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Abstract–We present a model of a purchaser of electricity
in Norway, bidding into a wholesale electricity pool market

that operates a day ahead of dispatch. The purchaser must

arrange purchase for an uncertain demand that occurs the

following day. Deviations from the day-ahead purchase are

bought in a secondary market at a price that differs from the

day-ahead price by virtue of regulating offers submitted by

generators. Under an assumption that arbitrageurs are ab-

sent in these markets, we study conditions under which the

purchaser should bid their expected demand, and examine

the two-period game played between a single generator and

purchaser in the presence of a competitive fringe. In all our

models it is found that purchasers have an incentive to un-

derbid their expected demand, and so the day-ahead prices

will be below expected real-time prices. We also derive con-

ditions on the optimal demand curve that purchasers should

bid if the behavior of the other participants is unknown, but

can be modeled by a market distribution function.

Keywords–Games, optimization methods, power system

economics.

I. Introduction

THERE has been much attention paid in recent years
to optimizing the policies of generators who sell elec-

tricity in wholesale electricity pool markets. Much of this
attention has focussed on equilibrium analyses that endeav-
our to quantify the extent of the market power generators
might have (see e.g. [7], [11]). Although the effects of
demand elasticity on the exercise of market power is well
documented in Cournot models of electricity markets (see
e.g. [7]), comparatively little attention has been paid to
the effect of strategic demand bidding on market outcomes.
Exceptions are the recent paper by Rassenti et al [18] who
report on the results of demand behavior in a set of mar-
ket simulation experiments, and Anderson and Hu [5], who
carry out a Nash-equilibrium analysis of electricity pool
markets in which generators and retailers hold contracts
for differences.
In this paper we use some simple optimization models

to study the optimizing behaviour of a large purchaser of
electricity in a particular form of wholesale market, namely
one in which the purchaser makes a day-ahead purchase
bid, which is cleared against supply offers. The dispatch of
power is then balanced in real time in an auxiliary market
on the day of dispatch. The supply offers in the auxiliary
market we study are constrained by the dispatch and price
occurring in the day-ahead market.
An example of such a market structure is found in the

Nordic market encompassing Norway, Denmark, Sweden
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and Finland. By noon each day, all generators and pur-
chasers in this market submit respective supply and de-
mand curves to the common electricity exchange, Nord
Pool, giving production and purchase of electricity for the
next day. Supply curves are required to be nondecreas-
ing and demand curves must be nonincreasing. Based on
these bids, the spot prices for each hour of the next day
are derived. The real-time auxiliary market is somewhat
different for each of the countries in the region.
In this paper we focus on the particular form of the Nor-

wegian real-time market, called the regulating market, in
which generators submit offers to increase or decrease the
production level compared with their day-ahead market
dispatch. If the market demand at the time of physical dis-
patch turns out to be higher than the quantity purchased
in the day-ahead market, then the market is said to be
up-regulated. In this circumstance each purchaser who is
short of power must buy their shortfall at the regulating
price. This single price is determined from where the to-
tal market demand meets the aggregate regulating-market
offer curve. In the event of up-regulation, the regulating
price is, by market design, always no less than the price in
the day-ahead market.
On the other hand, if the market demand at the time

of physical dispatch turns out to be lower than the quan-
tity purchased in the day-ahead market, then the market is
said to be down-regulated. In this case, each purchaser who
has bought too much power must sell their excess at the
regulating price. Equivalently generators who are called
on in the regulating market must buy back electricity to
maintain the physical balance. When the market is down-
regulated, the regulating price is always no greater than
the day-ahead price. Further details of the Norwegian reg-
ulating market can be found in Skytte [19].
In this paper we investigate the opportunities for spec-

ulation in these two markets, in the sense that purchasers
might place a bid that differs from their expected demand
in the day-ahead market in order to manipulate the regulat-
ing price. In all our models we do not explicitly include the
possibility of arbitrage between the markets (by agents who
buy in one market and sell in another), and the only play-
ers are generators and purchasers. In practice Statnett, the
Norwegian system operator, prohibits demand-side specu-
lation in the regulating market even by these players, and
requires that the purchasers bid for their expected demand
in the day-ahead market, and only generators are permit-
ted to bid in the regulating market.
One circumstance in which a purchaser might deviate

from bidding its expected demand occurs when the mar-
ket as a whole is down-regulated, and the purchaser is up-
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regulated. This situation would occur if a purchaser bid for
less power than it actually needed in the day-ahead market,
while the market as a whole bid for too much. Then, since
the regulating price is lower than the day-ahead price, this
purchaser would get to buy its excess demand at a lower
price than if it had ordered the correct amount in the day-
ahead market. It is tempting to conclude that a rational
purchaser should systematically bid low in the day-ahead
market, but it is not clear that this gives an equilibrium
strategy. In other words, if all purchasers bid low then the
market will be up-regulated, and the advantages of buying
excess power at a lower price might not be realized.

An interesting feature of the Norwegian market from the
perspective of market participants is the requirement that
the regulating price is determined with respect to the day-
ahead price and quantity. At first sight this might appear
to be the same as regulating pool markets in most other
countries, in which generators bid in a real-time market
after being dispatched a quantity and price in a day-ahead
market, or bid into a real-time pool market while holding
contracts for differences. However in most market designs
the real-time offers of generators are not constrained to
pass through their day-ahead dispatch point, and are free
to be chosen to be any non-decreasing function consistent
with the market design rules (e.g. in New Zealand being
piecewise constant with at most five steps). In contrast,
the requirement that the generators in Norway bid regulat-
ing offer curves that pass through their day-ahead dispatch
point gives rise to different behaviour of both generators
and purchasers than is seen in other models.

When both generators and purchasers are acting strate-
gically, the market can be modeled as game played in two
stages by these agents. One way of simplifying this game is
to assume that the day-ahead price will equal the expected
regulating price (as done in the seminal work of Allaz and
Vila [1] under a perfect foresight assumption, and in the
electricity context by [10], [13], and [9]). This is a form
of “no-arbitrage” assumption, which appears to be reason-
able if trading is allowed between the two markets. If a
price difference is observed then speculators will buy elec-
tricity in one market and sell it in the other, which will
tend to reduce the difference. In situations in where there
is asymmetric uncertainty, risk-averse participants, or gen-
erators with the opportunity to exercise market power it
is not clear that day-ahead prices should match expected
regulating prices. In [8] an argument is advanced under an
assumption of risk neutrality that the day-ahead price will
equal the expected real-time price even in the presence of
market power. On the other hand, Anderson and Hu [5]
present an argument based on a supply-function duopoly
that contract prices will trade at a premium, because gen-
erators who are not contracted have incentives to exercise
their market power. In such an environment an arbitrageur
who seeks to offer a lower-priced contract to a purchaser
will be exposed to the risk that a generator who loses the
contract to the arbitrageur will offer so as to raise the spot
price in the real-time market above what would be expected
if he was contracted.

The empirical evidence on differences between day-ahead
prices and observed real-time prices seems to support the
view that these are reducing as markets mature, and trad-
ing becomes more common. Price differences between for-
ward and real-time electricity markets have been observed
in a number of real electricity markets (see e.g. [6] for
data comparing PJM prices from April 1997 to July 2000),
but there is recent evidence (see [12], [15]) from electricity
markets in New York and New England that day-ahead and
real-time prices are converging over time. This is attributed
to the introduction of virtual bidding that allows specula-
tors to exploit any price deviations between the day-ahead
and real-time markets.

In this paper we investigate the relationship between the
day-ahead and regulating markets in Norway using a collec-
tion of simple models of increasing complexity. Speculat-
ing in these markets is not permitted under the Norwegian
market rules, so market outcomes in which day-ahead and
regulating prices deviate in expectation are not susceptible
to the argument that speculating traders will drive these
together. Nevertheless, even in the absence of speculators,
one might expect a discrepancy in prices to be absent in
equilibrium, since any difference would result in a change
in behaviour of generators and purchasers over time that
would tend to decrease this difference.

The equilibrium models that we describe do not support
this conclusion. We find in nearly all our models that pur-
chasers should bid for less than their expected demand.
This is because the regulating price is centered around the
clearing price of the day-ahead market, and by making this
value small (by underbidding) the purchasers can effec-
tively pay a smaller marginal price on each of two segments
of their load. The result of this underbidding is to decrease
the clearing price in the day-ahead market relative to the
real-time market. It is tempting to suppose that this sit-
uation is not sustainable as the generators are encouraged
to increase the prices of their day-ahead offers. We inves-
tigate this with a simple model of a single generator and
a single purchaser both bidding strategically. The result
of the model indicates that in equilibrium the efforts of
a generator to increase price in the day-ahead market are
countered by the purchaser bidding for very little demand
in this market.

The paper is laid out as follows. In the next section
we look at a model for a single purchaser. We first prove
a result that gives conditions under which the purchaser
should bid their expected load when there is a fixed price
in the day-ahead market We then consider the case where
the purchaser can influence the day-ahead price by bidding
for supply from a known industry supply function. In this
case it is optimal to buy less than the expected demand in
the day-ahead market. In section 3 we extend the model of
section 2 to n purchasers and construct a Nash equilibrium
a la Cournot. In section 4, we study a single generator
and a single purchaser both bidding strategically in a two-
stage model, and show that bidding low in the day-ahead
market remains an optimal strategy for the purchaser. In
section 5 we move from equilibrium to an arguably more
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realistic probabilistic model. Here the offers and bids of
the other agents are assumed to be unknown, but can be
represented by a market distribution function of a similar
form to that introduced in [2]. This allows the optimality
conditions for generators to be applied to a purchaser, to
yield an optimal bid curve for the day-ahead market. We
illustrate the procedure with a simple example.

II. A single purchaser model

We first consider the case where all generators offer at the
same price p in the day-ahead market, and the market has
a single purchaser who is to choose an amount x to order
in the day-ahead market at this price. Following this, a
random demand H is observed, and the purchaser must
purchase the extra energy (or sell it back to the market) at
the regulating price.
The regulating market price is determined by offers of

generators into the regulating market. These take the
form of non-decreasing supply functions passing through
the point (p, x). The clearing price is determined by the in-
verse τ(·) of the aggregate regulating supply function. Note
that τ depends on x and p but for simplicity we choose to
suppress this in the notation. To make the dependence
explicit, observe that τ(x) = p, so we may represent τ by

τ(H) = p+ δ (H − x) (1)

where δ (·) denotes the difference between the regulating
price and the day-ahead price (see Figure 1). Since H is a
random variable, the regulating price will also be a random
variable.

x

p

τ

Fig. 1. Plot of τ(·)

The purchaser now faces the problem of minimizing the
cost of meeting this random demand. His optimization
problem is then

P: min
x
{px+E [(p+ δ (H − x)) (H − x)]} .

Observe that this is equivalent to

P: min
x
{pE[H] +E [δ (H − x) (H − x)]} ,

so the purchaser should seek x∗ to solve

P̄: min
x
{E [(H − x) δ (H − x)]} .

It is easy to see that when δ (y) = ay for some a ≥ 0 we
have

E [(H − x) δ (H − x)] = aE
[
(H − x)2

]
(2)

and so the optimal choice of x is E[H]. To obtain this opti-
mal policy for more general forms of the regulating market,
we must place some conditions on this as well as the prob-
ability distribution of demand. Recall that function f on
the real line is called even if for every x, f(−x) = f(x),
and odd if for every x, f(−x) = −f(x). Then we have the
following proposition.
Proposition 1: Suppose δ(y) is an odd nondecreasing

function with yδ (y) convex, and H has a symmetric proba-
bility distribution around E[H]. Then the optimal solution
to P is x∗ = E[H].

Proof: See Appendix 1.
It is easy to construct examples in which yδ (y) is convex

but δ (y) is not an odd function (e.g. δ (y) = max{0, y})
and for which a bid of E[H] is not optimal. Moreover the
convexity of yδ (y) is needed in Proposition 1 as shown by
the following example.

Example 1
Suppose the price in the regulating market is determined

by

δ (y) =

{
−1 + e3y y ≤ 0
1− e−3y y > 0

(3)

so

yδ (y) =

{
−y + ye3y y ≤ 0
y − ye−3y y > 0

. (4)

It is easy to verify that yδ (y) is not convex. Suppose H

has a discrete probability distribution with Pr( 12) =
1
2 and

Pr(72) =
1
2 . Then

E [(H − x) δ (H − x)] =
1

2
g(
1

2
− x) +

1

2
g(
7

2
− x) (5)

for which x = E[H] = 2 is a local maximum (not a mini-
mum) as shown in Figure 2.

The symmetry of the probability distribution ofH is also
needed as shown by the following example.

Example 2
Suppose H has a discrete probability distribution with

Pr(0) = 0.1 and Pr(1) = 0.9. Now let the price in the
regulating market be determined by

δ (y) = y3. (6)

We thus seek to minimize

E[(H − x)4] = 0.1x4 + 0.9(1− x)4 (7)
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Fig. 2. Plot of E[(H − x)δ(H − x)] for different bids x.

which has a minimum at x = 0.67533 rather than x =
E[H] = 0.9.
We conclude this section by considering the case where,

instead of all generators offering at p̄, the market is sup-
plied by n generators who offer supply functions, where
we denote by Si (p) the quantity offered at price p in the
day-ahead market by generator i. The purchaser will face a
random market demandH the following day. If the amount
bought on the day-ahead market is different from H, the
difference must be offset on the regulating market. We
assume in this section that the aggregate supply function
(although perhaps not each Si) is known to the purchaser,
and is strictly increasing.
We observe that there is no advantage in the purchaser

offering a demand curve. With perfect knowledge of S (·) =∑
i Si (·) he can decide on a price p and choose any decreas-

ing curve that passes through (p, S(p)). Equivalently, he
can determine an optimum quantity x to buy, for which he
will pay p = S−1(x) per unit. (In this model we assume
that the generators do not game their offers in response to
the purchaser’s bids.)
For convenience let T (·) = S−1 (·). If the purchaser se-

lects x to buy in the day-ahead market then he will pay
xT (x). In addition he will face a cost in the regulating
market of (H − x) τ (H), where τ (·) is the regulating mar-
ket price at demand H and day-ahead dispatch volume x.
The purchaser should choose x to solve

P: min
x
{xT (x) +E [(H − x) τ (H)]} ,

so setting

τ (H) = T (x) + δ (H − x) (8)

gives

P: min
x

{
h̄T (x) +E [(H − x) δ (H − x)]

}

where h̄ = E [H].
It is interesting to observe that in contrast to the situa-

tion in which the day-ahead price is a known constant, the
optimal offer is not necessarily h̄ even if τ (·) is linear. To

see this suppose δ (y) = ay, for a > 0. Then

E [(H − x) δ (H − x)] = aE
[
(H − x)2

]
(9)

= aE
[
H2
]
− 2ah̄x+ ax2 (10)

Now, the purchaser solves

min
x

{
h̄T (x)− 2ah̄x+ ax2

}

Differentiating gives h̄T ′ (x)− 2ah̄+ 2ax = 0, whereby

x∗ +
h̄

2a
T ′ (x∗) = h̄ (11)

The purchaser therefore should purchase less than h̄ in the
day-ahead market. (The solution h̄ for a constant price is
recovered by setting T ′ (x∗) = 0.)

III. Many purchasers

In the previous section we looked at the behaviour of a
single purchaser. In this section we use a similar frame-
work to calculate the market outcomes in a market with n

purchasers having random demands Hi, i = 1, . . . , n. We
assume Cournot conjectural variations, namely that each
purchaser i bids xi in the day-ahead market assuming that
xj , j �= i is fixed. We will assume that T (x) = bx and the
price in the regulating market to be

bx+ a (H − x) , (12)

where x =
∑n
i=1 xi and H =

∑n
i=1Hi.

In a Nash equilibrium each purchaser i chooses a quan-
tity xi to solve

P(n) : min
xi≥0

xibx+E[(Hi − xi) (bx+ a (H − x))]. (13)

The objective function of P(n) can be written

fi(x) = xibx+E[Hibx+HiaH

−Hiax− xibx− xiaH + xiax] (14)

= hibx+ aE[HiH]− hiax− xiah̄+ xiax, (15)

where we let E [Hi] = hi, E [H] = h̄. The optimal bid xi
for each purchaser will satisfy

∂fi

∂xi
= hib− ahi − ah̄+ axi + ax =

{
= 0, xi > 0,
≥ 0, xi = 0.

(16)

We first study the case where each xi > 0. This is guaran-
teed to be a minimum because

∂2fi

∂x2i
= 2a > 0. (17)

Now
∑n
i=1 hi = h̄, so summing over i gives

h̄b− ah̄− anh̄+ ax+ nax = 0. (18)
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Thus

x = h̄(1− b

a (1 + n)
) (19)

and so the optimal bid for purchaser i is

xi = hi +
b

(n+ 1)a

(
h̄− (n+ 1)hi

)
(20)

= (1− b

a
)hi +

b

a

h̄

(n+ 1)
. (21)

Observe that we require (1− b
a
)hi+

b
a

h̄
(n+1) ≥ 0 for this set

of bids to be optimal.
Recall that for a single purchaser the optimal bid x∗ in

the day-ahead market satisfies

x∗ = h− h

2a
T ′ (x∗) = h̄

(
1− b

2a

)
. (22)

For n purchasers, the total amount bid in equilibrium is

n∑

i=1

xi = h̄+
b

(n+ 1)a

(
nh̄− (n+ 1)h̄

)
(23)

= h̄(1− b

(n+ 1)a
). (24)

So in aggregate, more demand will be bid for in the day-
ahead market as the number of purchasers increases, and
as n → ∞, the limiting optimal bid for each purchaser is
to bid their expected demand.
Observe that in this model the amount bid into the day-

ahead market by each player depends only on the expected
demand of each player. There is no dependence on the
correlation between Hi and H. As a consequence of the
linearity of the regulating market, this correlation appears
only in the constant term aE[HiH] in the objective func-
tion. A negative correlation means that purchaser i is
likely to be down-regulated when the market as a whole is
up-regulated, and up-regulated when the market is down-
regulated. However, although he makes a windfall profit
from such a market, his equilibrium bidding strategy in
the day-ahead market is independent of this correlation.
The degree to which purchasers reduce their bids de-

pends upon the relative magnitudes of a and b. In practice
we would expect a ≥ b, since generating plant in the regu-
lating market will be less flexible with a shorter time hori-
zon, but since these numbers are determined by generators
it might be possible for b to be larger than a.
First observe that a ≥ b guarantees that the smooth op-

timality conditions apply (i.e. the optimal xi > 0.) When
a = b, all purchasers bid for the same amount in equi-
librium even if their expected demands are very different.
When a > b, then the purchasers increase their bids in the
day ahead market, and these bids may differ amongst play-
ers in equilibrium. For example with two purchasers with
expected demands of h1 << h2, it is not hard to see that
purchaser 1 bids for more than h1, and purchaser 2 bids
for less than h2.

We now look at the case where b > a. For simplicity we
will restrict attention to the case where purchasers have
identical expected demand so

xi =
h̄

n
(1− b

(n+ 1)a
). (25)

Now xi > 0, as long as b < (n+ 1)a. Recall

∂fi

∂xi
= hib− ahi − ah̄+ axi + ax (26)

= hib− ahi − anhi + axi + anxi (27)

= hi(b− (n+ 1)a) (28)

when xi = 0. So if b ≥ (n+ 1)a, then ∂fi
∂xi

≥ 0, and xi = 0
is optimal for each purchaser.

IV. Strategic purchasers and generators

In the model of the previous section, we assumed that the
purchasers have perfect knowledge of the aggregate gener-
ator supply function in the day-ahead market, and con-
structed a Nash equilibrium in the single-shot game played
against other purchasers. In practice the supply function
offers of the generators will be chosen at the same time as
each purchaser’s demand-function bids, and so one might
expect over time for suppliers to increase the price of their
offers in the day-ahead market until some equilibrium is
reached.
In this section we consider a simple model in which gener-

ators bid strategically in the day-ahead market. The struc-
ture of our model is similar in style to that of Anderson and
Hu [5]. They seek a sub-game perfect Nash equilibrium in
a game in which the first stage is played by a retailer offer-
ing contracts to two generators with quadratic generation
costs Ci(q). The generators then decide whether to accept
the contract on offer. In the final stage, given their respec-
tive contracts, the generators offer linear supply functions
to a real-time market with a linear demand function with
a random demand shock. Anderson and Hu give a for-
mula for the supply function equilibrium in the last stage
of this game in which generator i has contract quantity xi.
The linear supply function equilibrium is unique, and each
supply curve passes through the point (xi, C′(xi)).
Unfortunately this result does not apply to the Norwe-

gian regulating market,for which each supply curve must
pass through (xi, p̄) where p̄ will be determined by the out-
come in the day-ahead market, and in general will be dif-
ferent from C ′(xi). Indeed, when p̄ �= C′(xi) it is possible
to show that an optimal offer in the regulating market will
have a horizontal and vertical section meeting at (xi, p̄),
and it is difficult to see under this condition how an equi-
librium might be constructed in the absence of a “sharing
rule” that determines how ties are broken in the real-time
dispatch to offers at p̄.
To overcome this problem we consider a simpler model

with a single generator A offering with costs

C(q) = 0.5q2 (29)
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and a single purchaser and a competitive fringe represented
by a generator B who offers at marginal cost q in both the
regulating market and the day-ahead market. Suppose in
the day-ahead market that generator A is dispatched x, at
day-ahead price p̄ > x, so the competitive fringe generator
is dispatched p̄. This means that the consumer buys (x+
p̄) at price p̄ in the day-ahead market. We suppose that
generator A chooses k, defining a linear supply function
x = p̄

k
, at the same time as the purchaser chooses a quantity

x to buy in the day-ahead market. Then given x and p̄,
generator A chooses an optimal supply function to offer
through (p̄, x) in the regulating market. (Note that B’s
offer in the regulating market will pass through (p̄, p̄) by
construction.) We seek a Nash equilibrium in k and x.

Suppose demand H is uniformly distributed on [0, 1].
Given that B offers TB(q) = q, the optimal offer for gener-
ator A in the regulating market is

TA(q) =






2q − x, 0 < q < x

p̄, x < q < x+p̄
2

2q − x, x+p̄
2 < q

. (30)

Including generator B, the total regulating market offer is
then

T (q) =






−x+2q
3 , 0 < q < 2x

−x+ q, 2x < q < x+ p̄

p̄ x+ p̄ < q < x+3p̄
2

−x+2q
3 , x+3p̄

2 < q

(31)

The consumer buys H in the regulating market. Her total
expected payment in the regulating market is then

E[(H − (x+ p̄))T (H)]. (32)

So her total payoff (i.e. minus her payment) is

F (x, p̄) = −(x+ p̄)p̄−E[(H − (x+ p̄))T (H)] (33)

= −4

3
xp̄− p̄2 − 1

24
x3 +

1

8
x2p̄+

1

24
p̄3

− 1

8
xp̄2 − 2

9
+

1

2
x+

1

3
p̄− 1

3
x2 (34)

Suppose that generator A offers curve p̄ = kx in the day-
ahead market. Then F (x, kx) is a cubic in x that has a
maximum (for x > 0) where

x =
1

2 (−9k2 − 3 + 9k + 3k3)
( (35)

64k + 48k2 + 16

− 4
√
(361k2 + 393k3 + 107k + 138k4 + 25)).

Now consider generator A. In the regulating market, gen-
erator B is dispatched T (H), so generator A is dispatched

to deliver H − T (H), at a cost of 1
2 (H − T (H))2. The

expected profit of A is then

R(x, p̄) = xp̄+E[(H − T (H)− x)T (H)

− 1

2
(H − T (H))2] (36)

= xp̄+
1

12
x3 − 1

4
x2p̄+

1

4
xp̄2

− 1

12
p̄3 +

1

18
− 1

3
x+

1

6
x2. (37)

If the purchaser bids x in the day-ahead market then the
expected profit of A is

R(x, kx) = x2k +
1

12
x3 − 1

4
x3k +

1

4
x3k2

− 1

12
k3x3 +

1

18
− 1

3
x+

1

6
x2 (38)

which has a unique maximum (where k > 0) at

k =
1

2x

(
2x+ 4

√
x
)
. (39)

Now a Nash equilibrium (assuming Cournot conjectural
variations) is obtained by solving (35) and (39) simultane-
ously. This gives

k = 25.612
x = 6.6032× 10−3

p̄ = 0.16912

It is easy to compute the expected regulating price which
has a value of 0.33751, which is larger than p̄.
In this framework, generator A increases the price of his

offer in the day-ahead market, and at the same time the
purchaser decreases her bid x. In equilibrium, the pur-
chaser buys very little in the day-ahead market.

V. Optimal bidding with a market distribution

In this paper we have restricted attention to models that
represent strategic behaviour in the one-shot game played
between generators and purchasers. Electricity markets
of the type we have been discussing are repeated games,
and so a one-shot analysis might not give strategies that
would be useful in practice. In any given trading period a
participant in this market might elect not to play a one-
shot equilibrium strategy because of possible punishment
by competitors in later rounds.
Because of this feature participants might not look for

equilibria at all, but seek optimal strategies to pursue as
opportunities to exploit market power arise. For example a
purchaser might seek a (nondecreasing) demand curve un-
der the assumption that the generators’ supply curves and
the other purchasers’ bid curves are not fixed at their one-
shot optimal values but are drawn from some probability
distribution. The purchaser (say purchaser 1) then might
seek a bid curve to offer that will yield a (random) day-
ahead purchase outcome that in expectation minimizes his
costs of purchasing to meet his next day’s demand.
To model this formally we follow the approach of [2] and

define a market distribution function φ, where φ (r, p) de-
notes the probability of the demand of purchaser 1 being
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fully met if he requests a quantity r at price p from the
day-ahead pool. The probability φ (·) is decreasing in r

and increasing in p. The market distribution function is a
powerful construction to help estimate optimal bids in elec-
tricity markets. We shall assume that φ is known or may be
estimated by a purchaser (possibly by experimenting with
different bids, see [4] and [16]).
Suppose now that the purchaser is to submit a param-

eterised demand curve s = {(r(t), p(t), 0 ≤ t ≤ T} to the
day-ahead market. We choose the parameter t so the curve
is traversed from right to left, implying that r (t), which
traces the quantity component of the demand curve, is
monotonic decreasing in t, and the component p (t), which
traces the quantity component of the demand curve, is
monotonic increasing in t. This is illustrated by the solid
curve in Figure 3. The dashed line to the right shows all
points for which φ (r, p) = φ0 = 0. The dashed line to the
left shows all points for which φ (r, p) = φ1 = 1. From this,
we observe that between φ1 and φ0 there is a probability
measure that lies on s that defines the probability of the
purchaser being sold quantity r at price p.

p

r

φ =1

φ =0

t=T

t=0

p

r

φ =1

φ =0

t=T

t=0

Fig. 3. The solid line is the demand curve. The dotted line to the
right corresponds to φ (·) = 0, while the dotted line to the left
corresponds to φ (·) = 1.

Now, purchaser 1 seeks to minimize his total cost of pur-
chasing electricity. The total cost is the sum of the cost in
the day-ahead market and the cost in the regulating mar-
ket. The optimal bidding curve will be the solution to

min
s

∫

s

[rp+C (r, p)] dφ (r, p) (40)

subject to

s = {(r (t) , p (t)) , 0 ≤ t ≤ T} (41)

dr

dt
≤ 0 (r (·) non-increasing) (42)

dp

dt
≥ 0 (p (·) non-decreasing) (43)

0 ≤ r (t) ≤ qM (44)

where C (r, p) is the regulating cost and qM is an upper
bound on r.
The market distribution function φ is different from the

standard market distribution function introduced in An-

derson and Philpott [2], but we can make use of their frame-
work. To do so, we may relate φ to a standard market dis-
tribution function by a simple transformation. To do this
we let q = qM − r. The parameter qM is an upper bound
on both r and q. Also, we define ψ (q, p) = φ (qM − q, p).
This corresponds to reversing the graphs in Figure 3 giving
the graph in Figure 4.

p

q

ψ =1

ψ =0

t=T

t=0

p

q

ψ =1

ψ =0

t=T

t=0

Fig. 4. The plots in Figure 3 reversed. The dashed line to the right
corresponds to ψ = 1, and the dashed line to the left corresponds
to ψ = 0.

Observe that on the curve s in Figure 3 the measure
dφ (r, p) is the same as dψ (qM − r, p) on the curve s′ de-
picted by the solid line in Figure 4. The objective function
(40) is then equivalent to

min
s′

∫

s′
[(qM − q) p+C (qM − q, p)] dψ (q, p) . (45)

Now we rewrite the expression (45) and get the following
problem

max
s′

∫

s′
{− (qM − q) p−C (qM − q, p)}dψ (q, p) (46)

subject to

s′ = {q (t) , p (t) , 0 ≤ t ≤ T} (47)

dq

dt
,
dp

dt
> 0 (q and p non-decreasing) (48)

0 ≤ q (t) ≤ qM . (49)

We observe that this is equivalent to the problem of a
generator maximizing the profit from an offer stack, where
q is the quantity offered into the pool by the generator
at price p as described in [2]. The market distribution
function ψ (q, p) denotes the probability of a generator not
being fully dispatched at the price-quantity pair (p, q). We
denote by B (q, p) the integrand in the objective function
(46). It is shown in [2] that the optimal solution to this
problem must satisfy the first order condition

Z(q, p) =
∂B

∂q

∂ψ

∂p
− ∂B

∂p

∂ψ

∂q
= 0. (50)

Computing the regulating cost in (40) is not entirely
straightforward as the regulating price depends on the
clearing price p in the day-ahead market and the amount
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of demand cleared in the day-ahead market. We shall de-
note by C (r, p) the expected regulating cost for purchaser
1 conditional on its being dispatched r at clearing price p

in the day-ahead market. To evaluate C (r, p) we take ex-
pectations with respect to the conditional probability dis-
tribution of dispatch of the other purchasers.
To do this let δ (·) be the difference between the reg-

ulating market price and the day-ahead price as a func-
tion of regulating market dispatch. Then the regulating
price is p + δ (H − U(p)− r), where H is the total (ran-
dom) demand of all purchasers, U(p) is the total (random)
day-ahead demand dispatched at price p to the other pur-
chasers, and r is the amount of day-ahead demand that
purchaser 1 is cleared at price p. The amount that pur-
chaser 1 buys in the regulating market is H1−r, where H1

is the (random) demand of purchaser 1.
Using this notation we obtain

C (r, p) = EH,H1,U [(p+ δ (H − U(p)− r)) (H1 − r) | (r, p)]
(51)

We then compute an offer curve s′ that solves

max
s′

∫

s′
{− (qM − q) p−C (qM − q, p)}dψ (q, p) .

The optimal bid curve will then be defined by (r, p) =
(qM − q, p).
As an illustration of how one might compute an optimal

demand curve to offer in the day-ahead market, suppose
δ (y) = y. Then

C (r, p) = EH,H1,U [(p+(H − U(p)− r)) (H1 − r) | (r, p)]
= pE[H1]− pr +E[HH1|(r, p)]−E [H] r

−E[U (p)H1|(r, p)] +E[U (p) |(r, p)]r − rE[H1] + r2.

To simplify this expression we now assume that both
H and H1 are statistically independent of p, r, and U(p),
but H and H1 may be correlated. This independence is
quite a restrictive assumption. Although the assumption
allows the total amount U(p) bid by other purchasers in
the day-ahead market to depend on E[H], a single other
purchaser might well base their contribution to U(p) on the
current day’s observed demand level which will typically be
correlated with H.
Under the independence assumption the function C(r, p)

simplifies to

C (r, p) = r2 +
(
−p− h̄+E[U (p) |(r, p)]− h1

)
r

+ ph1 +E [HH1]− h1E[U (p) |(r, p)] (52)

= r2 +
(
−p− h̄+ u(p)− h1

)
r + ph1

+E [HH1]− h1u(p), (53)

where we denote E[U (p) |(r, p)] by u(p), E[H] by h̄, and
E[H1] by h1.

Example 3 (Single purchaser)
To illustrate how to derive an optimal bid in a partic-

ular case, we assume a single purchaser in a day-ahead

market with ψ (q, p) = qp
4 . For one purchaser, we have

H1 = H, and u(p) = 0. Now the integrand − (qM − q) p−
C (qM − q, p) becomes

− (qM − q) p− {(qM − q)2

+
(
−p− h̄+ u(p)− h1

)
(qM − q)

+ ph1 +E [HH1]− h1u(p)}
= − (qM − q)2 + 2h̄ (qM − q)− ph̄−E

[
H2
]

(54)

so we seek to maximize

∫

s′

(
− (qM − q)2 + 2h̄ (qM − q)− ph̄−E

[
H2
])

d
(qp
4

)

over s′. As above

Z(q, p) = Bqψp −Bpψq

=
(
−2h̄+ 2qM − 2q

) 1
4
q +

1

4
h̄p. (55)

Now suppose E[H] = 1, E[H2] = 2, and qM = 2. Then

Z(q, p) =
1

4
(2− 2q) q +

1

4
p. (56)

The curve Z(q, p) = 0 is plotted below in Figure 5, where
Z > 0 above the curve. This curve does not completely
specify the optimal solution to the problem with objective
(46) as the optimal curve must be non-decreasing.

-1

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ψ(p,q)=1

Z(p,q)=0

q

p

ψ(p,q)=0 on the q-axis-1

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ψ(p,q)=1

Z(p,q)=0

q

p

ψ(p,q)=0 on the q-axis

Fig. 5. The curve Z(q, p) = 0.

However since ψ (p, q) = 0 for p ≤ 0 the purchaser
may choose any non-decreasing curve in this region join-
ing (0, 0) to (1, 0). The same argument goes for the area
where ψ (p, q) = 1, which corresponds to q ≥ 1.6956 and
p ≥ 2.359. Then, an optimal bidding curve would be

p (q) =






0, q ≤ 1,
2q2 − 2q, 1 < q ≤ 1.6956,
2.359, q > 1.6956.

(57)

The optimal objective value of p(q) is
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∫

s′
− (qM − q)2 + 2h̄ (qM − q)

− ph̄−E
[
H2
]
dψ (q, p)

=

∫ q=1.6956

q=1

{−p(q)− 2q − (2− q)2 + 2}d
(
qp(q)

4

)

=
1

4

∫ 1.6956

1

(−18q4 + 36q3 − 28q2 + 8q)dq

= −2.5323.

This gives the following optimal bid curve for the pur-
chaser:

b(r) =






2.359, r < 0.3043,
4− 6r + 2r2, 0.3043 ≤ r < 1,
0, r ≥ 1,

(58)

which is plotted in Figure 6. The cost of this policy is
2.5323 (minus the objective function value that we maxi-
mized).

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r

p

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r

p

Fig. 6. Optimal demand bid curve.

We can compare this policy with several other candi-
dates. A potential strategy for the purchaser may be to
bid the expected demand, r = h = 1, in the day-ahead
market. This is defined by the offer curve q = qM − r = 1.
The objective value of this curve is

∫

s′
{−ph− 2qh− (qM − q)2 +K}dψ (q, p)

=

∫ p=4

p=0

{−p− 2− (2− 1)2 + 2}d
(p
4

)

=
1

4

∫ 4

0

(−p− 1) dp

= −3.0,

giving an expected cost of 3.0 for the purchaser. Similarly
if the purchaser chooses to buy the entire demand in the
regulating market, then he would order r = 0 (or q = 2)
in the day-ahead market. The objective value of this curve
is also −3.0 giving a cost of 3.0. Bidding r = 0.5, in the
day-ahead market, for example, gives an expected cost of
2.58.

It is also interesting to compare expected clearing prices
in the day-ahead market with those in the regulating mar-
ket. In the day-ahead market the expected clearing price
is given by

∫

s′
p (q) dψ (q, p)

=

∫ 1.6596

1

(
2q2 − 2q

) d

dq

(
q
(
2q2 − 2q

)

4

)

dq

= 1.102.

In this example the regulating price is τ = p +H − r, so
its expectation is

E[τ ] = E[p] + 1−E[r]. (59)

Here

E[r] =

∫

s

rdφ (r, p)

=

∫

s′
(qM − q) dψ (q, p)

=

∫ 1.6596

1

(2− q)
d

dq

(
q
(
2q2 − 2q

)

4

)

dq

= 0.5373,

so

E[τ ] = 1.5647.

VI. Conclusions

In this paper we have seen that in nearly all of our mod-
els, a purchaser for electricity ought to bid for less than
their expected demand in the day-ahead market. The cen-
tral reason underlying this is that even with perfect knowl-
edge of their demand, purchasers are likely to be better off
buying their electricity in two marginally-priced tranches,
rather than making a single bid. This behaviour is con-
firmed in both the equilibrium model and the model with
uncertainty modeled using a market distribution function.
Despite the incentives to do so Norwegian purchasers do

not underbid in the day-ahead Nord Pool as the system
operator Statnett requires that the purchasers bid for their
expected demand. If underbidding were allowed then ac-
cording to the models described above one might expect
purchasers to withdraw some of their demand from the
day-ahead market. If this did happen then it is likely that
generators who offer to this market will also reduce their
supply offers. According to the models we have presented,
we should still expect to see an equilibrium in which the
day-ahead price is less than the expected spot price.
Note that we have ignored the risk attitude of purchasers

in our models and adopted a risk-neutral stance. Risk-
aversion (through variance) is one possible source of dif-
ferences in forward and expected spot prices in electricity
markets (see e.g. [6]). Because the regulating market is
typically more volatile than the day-ahead market (being
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susceptible to constraints and outages) purchasers might
be unwilling to rely too heavily on sourcing their electricity
from this market, and so in these circumstances one might
observe purchasers bids to be closer to their expected de-
mand than we predict.

VII. Appendix 1: Proof of Proposition 1

Define h̄ = E[H], g(y) = yδ (y), and suppose the proba-
bility distribution of H is defined by measure µ. Then the
objective function of P̄ becomes

φ(x) = E [(H − x) δ (H − x)] (60)

=

∫ +∞

−∞

g (h− x) dµ(h). (61)

Since g(y) is convex (with left and right derivatives denoted
by g′−(y) and g′+(y) respectively) by virtue of Proposition
4 in [17] we may compute the left and right derivatives of
φ,

φ′+(x) =

∫ +∞

−∞

−g′− (h− x) dµ(h) (62)

φ′−(x) =

∫ +∞

−∞

−g′+ (h− x) dµ(h). (63)

A change of variable yields

φ′+(x) =

∫ 0

−∞

−g′−
(
u+ h̄− x

)
dµ(u+ h̄)

+

∫ +∞

0

−g′−
(
u+ h̄− x

)
dµ(u+ h̄) (64)

=

∫ +∞

−∞

−g′−
(
u+ h̄− x

)
dµ(u+ h̄), (65)

whence

φ′+(h̄) =

∫ 0

−∞

−g′− (u) dµ(u+ h̄)

+

∫ +∞

0

−g′− (u) dµ(u+ h̄). (66)

Now since δ (·) is an odd function, g is even, and since
µ(u+ h̄) is symmetric about u = 0,

∫ 0

−∞

−g′− (u) dµ(u+ h̄) =

∫ +∞

0

g′+ (u) dµ(u+ h̄) (67)

giving

φ′+(h̄) =

∫ +∞

0

g′+ (u) dµ(u+ h̄)

+

∫ +∞

0

−g′− (u) dµ(u+ h̄) (68)

=

∫ +∞

0

(
g′+ (u)− g′− (u)

)
dµ(u+ h̄) (69)

≥ 0 (70)

by the convexity of g. Similarly

φ′−(h̄) =

∫ 0

−∞

−g′+ (u) dµ(u+ h̄)

+

∫ +∞

0

−g′+ (u) dµ(u+ h̄) (71)

=

∫ 0

−∞

−g′+ (u) dµ(u+ h̄)

−
∫ 0

−∞

−g′− (u) dµ(u+ h̄) (72)

≤ 0, (73)

demonstrating that h̄ is a local minimizer of φ.
Furthermore, if x > h̄, then by convexity g′−

(
u+ h̄− x

)
≤

g′− (u), so

φ′+(x) = −
∫ +∞

−∞

g′−
(
u+ h̄− x

)
dµ(u+ h̄) (74)

≥ −
∫ +∞

−∞

g′− (u) dµ(u+ h̄) (75)

= φ′+(h̄), (76)

and if x < h̄, then g′+
(
u+ h̄− x

)
≥ g′+ (u), so

φ′−(x) = −
∫ +∞

−∞

g′+
(
u+ h̄− x

)
dµ(u+ h̄) (77)

≤ −
∫ +∞

−∞

g′+ (u) dµ(u+ h̄) (78)

= φ′−(h̄), (79)

which shows that h̄ gives a global minimum.
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