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In this paper we study the effects of uncertainty on outcomes in wholesale elec-
tricity markets that are dominated by hydroelectric generation. Unlike markets
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Abstract

Using a suite of empirical models we study the effects of randomness and
risk aversion on wholesale electricity prices that are affected by uncertainty
in hydroelectric reservoir inflows. Our models combine stochastic dual
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consisting solely of thermal plant, markets with hydroelectricity have an inter-
temporal aspect arising from the fact that energy (water) can be stored for later
use. This complicates the decision making of hydroelectric generators as their
computation of the marginal cost of releasing water must involve some modelling
of opportunity cost and possible shortage costs, which depend on uncertain future
reservoir inflows.

Previous work by the authors ([23] and [21]) used market simulation models
to predict market outcomes under an assumption of perfectly competitive agent
behaviour. One aim of these models was to provide regulators with a benchmark
against which to compare market performance. The purpose of the current work
is to outline a new suite of models that extends those described in [23] and [21].
The new models make use of recent features incorporated into the stochastic dual
dynamic programming model used for water valuation, and use a high-fidelity
market simulation model to accurately predict market outcomes arising from
counterfactual agent behaviour. We compare the results of the simulation under
different assumptions on uncertainty governing the reservoir inflow processes and
the risk-aversion of market participants. Our demonstration of the simulation
models focuses on the historical year 2012. This was noted as a year with low
reservoir inflows over the first six months that led to high prices. We will make
some comparisons with results from the following year (2013) but leave detailed
analysis of other years to a forthcoming companion paper [22] that presents the
results of applying our model to data from the historical years 2008-2016.

The perfectly competitive benchmarks that we compute are the result of sim-
ulating a system optimal policy. If electricity market participants maximize pro-
ductive and allocative efficiency, then they will maximize social welfare for the
system as a whole, at least in the short term. Maximizing system social welfare
over an uncertain future is a challenging problem to define, let alone solve. For
the purposes of defining a risk-neutral benchmark, we define the objective of this
problem to be the expectation of operating benefits of participants (defined to be
revenue minus operating cost for producers and the integral below the demand
curve minus payment for consumers), taken with respect to a stochastic process
of inflows that is common knowledge. In this setting it is possible to solve an
approximation of the welfare maximizing problem and simulate the policy over
historical inflow sequences. This provides a benchmark against which historical
outcomes can be assessed.

We begin our study of 2012 with a version of the counterfactual model applied
to the New Zealand market by Wolak [26]. The Wolak model uses a benchmark
(called fized hydro in this paper) in which hydro generation is set to its historical
levels, and thermal plant is then offered in each period at its short-run mar-
ginal cost. It is argued (incorrectly) in [26] that the demand-averaged marginal
cost computed from this experiment will be biased above the truly competitive



marginal cost, so using this benchmark as a counterfactual will give conservative
estimates of price markups. In our previous work [23] we discuss the shortcomings
of this counterfactual®, as motivation for developing a benchmark based on mul-
tistage stochastic programming. Our study shows how incorporating uncertainty
gives different results from fixed hydro.

The aim of benchmarking market performance is to identify inefficiencies,
diagnose the causes of these and then devise institutional arrangements and in-
struments that might be used to reduce them. The causes of inefficiency identified
by our work are not clear. Wolak’s paper [26] attributes price differences to uni-
lateral exercise of market power, but it is difficult to discriminate between this
and the competitive behaviour of risk-averse agents. Indeed, the correspondence
between a competitive equilibrium in hydro-dominated markets with risk averse
agents, and a socially optimal plan is not well understood. In theory, under very
special circumstances (no strategic play and risk neutral players), it is possible
for a Walrasian equilibrium to give a stochastic process of prices with respect
to which every agent optimizes its own expected benefit (revenue minus variable
cost) with the outcome of maximizing total expected welfare. However, as shown
by the examples in [3], the stochastic process of prices that yields an equilibrium
might be very complicated with none of the stagewise independence properties
that make computing optimal policies easy for generators.

When agents are assumed to be risk averse or do not have a common view
of the (random) future, a competitive equilibrium is harder to identify. Agents
in such an equilibrium (if it exists) will estimate marginal water values based on
their risk-adjusted view of the future, and their actions in aggregate will yield
equilibrium prices that are then used to form these views. Determining these
prices for a multistage equilibrium would be very difficult. Furthermore, if we
were to seek an equivalent socially optimal plan then it is necessary to integrate
individual risk measures into a system risk measure to be optimized. It is well
known that this is not possible for general nonlinear utility functions. On the
other hand in the special case where agents optimize coherent risk measures [2],
then it is possible to obtain a system risk measure in complete markets, i.e. where
all risk can be traded by market participants (see [10], and [19] and [7] for this
theory applied in a dynamic setting). Although we cannot expect such complete
markets in practice, the formulation and solution of risk-averse centrally planned
hydrothermal models in this paper provides a first step towards a competitive
equilibrium benchmark of a complete market with risk-averse agents.

A similar problem of market incompleteness in hydroelectricity systems can
occur in a risk-neutral setting, as shown by the paper by Lino et al [11]. They
demonstrate using a computational example where all agents are located on diff-

!There have been several similar critiques of the model used in [26], see e.g. [6].)



ferent river systems that a risk-neutral centrally planned solution gives rise to
system marginal prices that will clear the market with an optimal dispatch if
each agent optimizes its own objective using these prices. Lino et al [11] then
show how inefficiency can result from different agents operating hydro stations
on the same cascaded river system. In this case, a market instrument pricing the
transfer of water between generating stations is needed to recover the economi-
cally efficient solution?.

The results in this paper show that the production inefficiencies in moving
to a market model from a central plan are not that great in relative terms. The
differences in prices between these solutions on the other hand are quite large,
leading to very different distributions of benefits. As mentioned above it is hard
to say whether the price differences we observe are due to unilateral exercise of
market power. Many of the conditions for Walrasian equilibrium are missing,
and the stochastic price process that one would like to use to clear the market as
a stochastic optimization problem is never revealed to agents, but defined by a
single realization of prices appearing every half hour out of the system operator’s
dispatch software. It is possible that the market structure we are working with has
some way to go to providing a better approximation to the prices that we would
obtain in equilibrium from a Walrasian auctioneer. Nevertheless, the presence
of the differences between the benchmark and the historical outcomes give some
grounds for deeper investigation.

The layout of the paper is as follows. In the next section we describe the New
Zealand wholesale electricity market. We then outline the features of the suite
of optimization models that we use in our study. The details of the models and
the data that they use are provided in an online companion [8]. In section 4 we
apply the models under different assumptions to every trading period in 2012,
and compare results between models. We also make a comparison with the same
models using 2013 data. The final section draws some conclusions.

2 The wholesale electricity market

Since 2004, New Zealand has operated a compulsory pool market, in which the
grid owner Transpower plays the role of Independent System Operator (ISO).
In this market all generated and consumed electricity is traded®. Unlike most

2The only case of this in New Zealand relates to Genesis and Meridian who operate dif-
ferent generating stations on the Waitaki system. Our counterfactual models assume that the
generation of these stations is coordinated by contractual arrangements so that they yield the
collective benefits that would be delivered by one (perfectly competitive) owner.

3Small generating stations with capacity of 10 MW or less are not required to make offers.
From 1996-2004 a voluntary wholesale market existed, where approximately 80% of electricity



electricity markets in other parts of the world, the NZEM has no day-ahead power
exchange. Bilateral and other hedge arrangements are still possible, but function
as separate financial contracts. Trading develops by bids (purchaser/demand)
and offers (generator/supply) for 48 half hour periods (called trading periods)
over several hundred pricing nodes on the national grid. (Although demand side
bids are included in the official description of the ISO dispatch model, there is
currently very little demand-side bidding in the NZEM, so we will omit them
from further discussion.)

The offers of generation made by generators to the ISO take the form of offer
stacks. These are piecewise constant functions defining the amount of power
offered at up to five different prices that may be chosen by the generator m. We
can represent the offer stack for generator m by the (step) function C,,(x). In the
New Zealand market the generator offer functions C,, are not publicly known at
the time of dispatch, but are published the following day. These data are made
available as part of a Electricity Market Information (EMI) system supported by
the New Zealand Electricity Authority [12].

All the prices in the wholesale electricity market in New Zealand are com-
puted by the ISO using a linear programming model called “Schedule Price and
Dispatch” or SPD. This represents the New Zealand transmission network by a
DC-load flow model. The full version of SPD includes constraints that ensure
voltage support, N — 1 security for line failures, and meet requirements for spin-
ning reserve that are dispatched at the same time (see [1]). The New Zealand
Electricity Authority supports a publicly available GAMS model called vSPD
[14]. The EMI system archives historical input files that when run on the model
will reproduce historical prices and dispatch exactly. This enables very precise
historical simulations to be run using counterfactual assumptions.

The essential features of SPD can be described mathematically using a DC-
Load flow model formulated in the generic network model shown in Figure 1. For
each node i the set O(i) defines all the generators at node i, where generator m
can supply any quantity ¢,, € @),,.- The demand at node 7 is denoted D;. This
gives the following market dispatch model:

MP1: minimize 3,37, com Jo Cm(z)dz

s.t. 9i(y) + Eme(’)(i) Gm =D;, [m] i €N,
Gm € Qm, m € O(i), ieN,
yeyY.

At the optimal solution to MP1, the shadow price m; on the flow balance
constraint at node 7 defines the locational marginal price. This is the price at
which energy is traded at this location. The components of the vector y measure

was traded; the remaining 20% by bilateral contracts.
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0(j) =i{1,2}

Figure 1: Generic network model illustrating notation

the flow of power in each transmission line. We denote the flow in the directed
line from i to k by y;, where by convention we assume i < k. (A negative value
of y;r. denotes flow in the direction from & to i.) We require that this vector lies in
the convex set Y, which means that each component satisfies the thermal limits
on each line, and satisfies loop flow constraints that are required by Kirchhoff’s
Law. The function g¢;(y) defines the amount of power arriving at node ¢ for a
given choice of y. This notation enables different loss functions to be modelled.
For example, if there are no line losses then we obtain

9:(y) = Zyki - Zyzk

k<i k>i

With quadratic losses we obtain

9i(y) = Zym - Z Yik — Z %T’%yzz - Z %myfk

k<i k>i k<i k>1i

In SPD the quadratic losses are modelled as piecewise linear functions of arc flow
which enables MP1 to be solved as a linear program (at least when losses are
minimized by the optimal solution).

Bids and offers start 36 hours before the actual trading period. Up to 4 hours
(pre-dispatch) before the trading period starts, a forecast price is calculated to
guide participants in the market. From 4 hours to the start of the trading period
every half hour a dispatch price is calculated (and communicated). Two hours
before the start of the trading period, bids and offers for the period in question are
locked in. From that point onwards any new prices reflect the ISO’s adjustments
in load forecasts and system availability.

During the half hour period the ISO publishes a new real-time price every 5
minutes and a time-weighted 30-minute average price. The real-time prices are
used by some large direct-connect consumers to adapt their demand. The above
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prices are a guide only, as the final prices are calculated ex-post (normally noon
the following day, unless there are irregularities or disputes) using the offer prices
as established 2 hours before the trading period, and volumes metered during the
trading period.

As mentioned above SPD (and vSPD) include constraints that ensure voltage
support, N — 1 security for line failures, and meet requirements for spinning
reserve that are dispatched at the same time as energy offers. We assume that
voltage support and security constraints are relatively unaffected by the dispatch,
and so in any simulation of a historical trading period we assume the constraints
that applied at the time.

Spinning reserve does depend on the dispatch, and can have a large effect on
prices, so we attempt to account for this in our counterfactual models. Spinning
reserve protects the system from a frequency collapse if a large thermal unit or
transmission line fails. At the beginning of every run the system operator takes
the current dispatch and runs an AC simulation (called Reserve Management
Tool or RMT) to estimate the levels of fast response (6-second) and sustained
response (60-second) spinning reserve that would be required should a large unit
(or the inter-island HVDC link) fail. The outputs of RMT are levels of freely
available reserve and automatic load shedding, and the level of extra reserve that
must be supplied by market participants in each island, who offer quantities of
reserve to the market at prices of their own choosing. Details can be found in [1].

3 The models

Our study makes use of a similar suite of models as defined in [23]. The major
difference in comparison with previous work is that we now use a full representa-
tion of the New Zealand high voltage transmission sytem as represented by vSPD.
The models we use are:

vSPD: Dispatch model solved over one trading period;
HydrovSPD: Daily dispatch model including river chains;
DOASA: A stochastic planning model solved over one year;

We examine a counterfactual proposal that supposes that the national elec-
tricity system is controlled centrally by a system planner who solves DOASA
every two weeks in a rolling horizon fashion with updated data. The output
from DOASA is used to determine water values for the model HydrovSPD that is
solved sequentially over 14 days between solves of DOASA. The outcomes of the
model HydrovSPD are then compared with observed outcomes in the wholesale



market as computed in vSPD. The details of this process are defined in publi-
cations that can be downloaded from the online companion [8]. We digress only
briefly here to give an overview of the process.

3.1 HydrovSPD

To investigate the dispatch of hydroelectricity over the course of a day a national
river-chain dispatch and nodal pricing model (HydrovSPD) combines offers from
generation plant with river scheduling constraints over 48 half-hour trading pe-
riods, p = 1,2,...,48. A diagram of the location of the river chains modelled is
shown in Figure 2.
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Figure 2: Approximate network representation of New Zealand electricity network
showing main hydro-electricity generators

In the model we discriminate between thermal generation f,,, m € F(i) C
O(i), and hydro generation v,,hn,, m € H(i) C O(i). The parameter v,,, which
varies by generating station m, converts flows of water h,,(p) into electric power.
We denote the set of trading periods by P = {1,2,...,48}*, and add the argument

4P can have 46 or 50 trading periods on days in which daylight saving changes.
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p to all variables.

The storage in a reservoir or headpond r is denoted by x,.. The initial storage
at the start of period p = 1 is given by the vector . The water balance constraints
in each period are represented by

zr(p+1) = 2,:(p) — A (hin(p) + 8m(p)) + w:(p),

where z,.(p) is the storage in reservoir r at the start of period p, s,.(p) denotes its
spill in period p, and w,(p) is the uncontrolled inflow into the reservoir in period
p. All these are subject to capacity constraints. (In some cases we also have
minimum flow constraints that are imposed by environmental resource consents.)
The node-arc incidence matrix A represents all the river-valley networks, and
subtracts controlled flows that enter a reservoir from upstream from those that
leave a reservoir by spilling or generating electricity. In other words row r of
A(h(p)+s(p)) gives the total controlled flow out of the reservoir (or river junction)
represented by row 7, this being the release and spill of reservoir r minus the sum
of any immediately upstream releases and spill.

We differentiate between large storage reservoirs » € R and small headponds
r € §. We require small headponds to end the day 50% full, while the marginal
value of water in the large storage reservoirs is calculated using a piecewise linear
convex cost-to-go function 6(x), defined by cutting planes

O(x) = rl?ea’é({ak + Zﬁfmr(@)}.

reR

Here the values of o and ¥ are determined from the output of a longer term
model. If at some x we have 0(z) = o + 3, Bt2,(49) then — /3. defines the
marginal value of water in reservoir r at the end of the day. Marginal water values
defined by these cutting planes will be reflected in the counterfactual energy prices
7;(p) determined for each trading period and location by solving HydrovSPD(z).



This is formulated as:

min Zpep D ieN zme}‘(i) D frn(P) + 0
st gi(W(P) + Xmerp) fm(P) + Xmeni) Ymhm(p) = Di(p),  [mi(p)]
ieN,peP,
vSPD constraints: e.g. securily, spinning reserve,
voltage support, loop flow, ramping
0< fulp) <am, meF(i),ieN,peTP,
zr(p+1) = 2:(p) — Arm(hin(p) + 8 (p)) +wr(p), T ERUS, p € P,
0 < n(p) < bm, 0= s(t) <, meH(i),peP,
0<uz(p) <w,, 7"eERUS, peP,
af + 3 Bhr,(49) < 0, k € K,
x.(49) > 0.5w,.(1), r€ S, x.(1)=Z,,r € RUS.
3.2 The medium-term hydro model: DOASA

To investigate the dispatch of hydroelectricity over the course of a year, a hydro-
thermal release policy must be determined. This involves the solution of a large-
scale stochastic dynamic programming model which is defined as follows. Let z (¢)
denote the reservoir storage at the beginning of week ¢, and let Cy(z,w(t)) be the
minimum expected fuel cost to meet electricity demand in weeks ¢,t +1,...,T,
when reservoir storage x(t) = = and week t’s inflow is known to be w(t). Here
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Figure 3: The 3 node transmission network and major generators in DOASA.

Ci(x,w(t)) is the optimal solution value of the mathematical program:

Py(z,w): min 3oy D ner Pmfm(t) + BCr(z(t + 1), w(t +1))]
st gi(y(1) + Xmera) fm() + Xmeri) Ymhm(t) = Di(t), i €N,
2(t+1) =2 — A(h(t) + s(t)) + w(t),
0< fin(t) < am, meF(i),ieN,
0 < hp(t) <bn,, 0<s,(t)<cn, meH®),

0<zp(t)<rm, meH(@),ieN, yeY.

To solve this, we use the DOASA code [20] which is based on the SDDP technique
of Pereira and Pinto [16]. This approximates E[C; 1 (z(t + 1),w(t + 1))] using a
polyhedral function defined by cutting planes that is updated using samples of
the inflow process.

The DOASA model uses weekly stages. A calendar year is divided into 52
weeks. A plan year is typically a year of 52 weeks with the starting week chosen to
be a particular week in the plan year and a fixed number of weeks used. Historical
inflows are sampled from a file that records weekly inflows as described below.
The New Zealand electricity system is represented as shown in Figure 3.

Weekly demand is represented by a load duration curve with three blocks.
These are called peak, off-peak and shoulder. We have chosen peak hours to
be 6am-8am and 6pm-8pm weekdays, shoulder hours to be 8am-6pm and 8pm-
10pm weekdays, and offpeak hours to be the other hours in the week. The total
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demand in MW in each node 7 is then averaged over these trading periods to get
a total demand rate D;(b,t) for each block. The energy requirement in node i for
each block b in week ¢ will be its duration T'(b, t) times the average demand rate
D;(b,t) for this block.

The choice of what data to include in demand is a delicate matter. Publicly
available demand figures (e.g. those in the EMI Data Set [12] ) make various
assumptions about what embedded generation and demand is included. These
must be carefully studied to ensure that demand is not overlooked or double
counted. The DOASA model aggregates demand to three locations (SI, HAY,
NI) representing the South Island, the lower North Island, and the upper North
Island, and allows transfers between these regions limited by line capacities. This
means that aggregating demand in each region will ignore the intra-regional losses,
implying that the regional totals of historical demand will underestimate the true
demand to be met by generation and net imports to SI, HAY, and NI. So some
inflation of total demand is needed to account for these losses. If the aggregation is
carried out geographically then ignoring line losses might also bias the generation
mix in the dispatch towards geographically close (yet electrically distant) plant.

The aggregate (into SI, HAY, and NI) of historical dispatch of the large gen-
erators can be used as a proxy for the demand adjusted for losses. We ignore the
generation supplied by small generators as long as demand is adjusted for this,
and compute the total generation of large generators in each region (SI, HAY,
and NI) in each trading period using vSPD, and then add to this generation the
net import minus export of power through transmission lines joining the region
to its adjacent region. The result will give the half-hourly demand in the region
satisfied by large generators and transfers between the regions. This is then trans-
formed into load blocks for each week and used as the demand to be met by large
generators. Of course this means that small fixed generators (not included in the
demand estimation) should have their generation fixed at zero in the DOASA
input data (as demand has effectively been reduced by these values).

A precise description of the demand calculation is as follows. Index all the
generators represented in DOASA by ¢g € G. Denote the regions (SI, HAY, and
NI) by indices S, H and N. The first step in computing demand is to deter-
mine what vSPD nodes lie in each region. The boundaries of these regions can
be defined somewhat arbitrarily, although Cook Strait is one obvious boundary
between HAY and SI. In its optimization stage model, DOASA does not model
transmission losses between the regions but does model transmission constraints.
So constraints on the HVDC and power transfer between Wellington and Auck-
land can be modelled.

Let Ng, Ny, and Ny define the vSPD nodes corresponding to each region.
Based on the transmission lines in vSPD, we define four sets of transmission
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variables

Lsy = {transmission lines directed from a node in Ny to a node in Ny}
Lys = {transmission lines directed from a node in Ny to a node in Ng}
Lyy = {transmission lines directed from a node in Ny to a node in Ny}
Lyy = {transmission lines directed from a node in Ny to a node in Ny}.

The generators ¢ € G in each region are treated as if they are in a single
location. We compute the total generation in each region in each trading period
in each day of year ¢, by running vSPD with the GDX file for the trading peiods
in that day. This gives us 365 days, each containing 48 periods (except for leap
years and daylight savings days.). For each generator g let

¢y(p) = generation in MWh computed by vSPD for period p
and
fi(p) = the line flow variable (MWh) for line [ as computed by vSPD for period p.

Here f;(p) does not include the losses incurred, half at each endpoint of the line.
For these we define the flow leaving the node at the start of the line to be f;"(p)
and the flow arriving at the end of the line to be f,;"(p). Irrespective of the sign
of fi(p) it follows that

) = filp)+ %(ﬂow loss)

fiw) = ) -3

5 (flow loss),

where « is a parameter we can vary. Then we compute the total generation in a

node to be
0 (p) =Y 4y(p)-

ger

Now adding flows we get

fsulp) = > o= Y. ()

I€Lsy l€ELus
fuste) = > )= >
leLys leLsy
fan(p) = Z fi(p) — Z I (p)
leLyn leLny
fnu(p) = Z fi(p) - Z I ().
leLnm leLuyn
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Observe that

fsu(®) + fus(p) + fun(p) + fyu(p)
= > (fiF (o) = 7 ()

leLsgULpsULgNULN

= « Z flow loss.

leELsgULgsULgNULN

The regional demand in period p is now estimated for each region to be

ds(p) = qs(p) — fsu(p)
du(p) = qu(p) — fus(p) — fun(p)
dn(p) = qn(p) — fyu(p)-

Observe that with this definition, the national demand in period p is

Z dr(p) = Z a(p) — fsu(p) — fus(p) — fun(p) — fnu(p)

ke{S,H,N} ke{S,H,N}

= Z qr(p) — a (total flow loss from inter-regional flow) .
ke{S,H,N}

The rationale behind this choice is that our backtest is intended to compute
an optimal dispatch to meet some observed demand. The demand used in vSPD
makes various assumptions about embedded generation and wind that are often
difficult to verify, especially for past years. Omne approach is to backtest the
allocation of generation amongst the large generators. If transmission losses are
ignored in DOASA (the default) then we choose av = 0 in the above analysis
which yields national demand in period p equal to } ;. rq i vy @(p). DOASA will
possibly reallocate generation amongst the generators ¢ € G to be cheaper to
meet this demand. This might give different transfers between regions than those
observed in vSPD.

If transmission losses between regions are modelled in DOASA then we choose
o = 1, which yields national demand in period p equal to ), (..} Bk (p) minus
national losses. Now DOASA will possibly reallocate generation to be cheaper
to meet this demand. This might give different transfers between regions than
those observed in vSPD, to not only allow cheaper generation but potentially
give lower transmsission losses. Once di(p) has been computed for the three
regions for every trading period, we take 3, s 5 ny di(p) for each p in this week,
and allocate the demand to one of three blocks peak, shoulder, and offpeak. The
assignment of trading period to block is made a priori and fixed. Thus computing
the energy (MWh) in each block in each week is obtained by summing dj(p) over
periods p corresponding to the block.
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In meeting demand, in case of supply shortages, load shedding (in MW) is
allowed at high costs. The costs depend on the type of customers and amount of
reduction (in $/MWh). Load in each node is divided into three sectors to repre-
sent different types of customers, which are industrial, commercial and residential,
and each sector has some distribution in each island. The default proportions are
the proportions of consumption in 2015 adjusted to higher commercial and res-
idential proportions in the North Island due to a denser population, and to a
higher industrial proportion in the South Island due to an aluminium smelter.
Although these proportions change over the years, for simplicity we have assumed
they are constant. Each sector is then divided into three segments to represent
the amount of reduction, namely 5%, 5% and 90%. The third segment represents
unplanned interruption of power supply. The cost for load shedding is called
the wvalue of loss load, or VOLL, in the electricity industry. The VOLLs for the
industrial sector are set to be lower than the other two and the VOLLSs increase
over segments in each sector. We assume that up to 10% reduction in load can
be achieved at a relatively low cost, but the value of unplanned interruption is
very high ($10,000/MWh)?>.

The DOASA model assumes that six reservoirs, Manapouri, Hawea, Ohau,
Pukaki, Tekapo and Taupo, can store water from week to week. The release of
this water through generating stations is controlled. The hydroelectric stations in
other parts of the system are treated as run-of-river plant with limited intra-week
flexibility. It is important to note that we assume inflows to the main catchments
are stagewise independent. These are sampled from the historical weekly inflow
series available on the EMI site [12]°. Full details of the DOASA model for this
study can be found in the online companion [8] to this paper.

The solution to Py (z1,w(1)) defines a set of thermal plants to run and a set of
linear functions (or cuts) whose pointwise maximum approximates E[Cs(x(2),w(2))].
Indeed the DOASA code yields an outer approximation to E[Cyy1(x(t + 1), w(t +
1))] at each stage t, and so this defines a policy at this stage by setting & = x(t)
and solving HydrovSPD(Z,) in which the constraints

of +3 pEr.(49) <0, keK,

reR

are determined by the cuts defining E[Cy 11 (z(t+1),w(t+1))]. In our experimental

®The value of $10000/MWh is open to some debate. The NEM in Australia applies a VOLL
that is indexed to inflation. In 2018-19 the value was $14,500 [25]. Our choice of $10,000 is
based on the capital cost of approximately $1M/MW for peaking plant [15] that would be
required 5 hours per year over 20 years.

6In any year y we select inflows for each catchment in the years from y — 35 to y — 1 as
equally likely random outcomes in each week. Thus for any year we have 35 (vector) outcomes
per stage giving a stagewise independent scenario tree for DOASA of 35°! scenarios.
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setup we use the cuts defining E[Cy(z(2), w(2))] for HydrovSPD(Z,) over the first
week of the fortnight, and the cuts defining E[C3(2(3),w(3))] over the second
week of the fortnight. The experiments that we carry out below use 3000 cuts
per solve.

In summary the experimental procedure is as follows:

EMBER simulation
Given reservoir levels (1) solve a 52 week hydrothermal scheduling problem
using DOASA.

1.

2.

4

Set t = 1.

Solve a hydrothermal scheduling problem over weeks {¢,...t + 51} using
DOASA.

Set T = x(t).

.Ford=1to 7,

(a) Select o* and B*, k € K, from the cut intercepts and slopes approxi-
mating B[Cyy (x(t + 1), w(t + 1))

(b) Solve HydrovSPD(z,);
(c) Set T = x,(49).

. For d = 8 to 14,

(a) Select o and f*, k € K, from the cut intercepts and slopes approxi-
mating E[Cyo(z(t + 2),w(t +2))];

(b) Solve HydrovSPD(z,);
(c) Set T = x,(49).

Set reservoir levels to 7, set t = ¢ + 2, and go to step 2.

Market comparison

We now decribe a set of experiments that were carried out using data from 2012.
Given costs per MWh of gas, diesel, and coal generation it is possible to compute
the cost of fuel required to generate the electricity dispatched by the wholesale
market in each historical half hour. This cost can be compared with the same
cost as optimized by a central plan.
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There are several difficulties with such an approach. The first of these con-
cerns dispatch that has limited control. Examples of such dispatch is that from
cogeneration, geothermal plant, run-of-river hydro and wind. Although these
have low marginal cost, their availability is subject to the vagaries of inflows and
wind, and so we cannot centrally dispatch these in a counterfactual. We choose
to fix all cogeneration, geothermal generation wind generation, embedded gen-
eration, run-of-river generation and small hydro plant at their historical levels.
This leaves the large hydro systems (Manapouri, Clutha, Waitaki and Waikato)
available for control along with the major thermal plants (Huntly (4 units plus
e3p and P40), Otahuhu, Stratford, and Whirinaki). These are the only generators
that we allow to offer energy within our model.

In reporting costs, our measure will be the cost of fuel burned by these five
plants. The fuel used in a thermal power station is coal, natural gas or diesel,
as shown in Table 1. Coal is supplied from stockpiles that are restocked under
long-term contracts. Coal costs are assumed to be constant at $4/GJ. Natural
gas is supplied by take-or-pay contracts. It is assumed that in social planning the
supply can be secured and the costs are wholesale prices. The quarterly average
prices of natural gas for wholesale use are available from the Ministry of Business
Innovation and Employment (MBIE) at webpage [13]. The quarterly average
prices of diesel for commercial use in [13] are used as the costs of diesel. The
quarterly average prices are converted into real dollars in December 2015 and
the costs of CO2 emissions (based on the current CO2 price expressed in 2015
terms’) are added. This gives the fuel and carbon cost of coal, diesel and gas as
shown in Table 2. The weekly costs in the four 13 weeks in each year are the
prices of the four quarters in the year respectively. The short-run marginal cost
for any plant can be obtained by multiplying the heat rate (see Table 1) by the
fuel cost, and adding a variable operations and maintenance cost. These SRMC
values are similar to those assumed by other authors (e.g. [5, page 6, Table 2]).

Power station Heat rate (GJ/MWh) Fuel

Huntly main 1-4 10.3 coal
Huntly e3p 7.2 natural gas
Huntly peaker 9.8 natural gas
Otahuhu B 7.45 natural gas
Stratford peakers 9.5 natural gas
Taranaki Combined Cycle 7.6 natural gas

Whirinaki 11 diesel

Table 1: Thermal power stations and heat rates

"The costs of CO2 permits are automatically adjusted in our model for regulatory relaxations
(e.g. 1 for 2 schemes) that were applied in some months.

17



(5/GJ(2015)) MBIE fuel costs

year qtr coal diesel gas

2012 1 5 435 | 53127 | 5 6.72
2012 2 5 430 | S30.65 | 5 6.85
2012 3 5 422 53133 | 5 6.82
2012 3 S 412 | S30.88 | 5 6.28
2013 1 S 419 | 53073 | 5 6.93
2013 2 S 418 | 52845 | 5 6.53
2013 3 5 428 | 53011 | 5 6.50
2013 q 5 432 52925 | 5 6.57

Table 2: MBIE fuel and CO2 costs for thermal generation in December 2015 NZ
dollars (Source [13]).

To enable a fair comparison with market outcomes, we have de-rated stations
at which plant have been removed for planned maintenance. The weekly de-
rating of a generator is taken by default to be the outage amount given in the
POCP database [24]. If no data are provided for an offering generator in [24], we
de-rate its plant capacity in a given week of the year by the difference between
its nominal capacity and the average total offer quantity made by the plant in
the same week in previous years. The schedule in POCP defines the starting and
end time of scheduled maintenance for generators, which includes the offering
generators and all small and run-of-river generators that we consider as fixed
(e.g. Tokaanu, Rangipo and Waikaremoana). The HVDC line capacity is treated
as fixed in DOASA, but will be assigned its vSPD value during simulation.

As discussed above we also make use of costs for unserved load. These depend
on the type of customer and the amount of load reduction as shown in Table 3.

{S/MWh) Upto5% | Uptol0% VOLL Morth Island|South Island

Industrial | & 1,000 | & 2,000 | 5 10,000 0.36 0.58

Commercial | 5 2,000 | 5 4000|5% 10,000 0.27 0.17

Residential [ 5 2,000 | 5  4000|5 10,000 0.37 0.24
)

Table 3: Load reduction costs ($/MWh) and proportions of each load that is
industrial, commercial, and residential load.

The last two columns of Table 3 show the proportion of load of each type in
each island. This shows that (rounded to the nearest percentage) 58% of South
Island load is industrial, 17% commercial, and 24% is residential. The costs (in
NZ$/MWh) of shedding load are also shown in Table 3. We assume that up to
10% reduction in load can be achieved at a relatively low cost, but the value of un-
planned interruption (or reduction above this level) is very high ($10,000/MWh).
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Therefore if, for example, load in the South Island was 1000 MW, we could shed
up to 5% of 580 MW at $1000/MWh and at $2000/MWh, we could shed 5%
of 410MW (170MW commercial and 240 MW residential) plus a further 5% of
580MW industrial load.

5 Experiments

We now present the results of applying DOASA and HydrovSPD to data from
the calendar years 2012 and 2013.

5.1 Risk neutral agents

The first set of experiments assumes that all agents are risk neutral, i.e. A = 0.
The generation-weighted average prices (GWAPs) in 2012 are shown for the South
Island in Figure 4 and the North Island in Figure 5. The plot in purple shows
historical GWAPs (expressed in 2015 dollars). The blue plot is generated by the
fixed hydro counterfactual: this fixes all hydroelectric generation at its historical
level and then runs vSPD in each trading period of the year, with spinning reserve
constraints turned off, and thermal plant offers set to their historical maximum
offer quantities offered at SRMC. The assumptions of fixed hydro essentially
mirror those of the Wolak report [26]. One can see that the prices follow the
marginal cost of thermal plant (when this is dispatched) and occasionally drop
to very low values if thermal dispatch is off for much of the day. As mentioned
in the introduction, fixing hydro generation at historical levels ignores the high
costs of shortage that produce high prices when shortage is anticipated, even if
it does not eventuate.

As mentioned above, in DOASA we choose to fix some small generation plant
at their historical level. This is true for small hydro plant, geothermal generation,
and wind generators. We also need to use historical Manapouri generation in Hy-
drovSPD. This is because Manapouri has complicated nonconvex environmental
constraints on its operation. Ignoring these leads to infeasible water releases that
might underestimate the true costs imposed by the constraints.

To test the effect of fixing hydro generation at Manapouri to historical lev-
els, we performed two runs. The first run, called fized Manapouri, optimizes in
DOASA the large storage catchments except for Manapouri that has its dispatch
fixed at historical levels in DOASA (as well as in HydrovSPD). This gives the
prices shown in the red curve. This shows some increases in price over fixed
hydro. The green curve (no reserve) relaxes Manapouri generation in DOASA
(using a simple decision rule to determine its release) but imposes its historical
generation level only in HydrovSPD. This gives some further increase in prices.
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Both increases happen in the later part of the winter when reservoir levels are
low. Observe that there is no such increase in the fixed-hydro prices. Henceforth
we assume in all runs that Manapouri generation in DOASA is determined using
the decision rule, and fixed in HydrovSPD.

Generation weighted average price of Slin 2012

Figure 4: Risk neutral results for South Island in 2012.

It is possible that a further price rise might be obtained by including reserve
offers and constraints in HydrovSPD. The difficulty here is that we do not have
access to the approriate reserve parameters (from RMT) for the counterfactual
models. Our assumption for reserve was that the risk was set by a failure of
the HVDC link®, and HVDC rampup was set to its historical level, and that all
historical reserve was offered at zero cost. The results of cost and Ricardian rent
(in 2015 dollars) with this reserve included are shown in Table 4. The rents and
costs here are calculated using generation quantities and nodal prices only for
those stations that are owned by the five largest electricity companies.

Some care is needed in computing prices and rents when spinning reserve
is included. In some trading periods there is insufficient reserve offered in the
counterfactual model to cover the HVDC risk. The amount of offered reserve
required in the historical dispatch can be less because of more net free reserves. To
overcome this we increase the amount of net free reserve available to HydrovSPD.
The value of net free reserve supplied to HydrovSPD is the minimum amount
required to meet an HVDC risk requirement if that is chosen to set the risk
in a corresponding historical vSPD run. A reserve shortfall can give very high

8We assume that both DCCE and DCECE risks apply.
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Figure 5: Risk neutral results for North Island in 2012.

prices ($500,000/MWh) in the counterfactual model to signal the infeasibility. In
practice, such an outcome would be resolved by relaxing the reserve requirement,
until the dispatch was feasible. We model this in the counterfactual as follows.
The nodal prices in each run are capped at $10,000/MWh (our choice of VOLL)
in trading periods with demand violation. If there is no demand violation in a
trading period then the nodal price is capped at $1,000/MWh (99.8% of historical
trading periods without demand violation have prices below $1,000/MWh).

2012 2013
cost rent cost rent
Fixed hydro |No reserve S 5105 L5095 4385 1421
h=0.0 Mo reserve 5 456 |5 L6225 36l |5 1,357
A=0.0 With reserve S 459 |5 L1677 |5 3RE| S 1,641
Historical  |With reserve S 517 |5 2,495 |5 444 |5 1,885

Table 4: Operational costs and Ricardian rents for risk neutral runs. (All figures
in millions of 2015 dollars)

Observe that the rent in 2012 has increased from $1509 for fixed hydro to
$1622 when optimizing hydro in DOASA to $1677 when reserve is included. In
2013 the corresponding figures are $1421 for fixed hydro to $1357 when optimizing
hydro in DOASA to $1641 when reserve is included. It is intriguing that the fixed
hydro model gives higher rents in 2013 than a model with more uncertainty. We
shall discuss this later in the report.
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5.2 Results for risk averse agents

The results above are for risk neutral agents. DOASA also allows us to compute
risk-averse policies with varying levels of risk aversion. Risk is modelled using a
nested dynamic risk measure (see [17]), in which the one-step risk measure is a
convex combination of the expectation and worst case outcome of future fuel and
shortage cost. In other words we use the one-step risk measure

p(Z) = (1 = NE[Z] + \W[Z]
where A € (0,1), Z represents the random future cost, and
WI[Z] = max{Z(w)}.

The dynamic version uses a nested form of p, where the risk averse certainty
equivalent of a random stream of costs, say 21, Zs, Z3, is computed using a nested
formulation, which would be p(Z; + p(Z> + p(Z3))) in this example. A straight-
forward procedure for implementing this within SDDP algorithms is described
in [18]. If there are M scenarios, the measure p(Z) is equivalent to weighting
all scenarios with equal probability % except for the most expensive scenario
which receives weight = (MA — X +1).

The DOASA model also assumes that inflows are stagewise independent, but
modified by an adjustment to account for stagewise correlation. This is called
inflow spreading by some modellers. We call it Dependent Inflow Adjustment
(DIA). DIA may not be sufficient to produce the prices that arise from market
expectations of shortages. We can use risk aversion to give policies that treat
sequences of low inflows as more likely than what one would expect from stagewise
independence.

To test this, we ran DOASA with increasing levels of risk aversion, choosing
A = 05 and A = 0.9. These correspond to mild and extreme risk aversion
respectively. To put this in context, a value of A = 0.9 implies that the decision
maker each week believes with 90% probability that the worst inflow observed in
this week in the last 35 years will occur. This means more than a 50% chance
that the next six weeks will be a sequence of the driest weeks out of the last 35

years. The cost and rent results from HydrovSPD (all including reserve) are in
Table 5.

Risk averse & 2012 2013

reserve cost rent cost rent
A=0.0 S 459 |5 1677 |5 388 |5 1,641
A=0.5 S 4845 1,665 |5 406 | 5 1,645
A=0.9 S 497 |5 L1680 |5 416 |5 1,632
Historical S 517 |5 2,493 |5 444 |5 1,885
Difference S 33(s 8335 38| s 240

Table 5: Operational costs and Ricardian rents for risk averse runs
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Risk aversion increases operating costs (as more fuel is burnt) in 2012 and
2013. Risk aversion increases rent in 2012, but has an ambiguous effect on rent
in 2013. We plot the aggregated reservoir storage in 2012 and 2013 in Figure 6
and Figure 7. In 2012 risk aversion increases storage in both North and South
Islands. The high risk-averse graph (red) tracks historical storage closely in the
South Island, but hits its maximum (spilling) in the North Island for large parts
of the second half of the year. In 2012, the mild risk-averse case uses water more
aggressively in the South Island, but ends up with more water at the end of the
year.

North Island and South Island storage in 2012

Figure 6: Reservoir storage in 2012. Risk neutral corresponds to A = 0, low risk
averse to A = 0.5, and high risk averse to A = 0.9.

We plot the generation-weighted average prices over 2012 in Figure 8 (South
Island) and Figure 9 (North Island) to compare with the risk-neutral simulation.
South Island prices have some increase earlier in the year for the mild risk-averse
case (green) and more deviations in February and March in the extreme risk-
averse case (red). It is difficult to explain these deviations especially in the early
months of the year. The year 2012 was one of the driest on record. The wholesale
market survived this year without requiring a savings campaign, leading to some
commentators concluding that the market reforms of 2010 had been successful. Of
course 2012 also had reduced demand (particularly from Christchurch). Taking
this into account gives the counterfactual price trajectories shown in Figure 8
and Figure 9 which are well below historical prices, and similarly result in no
shortages (as shown by the South Island and North Island storage trajectories
in Figure 6). It is important to note that our results use a system risk measure,
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North Island and South Island storagein 2013

Figure 7: Reservoir storage in 2013. Risk neutral corresponds to A = 0, low risk
averse to A = 0.5, and high risk averse to A = 0.9.

which would be appropriate in a setting where agents can trade risk (see [19]). If
the contracts that make this possible are not available or thinly traded, then one
might expect some deviation from the system optimum, even if the market was
perfectly comeptitive in other respects.

The results for the North Island show a similar pattern to the risk neutral
results. Observe that North Island counterfactual prices are very volatile in the
second half of 2012.

A final set of experiments were carried out with increased fuel costs to enable
a comparison with the benchmarks based on the gas costs reported in [13]. The
use of gas and coal by thermal plants is complicated by take-or-pay contracts.
If a thermal generator holds a gas contract for more than they need then they
might offer below a nomial fuel cost to burn the excess at an apparent loss. On
the other hand a generator who is short of gas might regard the opportunity cost
of gas to be higher than what was paid in a take-or-pay contract. Gas cost is
further complicated by ownership. In 2012 the Genesis group had a 31% stake in
the Kupe field’. This makes reported payments for gas for the group significantly
lower than they would be otherwise, where the cost of gas as an operating expense
for Huntly power station is interpreted as an opportunity cost, i.e. the foregone
value of not selling it elsewhere. To use as a comparison, we were provided costs
by First NZ Capital Securities Ltd'" that result in higher variable costs as shown
in Table 6.

9This increased to 46% in November 2016.
10We are grateful to Nevill Gluyas for providing us with these estimates of fuel prices.
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Generation weighted average price of Slin 2012

Figure 8: South Island generation weighted average prices in 2012

{5/G) (2015)) high fuel costs {generators)

year qtr coal diesel gas
2012 1 S 51353127 |5 894
2012 2 S 508530655 9.13
2012 3 S 501531335 911
2012 4 S 491530835 839
2013 1 S 501 530,735 9.65
2013 2 S 500528455 9.10
2013 3 S 511530115 9.03
2013 3 S 51552928 |5 9.13

Table 6: Fuel plus CO2 costs ($/GJ) as estimated by FNZC.

With the larger fuel costs, HydrovSPD gives the storage trajectories shown in
Figures 10 and 11. There appears to be little difference between these and the
plots for Figure 6 and Figure 7, except that the high-cost counterfactual policies
burn less gas earlier in the year.

Prices that are generated by the counterfactual policies and the rents accruing
are shown below. The generation-weighted average prices are shown in Figure 12
for the South Island and Figure 13 for the North Island. These show generally
higher values in the mild risk-averse and extreme risk-averse cases.

The values of these prices over each of 2012 and 2013 are compared in Table
7. We compute a comparison of time-weighted average prices in Table 8.
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Generation weighted average price of N1in 2012

Figure 9: North Island generation weighted average prices in 2012

GWAP low cost high cost

S/ MW 2012 2013 2012 2013
A=0.0 5 57.77 |5 5557 (% 73.20|5 7L.04
A=05 S 58095 5615 (9% 73.12|5 72.69
Ah=0.9 S 5885 (% 5591 |5 77065 73.97
Historical S BlL38 |5 64015 8lL38|5 6401
Difference S 23295 7.8 | S 826 |5  B.68

Table 7: Differences in generation-weighted average prices for three

counterfactual models compared with the market (Historical). Left-hand tables
use MBIE fuel costs while right hand table uses NZFC estimated fuel costs.
Difference is Historical minus Mild aversion.

2012 2013
Price {5/MWh) OTA HAY BEN OTA HAY BEN
low cost 4 =0.5 | 560.06 | 561.50 | 558.48 | 571.52 | 569.45 | S41.3a
low cost %=0.9 | 561.30 | 562.38 | 559.02 | 580.54 | 577.36 | 542.23
highcost  A=0.5 | 576.99 | 576.86 | 572.47 | 590.09 | 586.96 | 556.69
high cost A =0.9 | 579.10 | 580.38 | 578.61 | 589.41 | 586.54 | 559.90
Histaorical 578.88 | 581.47 | 585.80 | 567.55 | S66.44 | 558.73

Table 8: Time-weighted average prices at Otahuhu (OTA), Haywards (HAY),
and Benmore (BEN) grid exit points. Counterfactual models with varying
assumptions are compared with the market (Historical). Low-cost figures
correspond to MBIE fuel costs while high-cost figures correspond to NZFC

estimated fuel costs.

Finally the costs and rents are compared in Table 9.
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North Island and South Island storage in 2012 (high cost)

1/o/2012  1/02/2012  1/03/2012  1/04/2012  1/05/2012  1/06/2012  1/07/2012  1/08/2012  1/09/2012  1/10/2012  1/11/2012  1/12/2012

Figure 10: Reservoir storage 2012 with high fuel costs.

Risk averse & | 2012 low cost 2013 low cost 2012 high cost 2013 high cost

reserve cost rent cost rent cost rent cost rent
A=0.0 S 459 |5 1,677 |5 3885 16415 557 (5 2,151 |5 478 |5 2,112
A=05 S 484 (5 1,665 |5 406 ([5 1,645 |5 588 (5 2,117 |5 499 | 5 2,153
A=0.19 S 497 (5 1,680 |5 416 |% 1,632 |5 610 (|S% 2,241 |5 520 |5 2,176
Histarical S 517 (%5 2493 |5 444 (% 1,885 |5 651 (% 2,364 |5 583 |5 1,746
Difference 5 335 8335 |5 2405 63 |5 2485 84 |-5 407

Table 9: Operational costs and Ricardian rents for risk averse runs.

The rent differences with high fuel prices are smaller, and negative in 2013.
The counterfactual models make substantially more rent in the high fuel -cost
results compared with MBIE fuel costs, as higher nodal prices yield higher rev-
enues, and the more expensive thermal generation is reduced by a social plan.
This yields cost savings of $63 M and $84 M in 2012 and 2013 respectively. Ob-
serve that the historical time-weighted average Otahuhu and Haywards prices
are lower than the counterfactual prices in 2013. There is evidence in the early
part of this year that thermal generators were offering below marginal cost. This
could be an artifact of being overcontracted in gas supply, or having large con-
tract positions. As discussed in Ruddell et al [2], generators holding contracts
have incentives to offer below marginal cost up to their contract quantities. If
water turns out to be more plentiful than forecast, then thermal plant will often
be dispatched below their contract quantities, thus depressing spot prices.
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North Island and South Island storage in 2013 (high cost)

Figure 11: Reservoir storage 2013 with high fuel costs.

6 Discussion

In this paper we have described some experiments with stochastic optimization
models of the New Zealand wholesale electricity market that provide counterfac-
tual outcomes for competitive markets. The results arising from these models
indicate that wholesale market outcomes have deviated from perfectly competi-
tive benchmarks (at least in 2012 and 2013). When this happens, there is a loss
in efficiency, as can be seen in the differences in cost reported in Table 5. Ob-
serve that these cost differences represent fuel and carbon costs only. As shown in
Figures 10 and 11, the risk-averse counterfactual models leave large reservoirs in
both islands fuller than what they were historically. So the historical market dis-
patch uses more water and more expensive thermal plant is run more often, and
satisfies exactly the same demand every half hour as the counterfactual models.

It is important to recognize that our simulations are carried out (in Hy-
drovSPD) using the full representation of the New Zealand wholesale electricity
market. The policies that we simulate (apart from fixed hydro) do not antic-
ipate future inflows, and so the outcomes represent an implementable counter-
factual. Furthermore, in 2012 the counterfactual simulations require no savings
campaigns. Commentators (see e.g [9]) have asserted that the lack of savings
campaign in 2012 indicates that the wholesale market was working well by sig-
nalling potential shortages with high prices early in the year. Our models show
that demand in 2012 can be met using much more modest price signals.

It is interesting to speculate on the causes of the differences in prices and rents
observed in the market and the counterfactuals above. The Wolak report [26]
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Generation weighted average price of Slin 2012 (high costs)

Figure 12: South Island generation weighted average prices in 2012 with high fuel
costs

makes a case for strategic exercise of market power as being the primary cause,
but uncertainty and risk also play a role that must not be discounted. Electricity
spot markets around the world are set up as one shot games, and work well when
the time horizon is short enough so that all necessary information is known at the
time of dispatch. Uncertainty (such as wind intermittency) causes problems for
this model. Valuing the opportunity cost of water is also difficult in this setting.
Our counterfactual model is an attempt to remove some of the bias associated
with hindsight benchmarks. We have not eliminated this entirely as HydrovSPD
admits full clairvoyance of intra-day inflows. In addition, the benchmark model
will still have some residual bias from relaxing other information constraints that
will be present in a real setting.

As observed above, it is possible (at least in theory) for a Walrasian equi-
librium to give a stochastic process of prices with respect to which every agent
optimizes its own expected benefit with the outcome of maximizing total expected
welfare. Such an equilibrium might give a sample path of prices as observed in Fig-
ure 8. As shown by [3], the stochastic process of prices that yields an equilibrium
might be very complicated with none of the stagewise independence properties
that make computing optimal policies easy for generators. We would contend
that optimal electricity market design for systems with large amounts of hydro
generation is not as well understood as the theory for purely thermal markets,
and more remains to be done to improve the operation of these markets to get
closer to welfare-optimizing outcomes. The different solutions adopted in various
jurisdictions (e.g. New Zealand, Brazil, Colombia, France) are evidence of the
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Generation weighted average price of Nl in 2012 (high costs)

Figure 13: North Island generation weighted average prices in 2012 with high fuel
costs

different approaches to tackling this issue.

Our models do not encompass forward contracts for electricity. It can be
argued that most electricity produced is sold under such a contract and so it is
contract prices that should be used in counterfactual comparisons. Unfortunately
it is difficult to do this directly as contract quantities and prices are not in the
public domain. There are two important questions to be addressed here. The
first of these arises from the fact that our counterfactual models give results that
are independent of any contract positions. A contract quantity of () at contract
price f produces a payoff to the seller of Q(f — p) where p is the spot price. A
generator who has sold such a contract, and acts as a price-taker would treat
the contract payoff as a fixed constant. Even if they were risk averse with a
coherent risk measure, the translation invariance of the risk measure means that
the generator should act independently of this contract position to maximize
(possibly risk-adjusted) profit in the spot market. It is possible therefore to test
a hypothesis that agents are behaving as price takers in the wholesale market by
focusing only on this market and ignoring contract positions. We have already
seen that historical market prices in some periods of the first half of 2013 are lower
than marginal costs of dispatched generation, which we explained as a response to
overcontracting in gas. Another possible explanation is that offering generators
are behaving strategically to keep prices low in case they are dispatched below
their electricity contract positions.

The second question relates to generator rents in the spot market. In 2013 we
saw that the counterfactual model earned more rent than the historical market.
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It would be wrong to deduce that generators made less profit in 2013, since their
contract prices fwould be likely to be above the average value of p in 2013.
In most electricity markets (including New Zealand) contracts are traded at a
premium to expected spot prices (see [4]). Thus rents estimated from spot prices
would be expected to be underestimates of the contract and spot revenue minus
short-run costs of electricity generation.

The inflow processes used in DOASA are assumed to be stagewise indepen-
dent. This means that a sequence of dry weeks will occur in the model with lower
probability than it would in reality. When reservoir levels are low, and low in-
flows persist, this assumption will tend to produce optimistic estimates of future
costs. The marginal water values at low reservoir levels are therefore likely to be
lower in our model than in a model with serial dependence. We have attempted
to account for this dependence using an inflow adjustment (DIA) and varying
levels of risk aversion using a dynamic coherent risk measure. Even with these
adjustments, the results of our experiments seem to indicate that risk-aversion to
low inflows is insufficient to explain deviations of wholesale market prices from
perfectly competitive estimates.

So how might one explain the differences? From the storage trajectories shown
in Figures 6 and Figure 10, and matching price trajectories shown in Figures 8
and Figure 12 one can see that there are many different price sequences that
will support prudent hydro reservoir releases. Consumers of electricity value it
highly, and price has traditionally been a poor instrument to control short-term
demand (although more price-responsive demand is emerging through retailers
like Flick). Inelastic demand means offer prices early in the year in response to
a dry-winter forecast may not lead to much change in consumption or even any
change in dispatch. Observed price increases in these circumstances align with
broad economic incentives, but this would be true for any price increase. We
hope that our models are a first step towards understanding and moderating the
forces that lead to prices that might be higher than they need to be to ensure
efficient market outcomes.
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