Nash equilibria when the cost of
shifting is low compared with peak charges. The results of the paper are
then summarized in a final section.

2 A coincident peak demand model

Consider a situation in which there are two purchasers X and Y. They both
consume electricity and have loads defined by Table 1. Here TP1 and TP2

Year 1 Year 2
TP1 TP2 TP1 TP2

X u1 u′1 u2 u′2
Y v1 v′1 v2 v′2

Table 1: Loads before load shifting

are trading periods, and we assume that

ui + vi > u
′

i + v
′

i, i = 1, 2,

so the system peaks occur in TP1 in both years. In year 1, the transmission
owner charges a fixed amount R1 to be split between both players according
to their maximum coincident peak demand in year 1. The amount R1 to be
charged does not depend on the observed peak demand in that year but on an
estimate of this made in advance by the network owner. On the other hand,
the allocation of R1 to purchasers depends on their actual demand levels.
Given the loads this amounts to a charge of u1

u1+v1
R1 to X and v1

u1+v1
R1 to Y.

Now, if we consider year 1 on its own, then one might suppose that each
purchaser might seek to reduce their peak load by shifting it into TP2 (at
some cost to each). Observe however that this reduction might not achieve
the desired result since if u1 and v1 are decreased proportionally then the peak
charges remain the same. The purchasers are faced with a form of prisoner’s
dilemma: if both shift load then they both incur costs but might gain no
transmission-charge benefit, yet if one were to decrease load unilaterally then
he would be better off.

The incentives to shift load become clearer when a two-period model is
introduced. Here each agent might not reduce their share of R1 by load
reductions, but by reducing the system peak in year 1 then they will lower
the cost forecast of the network owner, and so provide lower charges in year 2
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for both players. This provides sufficient incentive for each of them to incur
the cost in year 1. A multi-period version of this model is also straightforward
to derive but since this leads to little further insight, we will restrict attention
to a two-period model. Observe also that we are assuming no uncertainty
in this model - both purchasers can simultaneously choose their optimum
demand levels for both years at the beginning of year 1.

In year 2, the transmission owner charges a fixed amount R2 to be split
between both players according to their maximum coincident peak demand in
year 2. In the second year, we assume that in normal circumstances the first
year’s charge would be increased by the ratio of coincident peak demands, so
the charge to be recovered in year 2 is

R2 =

(
u2 + v2
u1 + v1

)
R1.

Suppose now that agents X and Y shift some of their load from period 1
to period 2 in each year. We adopt the notation for the new loads as shown
in Table 2.

Year 1 Year 2
TP1 TP2 TP1 TP2

X x1 x′1 x2 x′2
Y y1 y′1 y2 y′2

Table 2: Loads after load shifting

If agents in the first year decrease their load in the peak period to x1+y1,
then we assume that the transmission operator reduces the peak charge R2 in

year 2 proportionally by
(
x1+y1
u1+v1

)
. For example if total peak demand in year

1 is reduced to 80% of u1 + v1 through load shifting, then the load forecast
for Year 2 (i.e. u2+ v2) is assumed to be reduced by 20%. In general, in year
2 the transmission owner will charge

R2 =

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1.

Now suppose that it costs X an amount c1w
2 to shift an amount of load

w from period 1 to period 2, and similarly it costs Y c2z
2 to shift an amount

of load z from period 1 to period 2. We shall assume that these costs do
not vary from year to year. Then X seeks to choose x1, x

′

1, x2, and x
′

2 to
minimize his load-shifting costs and peak charges in both periods, assuming
that y1, y

′

1, y2, and y
′

2 are all fixed. We assume that no load can be totally
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shed, so in year 1 and year 2 the total load for each player remains the same.
This gives

x1 + x
′

1 = u1 + u
′

1, (1)

y1 + y
′

1 = v1 + v
′

1, (2)

x2 + x
′

2 = u2 + u
′

2, (3)

y2 + y
′

2 = v2 + v
′

2. (4)

These equations uniquely determine x′1 and x′2, once x1 and x2 are chosen
(similarly y′1 and y′2, once y1 and y2 are chosen).

We now optimize the peak charges for X and Y, by optimizing over x1
and x2 and y1 and y2 respectively. For X, the cost summed over both years
is

X(x1, x2) = c1(x1 − u1)
2 +

x1

x1 + y1
R1 + c1(x2 − u2)

2 +
x2

x2 + y2
R2

= c1(x1 − u1)
2 +

x1

x1 + y1
R1 +

c1(x2 − u2)
2 +

x2

x2 + y2

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1

and for Y the cost is

Y (y1, y2) = c2(y1 − v1)
2 +

y1

x1 + y1
R1

+ c2(y2 − v2)
2 +

y2

x2 + y2

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1.

Taking derivatives we obtain

∂X

∂x1
= R1

y1

(x1 + y1)
2
+ 2c1(x1 − u1)

+
x2

x2 + y2

(
1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1,

∂X

∂x2
=

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1

y2

(x2 + y2)
2
+ 2c1(x2 − u2),
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∂Y

∂y1
= R1

x1

(x1 + y1)
2
+ 2c2(y1 − v1)

+
y2

x2 + y2

(
1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1,

∂Y

∂y2
=

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1

x2

(x2 + y2)
2
+ 2c2(y2 − v2).

Wemodel the system as a one-shot game with Cournot conjectural variations,
under which X chooses x1 and x2, assuming that y1 and y2 are fixed, and Y
chooses y1 and y2, assuming that x1 and x2 are fixed.

It is easy to see that ∂X
∂x1

≥ 0 for any choice of x2, y1 and y2, assuming
that x1 ≥ u1. Thus X has no incentive to increase their load above u1 and
we may impose the condition

x1 ≤ u1 (5)

without loss of generality. A similar argument yields

y1 ≤ v1, (6)

x2 ≤ u2, (7)

y2 ≤ v2. (8)

Given y1 and y2, X must choose x1 and x2 to minimize his costs. Suppose
x2 is fixed. As x1 decreases from u1, X(x1, x2) gets smaller until either there
is some point at which ∂X

∂x1
= 0 or

x1 = x′1 + y
′

1 − y1

= u1 + u
′

1 + v1 + v
′

1 − x1 − 2y1

i.e. when

x1 =
u1 + u

′

1 + v1 + v
′

1

2
− y1
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At this point the peak in year 1 changes from TP1 to TP2, so the cost
X(x1, x2) switches to

X̂(x1, x2) = c1(x1 − u1)
2 +

x′1
x′1 + y

′

1

R1 + c1(x2 − u2)
2 +

x2

x2 + y2

(
x′1 + y

′

1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1

= c1(x1 − u1)
2 +

u1 + u
′

1 − x1
u1 + u′1 − x1 + y

′

1

R1 + c1(x2 − u2)
2 +

x2

x2 + y2

(
u1 + u

′

1 − x1 + y
′

1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1

Now

∂

∂x1
X̂(x1, x2) = 2c1(x1 − u1)−R1

y′1

(u1 + u′1 − x1 + y
′

1)
2

−
x2

x2 + y2

(
1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1

which is negative. Thus X̂(x1, x2) will start increasing if we decrease x1
below

u1+u
′

1
+v1+v

′

1

2
− y1. A similar argument shows that Y has no incentive

to decrease y1 below
u1+u

′

1
+v1+v

′

1

2
− x1. This shows that if the system peak is

in TP1 without load shifting then it remains in TP1 in equilibrium.
In the model we enforce a system peak in TP1 in both years by imposing

the inequalities

x1 + y1 ≥ x
′

1 + y
′

1,

x2 + y2 ≥ x
′

2 + y
′

2,

which amounts to imposing the equivalent conditions

2(x1 + y1) ≥ u1 + u
′

1 + v1 + v
′

1,

2(x2 + y2) ≥ u2 + u
′

2 + v2 + v
′

2,

thus providing lower bounds on x1 and x2 and y1 and y2 (assuming that the
other purchaser’s decisions are fixed).

Given the other purchaser’s actions, each purchaser minimizes their costs
subject to simple bounds on their purchase amount. Thus the choice of x1
and x2 satisfies optimality conditions:
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∂X

∂x1
< 0⇒ x1 = u1,

∂X

∂x1
> 0⇒ 2(x1 + y1) = u1 + u

′

1 + v1 + v
′

1,

x1 < u1 ⇒
∂X

∂x1
= 0,

2(x1 + y1) > u1 + u
′

1 + v1 + v
′

1 ⇒
∂X

∂x1
= 0.

This can be written as the complementarity conditions

∂X

∂x1
= s1 − t1,

0 ≤ 2(x1 + y1)− (u1 + u
′

1 + v1 + v
′

1) ⊥ s1 ≥ 0,

0 ≤ (u1 − x1) ⊥ t1 ≥ 0.

We can repeat this for x2, y1 and y2 to give the following mixed complemen-
tarity system:

∂X
∂x1

= s1 − t1
0 ≤ 2(x1 + y1)− (u1 + u

′

1 + v1 + v
′

1) ⊥ s1 ≥ 0
0 ≤ u1 − x1 ⊥ t1 ≥ 0

∂X
∂x2

= s2 − t2
0 ≤ 2(x2 + y2)− (u2 + u

′

2 + v2 + v
′

2) ⊥ s2 ≥ 0
0 ≤ u2 − x2 ⊥ t2 ≥ 0

∂X
∂y1

= p1 − q1
0 ≤ 2(x1 + y1)− (u1 + u

′

1 + v1 + v
′

1) ⊥ p1 ≥ 0
0 ≤ v1 − y1 ⊥ q1 ≥ 0

∂X
∂y2

= p2 − q2
0 ≤ 2(x2 + y2)− (u2 + u

′

2 + v2 + v
′

2) ⊥ p2 ≥ 0
0 ≤ v2 − y2 ⊥ q2 ≥ 0

This system can be solved using GAMS/PATH [2] to yield a Nash equilibrium
for the one-shot game.
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3 Anytime peak demand

We now study the same players in a setting in which the tariff is based
on anytime-peak demand. Recall that two players X and Y both consume
electricity and have loads defined by Table 3.

Year 1 Year 2
TP1 TP2 TP1 TP2

X u1 u′1 u2 u′2
Y v1 v′1 v2 v′2

Table 3: Loads before load shifting

In year 1, the transmission owner charges a fixed amount R1 to be split
between both players according to their maximum anytime peak demand in
year 1. In year i = 1, 2 we continue to assume that

ui + vi > u
′

i + v
′

i

but now we make the further assumption that

ui > u
′

i, and v
′

i > vi.

This means that Y’s peak period is not the same as X’s, which we assume
is the coincident peak. Thus in response to a peak charge X will decrease ui
and Y will increase vi.

The transmission charge Ri in each year will be split between the pur-
chasers according to their anytime peak loads. Thus in year i = 1, 2, X pays
ui

ui+v
′

i

Ri and Y pays
v′
i

ui+v
′

i

Ri. In the second year, in normal circumstances the

charge R2 would be increased by the ratio of coincident peak demands, so

R2 =
max{u2 + v2, u

′

2 + v
′

2}

u1 + v1
R1

=
u2 + v2
u1 + v1

R1.

Suppose now that agents X and Y shift some of their load between periods
in each year to give the loads shown in Table 4. Recall it costs X an amount
c1w

2 to shift an amount of load w from period 1 to period 2, and similarly
it costs Y c2z

2 to shift an amount of load z from period 2 to period 1. We
shall assume that these costs do not vary from year to year. Then X seeks
to choose x1, x

′

1, x2, and x
′

2 to minimize his peak charges in both periods,
assuming that y1, y

′

1, y2, and y
′

2 are all fixed. Again we assume that no load
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Year 1 Year 2
TP1 TP2 TP1 TP2

X x1 x′1 x2 x′2
Y y1 y′1 y2 y′2

Table 4: Loads after load shifting

can be totally shed, so in each year the total load for each player remains the
same as it was before shifting. This gives

x1 + x
′

1 = u1 + u
′

1, (9)

y1 + y
′

1 = v1 + v
′

1, (10)

x2 + x
′

2 = u2 + u
′

2, (11)

y2 + y
′

2 = v2 + v
′

2, (12)

This uniquely determines x′1 and x′2, once x1 and x2 are chosen. (Similarly
y′1 and y

′

2 are determined once y1 and y2 are chosen.)
We now optimize the peak charges for X and Y, by optimizing over x1

and x2 and y1 and y2 respectively. For X, the cost summed over both years
is

X(x1, x2) = c1(x1 − u1)
2 +

x1

x1 + y′1
R1 + c1(x2 − u2)

2 +
x2

x2 + y′2
R2

= c1(x1 − u1)
2 +

x1

x1 + y′1
R1 +

c1(x2 − u2)
2 +

x2

x2 + y′2

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1

Taking derivatives we obtain

∂X

∂x1
= R1

y′1

(x1 + y′1)
2
+ 2c1(x1 − u1)

+
x2

x2 + y′2

(
1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1
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∂X

∂x2
=

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1

y′2

(x2 + y′2)
2
+ 2c1(x2 − u2)

For Y the cost is

Y (y1, y2) = c2(y1 − v1)
2 +

y′1
x1 + y′1

R1

+ c2(y2 − v2)
2 +

y′2
x2 + y′2

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1.

= c2(y1 − v1)
2 +

v1 + v
′

1 − y1
x1 + v1 + v′1 − y1

R1

+ c2(y2 − v2)
2 +

v2 + v
′

2 − y2
x2 + v2 + v′2 − y2

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1.

giving

∂Y

∂y1
= −R1

x1

(x1 + v1 + v′1 − y1)
2
+ 2c2(y1 − v1)

+
v2 + v

′

2 − y2
x2 + v2 + v′2 − y2

(
1

u1 + v1

)(
u2 + v2
u1 + v1

)
R1,

∂Y

∂y2
= −

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1

x2

(x2 + v2 + v′2 − y2)
2
+ 2c2(y2 − v2).

As before X would not wish to increase the load in their peak period, and
so we impose the constraints

x1 ≤ u1, (13)

x2 ≤ u2. (14)

In the anytime-peak tariff case it is possible for y1 to decrease below v1 in
equilibrium. This will happen if the year 2 savings from a lower system peak
in year 1 overides the extra costs incurred by Y having a larger anytime peak.
To deal with this case we relax the conditions on y to give

y1 ≥ 0, (15)

y2 ≥ 0. (16)
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As in the previous section, we model the game with Cournot conjectural
variations, under which X chooses x1 and x2, assuming that y1 and y2 are
fixed, and Y chooses y1 and y2, assuming that x1 and x2 are fixed. It is easy
to see by repeating the argument of the previous section that x1 can decrease
at most until

x1 =
u1 + u

′

1 + v1 + v
′

1

2
− y1,

when X(x1, x2) switches to a different form that will increase with decreasing
x1. So we impose the following lower bounds

x1 ≥
u1 + u

′

1 + v1 + v
′

1

2
− y1,

x2 ≥
u2 + u

′

2 + v2 + v
′

2

2
− y2.

What happens to Y (y1, y2) if y1 becomes too large? If

y1 ≥ y
′

1,

then Y’s peak load in year 1 becomes TP1 and so Y (y1, y2) switches to

Ŷ (y1, y2) = c2(y1 − v1)
2 +

y1

x1 + y1
R1

+ c2(y2 − v2)
2 +

y′2
x2 + y′2

(
x1 + y1
u1 + v1

)(
u2 + v2
u1 + v1

)
R1.

which is increasing in y1. So we impose the constraint

y1 ≤ y
′

1.

A similar restriction applies to y2. Together this gives rise to the constraint
system:

0 ≤ y1 ≤
v1 + v

′

1

2
,

0 ≤ y2 ≤
v2 + v

′

2

2
.

Given the other purchaser’s actions, each purchaser minimizes their costs
subject to simple bounds on their purchase amount. Thus the choice of x1
satisfies optimality conditions:

∂X

∂x1
< 0⇒ x1 = u1,
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∂X

∂x1
> 0⇒ x1 =

u1 + u
′

1 + v1 + v
′

1

2
− y1.

This can be written as the complementarity conditions

∂X

∂x1
= s1 − t1,

0 ≤ 2(x1 + y1)− (u1 + u
′

1 + v1 + v
′

1) ⊥ s1 ≥ 0,

0 ≤ (u1 − x1) ⊥ t1 ≥ 0.

We can repeat this for x2. For y1 we get

∂Y

∂y1
< 0⇒ y1 =

v1 + v
′

1

2
,

∂Y

∂y1
> 0⇒ y1 = 0,

whence

∂Y

∂y1
= p1 − q1,

0 ≤ y1 ⊥ p1 ≥ 0,

0 ≤ (v1 + v
′

1)− 2y1 ⊥ q1 ≥ 0.

Repeating this for y2, and collecting all expressions we obtain the follow-
ing mixed complementarity system:

∂X
∂x1

= s1 − t1
0 ≤ 2(x1 + y1)− (u1 + u

′

1 + v1 + v
′

1) ⊥ s1 ≥ 0
0 ≤ u1 − x1 ⊥ t1 ≥ 0

∂X
∂x2

= s2 − t2
0 ≤ 2(x1 + y1)− (u1 + u

′

1 + v1 + v
′

1) ⊥ s2 ≥ 0
0 ≤ u2 − x2 ⊥ t2 ≥ 0

∂X
∂y1

= p1 − q1
0 ≤ (v1 + v

′

1)− 2y1 ⊥ q1 ≥ 0
0 ≤ y1 ⊥ p1 ≥ 0

∂X
∂y2

= p2 − q2
0 ≤ (v2 + v

′

2)− 2y1 ⊥ q2 ≥ 0
0 ≤ y2 ⊥ p2 ≥ 0

As before this system can be solved using GAMS/PATH [2] to yield a Nash
equilibrium for the one-shot game.
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4 Example 1

Suppose c1 = 0.5, c2 = 0.5, R1 = 10. Table 5 shows the loads before shifting
occurs.

Year 1 Year 2
TP1 TP2 TP1 TP2

X 8 3 9 4
Y 5 6 6 7

Table 5: Loads before load shifting

Before computing the results of our equilibrium models, it is instructive
to examine the tariff share of each consumer in the absence of load shifting.
Under a coincident peak tariff the first year’s payment (10) is divided in the
ratio 8:5, so X’s share = 6.154, and Y’s share = 3.846. The second year’s
payment is

R2 =
u2 + v2
u1 + v1

R1 = 11.538,

which is divided in the ratio 9:6, so X’s share = 6.923, and Y’s share = 4.615.
The total cost incurred by X is 13. 077. The cost incurred by Y is 8. 462.

Under an anytime peak tariff the first year’s payment (10) is divided in
the ratio 8:6, so X’s share = 5.714, and Y’s share = 4.286. The second year’s
payment corresponds to the coincident peak, so it is the same as before, i.e.
R2 = 11.538, and this is divided in the ratio 9:7, so X’s share = 6.490, and
Y’s share = 5.048. The total cost incurred by X is 12. 205. The cost incurred
by Y is 9. 333.

Without load shifting it is clear that X prefers anytime peak charging
and Y prefers coincident peak pricing. We now examine the outcomes of an
equilibrium with load shiftting.

4.1 Coincident peak tariff with load shifting

If we solve the complementarity problem in section 2 then we obtain the
results shown in Table 6. This shows the new loads after each purchaser has
shifted its load from the peak period (TP1 in each year). It is easily verified
(by carrying out the optimization for each purchaser separately) that this
is a Nash equilibrium. Observe that Y shifts load into its peak period TP2
(though this does not become a coincident peak). We will see that Y has
the opposite incentive for an anytime-peak tariff. The share of peak charges
incurred by X and Y are shown in Table 7.
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Year 1 Year 2
TP1 TP2 TP1 TP2

X 7.13375 3.86625 8.7286 4.2714
Y 4.0875 6.91249 5.5751 7.4249

Table 6: Loads after load shifting - coincident peak tariff

Year 1 Year 2 Total Cost(including shifting)
X 6. 357 6. 078 12. 847
Y 3. 643 3.882 8.031
Total 10.000 9.960

Table 7: Shares of peak charges - coincident peak tariff

Year 1 Year 2
TP1 TP2 TP1 TP2

X 7.20507 3.79493 8.70282 4.29718
Y 5.03257 5.96743 6.40386 6.596132

Table 8: Loads after load shifting - anytime peak tariff

Year 1 Year 2 Total Cost(including shifting)
X 5.470 6.179 12.009
Y 4.530 4. 683 9.295
Total 10 10.862

Table 9: Shares of peak charges - anytime peak tariff
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4.2 Anytime peak tariff with load shifting

If we solve the complementarity problem in section 3 then we obtain the
results shown in Table 8 and Table 9. Observe that Y’s peak charges have
increased and X’s have decreased. So X still prefers the anytime-peak system
and Y still prefers coincident-peak tariffs. Observe that to lessen its anytime-
peak charge Y now shifts load out of its peak period into the coincident peak
period. This increases the total payment sought in year 2 to 10.862. Under
the equilibrium with load shifting, both X and Y are better off than they
were with no load shifting.

5 Example 2

As in example 1 we suppose c1 = 0.5, c2 = 0.5, R1 = 10, but Y now has a
larger proportion of the load. Table 10 shows the loads before shifting occurs.

Year 1 Year 2
TP1 TP2 TP1 TP2

X 8 3 9 4
Y 20 21 21 22

Table 10: Loads before load shifting

Before computing the results of our equilibrium models, we examine the
tariff share of each consumer in the absence of load shifting. Under a coinci-
dent peak tariff the first year’s payment (10) is divided in the ratio 8:20, so
X’s share = 2.857, and Y’s share = 7.143. The second year’s payment is

R2 =
u2 + v2
u1 + v1

R1 = 10.714,

which is divided in the ratio 9:21, so X’s share = 3.214, and Y’s share = 7.500.
The total cost incurred by X is 6, 071.The cost incurred by Y is 14.643.

Under an anytime peak tariff the first year’s payment (10) is divided in
the ratio 8:21, so X’s share = 2.759, and Y’s share = 7.241. The second year’s
payment corresponds to the coincident peak, so it is the same as before, i.e.
R2 = 10.714, and this is divided in the ratio 9:22, so X’s share = 3.111, and
Y’s share = 7.603. The total cost incurred by X is 5.870 .The cost incurred
by Y is 14.844.

Without load shifting it is clear that X prefers anytime peak charging
and Y prefers coincident peak pricing. We now examine the outcomes of an
equilibrium with load shiftting.
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Year 1 Year 2
TP1 TP2 TP1 TP2

X 7.6227 3.37727 8.752118 4.24788
Y 19.628 21.3723 20.89618 22.1038

Table 11: Loads after load shifting - coincident peak tariff

Year 1 Year 2 Total Cost(including shifting)
X 2.797 3.0781 5. 9773
Y 7.203 7.3493 14.6267
Total 10.000 10.4274

Table 12: Shares of peak charges - coincident peak tariff

Year 1 Year 2
TP1 TP2 TP1 TP2

X 7.65225 3.3477 8.764169 4.23583
Y 19.8188 21.181 21.09796 21.9020

Table 13: Loads after load shifting - anytime peak tariff

Year 1 Year 2 Total Cost(including shifting)
X 2.6539 3.0042
Y 7.3461 7.5077
Total 10 10.5119

Table 14: Shares of peak charges - anytime peak tariff
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5.1 Coincident peak tariff with load shifting

If we solve the complementarity problem in section 2 then we obtain the
results shown in Table 11. This shows the new loads after each purchaser has
shifted its load from the peak period (TP1 in each year). It is easily verified
(by carrying out the optimization for each purchaser separately) that this
is a Nash equilibrium. The share of peak charges incurred by X and Y are
shown in Table 12.

5.2 Anytime peak tariff with load shifting

If we solve the complementarity problem in section 3 then we obtain the
results shown in Table 13 and Table 14. X’s payment has decreased in
both years under an anytime-peak tariff so it is still the case that X prefers
anytime-peak charging. Y’s payment has increased in both years under an
anytime-peak tariff so it is still the case that Y prefers coincident-peak charg-
ing.

6 Example 3

In the final example we suppose c1 = 0.05, c2 = 0.5, R1 = 10, so X can shift
load much more readily than Y, and will do so to avoid peak charges. At the
same time Y will respond to this shifting (albeit in a more modest fashion).
Table 15 shows the loads before shifting occurs.

Year 1 Year 2
TP1 TP2 TP1 TP2

X 10 5 15 10
Y 20 10 25 15

Table 15: Loads before load shifting

Before computing the results of our equilibrium models, we examine the
tariff share of each consumer in the absence of load shifting. Under both a
coincident and anytime peak tariff the first year’s payment (10) is divided in
the ratio 10:20, so X’s share = 3.3333, and Y’s share = 6.6667. The second
year’s payment is

R2 =
u2 + v2
u1 + v1

R1 = 13.3333,

which is divided in the ratio 15:25, so X’s share = 5, and Y’s share = 8.3333.
The total cost incurred by X is 8.3333.The cost incurred by Y is 15.
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We now examine the outcomes of an equilibrium under coincident-peak
pricing with load shiftting.

6.1 Coincident-peak tariff with load shifting

If we solve the complementarity problem in section 2 then we obtain the
results shown in Table 16. This shows the new loads after each purchaser has
shifted its load from the peak period (TP1 in each year). It is easily verified
(by carrying out the optimization for each purchaser separately) that this
is a Nash equilibrium. The share of peak charges incurred by X and Y are
shown in Table 17. Here it is easy to see that X’s share of the peak payment
has dropped significantly after load shifting.

6.2 Anytime-peak tariff with load shifting

We now compare the equilibrium with that obtained under an anytime-
peak tariff. This model must be constructed carefully as the cost function

X(x1, x2) is not smooth at x1 =
u1+u

′

1

2
. At this point the anytime-peak load

for X shifts into TP2. It may still be advantageous for X to continue increas-
ing this peak load as long as the savings from year 2 (from a lower coincident
peak in year 1) compensate for the extra expense of the anytime peak.

With the data used in this example X does not gain any further benefit

from decreasing x1 below
u1+u

′

1

2
, so x1 = x′1 = 7.5 in equilibrium. The

remaining values are shown in Table 18. The share of peak charges incurred
by X and Y are shown in Table 19. One can observe that the peak charges are
now shared more equally between the purchasers, albeit with an increase in
total peak charge in year 2, because X has not been given sufficient incentive
to move load to TP2 in year 1.

7 Multiple Equilibria

When the cost of shifting is large compared with the benefits of saving on
peak charges, the amount of load shifting in equilibrium will be too small to
make either of the constraints

2(x1 + y1) ≥ u1 + u
′

1 + v1 + v
′

1,

2(x2 + y2) ≥ u2 + u
′

2 + v2 + v
′

2,

binding at equilibrium. In other words TP1 remains the unique peak period
in each year. If either of these constraints is binding then both periods
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Year 1 Year 2
TP1 TP2 TP1 TP2

X 5.31295 9.6870 13.08766 11.9123
Y 19.6232 10.37676 24.89948 15.1005

Table 16: Loads after load shifting - coincident peak tariff

Year 1 Year 2 Total Cost(including shifting)
X 2.131 3.818 7.2302
Y 7.869 7.264 15.2098
Total 10.000 11.082

Table 17: Shares of peak charges - coincident peak tariff

Year 1 Year 2
TP1 TP2 TP1 TP2

X 7.5 7.5 12.9005 12.0995
Y 19.6052 10.3948 24.8912 15.1088

Table 18: Loads after load shifting - coincident peak tariff

Year 1 Year 2 Total Cost(including shifting)
X 2.767 4.112 7.4121
Y 7.233 7.935 15. 2514
Total 10.000 12.047

Table 19: Shares of peak charges - coincident peak tariff
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in that year are peaks. If it is inexpensive to shift then we might expect
that the above constraints are binding at equlibrium. Unfortunately in these
circumstances there can be an infinite number of Nash equilibria.

7.1 Example 4: Multiple equilibria

Suppose c1 = 0.4, c2 = 0.02, R1 = 10. Here Y can shift a lot more cheaply
than X. One equilibrium given by GAMS is shown in Table 20.

Year 1 Year 2
TP1 TP2 TP1 TP2

X 5.63508681 4.36491319 9 4
Y 4.36491319 5.63508681 4 9

Table 20: Optimal loads after load shifting

There are many equilibria for this problem. It turns out that for all of
them we have in year 2, x2 = 9, y2 = 4. We now consider the best responses
in year 1.
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The graph shows the best response x1 to y1 as the black curve. Here x1
is the horizontal axis. The blue line is

x1 + y1 = 10
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and we must stay above it. The green contour shows where for any choice
of y1, the derivative of X with respect to x1 is positive (the corresponding
red contour is negative). Thus we wish to move x1 to the left as much as
possible, while staying to the right of the black curve and above the blue
line. Thus for any choice of y1 on the vertical axis, the optimal response is to
choose x1 = 10−y1, if y1 < 4.36491319, and x1 on the black curve otherwise.

The best response of y1 to x1 is less obvious. The red curves in the plot
below are contours of the derivative of Y with respect to y1, for fixed x1. The
blue line is

x1 + y1 = 10

and we must stay above it. Thus we wish to move y1 down as much as
possible, while staying above the blue line.
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The optimal response is thus the blue line. The set of Nash equilibria
(given by the intersection of both optimal response curves) is then the seg-
ment of the blue straight line defined by

(x1, 10− x1) , x1 ≥ 5.635.

Is there a preferred equilibrium amongst these? It is easy to see that
the best equilibrium for Y is when 10 − x1 is small, so Y prefers x1 to be
large. However plotting X(x1, 10− x1), gives a local minimum at x1 = 5.75
as shown.
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So the best equilibrium for X is (5.75, 4.25). However Y would prefer an
equilibrium in which x1 is larger and so there is no equilibrium that is pre-
ferred by both players. This makes it difficult to predict likely outcomes from
our models when it is inexpensive to shift load between periods compared
with the level of peak payments.

8 Conclusion

In the absence of any ability to shift load, purchasers who peak when the
system peaks will prefer an anytime-peak tariff, as this requires off-peak
purchasers to contribute more than they would in an coincident-peak model.
Off-peak purchasers prefer a coincident-peak tariff for the same reason.

When purchasers can shift load between periods, the situation becomes
more complex, but essentially exhibits the same features. Given sufficient
incentives we find that purchasers will shift load in equilibrium to avoid high
peak charges in future years. Future peak charges depend on system peaks
in year 1, so a coincident-peak tariff gives a greater reduction in system peak
(when there are some off-peak purchasers) than an anytime-peak tariff. Since
a key goal of peak tariffs is to reduce system peaks thus delaying network
capacity expansion, this can be seen as a major advantage of coincident-peak
tariff systems.
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