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Chapter 14

An Electricity Procurement Model With

Energy and Peak Charges

A. B. Philpott∗ and G. Pritchard†

Summary

We describe a model developed to help minimize the energy procurement costs
of a New Zealand process industry that is a high user of electricity. The model
accounts for stochastic prices that depend on the hydrological state of the
electricity system, as well as transmission charges that are incurred during
coincident electricity peaks. We describe how these are modelled and derive a
stochastic dynamic programming algorithm that is used to arrange production
to meet demand while minimizing the expected costs of electricity procurement.

1 Introduction

This paper deals with a practical problem facing many manufacturing

industries with reasonably flexible production: when and how should they

procure electricity to minimize the cost of production needed to meet some

future demand. This problem is particularly important in process industries

that are heavy users of electricity (such as aluminium, food processing and

the pulp and paper industry). By shifting production into time periods in

which electricity is inexpensive, companies may make considerable savings.

This type of behaviour is often called “peak shaving” or “demand response”

and there is a substantial literature and consulting activity devoted to doing

this efficiently (Borenstein et al., 2002).

The rationale for shifting loads out of peaks comes about because

utilities and electricity markets extract higher prices during periods of peak
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demand. The economic theory underlying such peak-load pricing has a long

history (see e.g. Boiteux, 1960, Crew et al., 1995). In this theory, higher

prices should be charged during peak times to reflect the higher utilization

of capacity at these times. Pricing policies of this type can be devised to

maximize welfare.

In the setting of electricity markets, sellers of electricity do not choose

prices with the aim of maximizing total welfare. Rather, the prices emerge

from some market-clearing mechanism that meets demand given the supply

functions chosen by electricity suppliers. In this environment, prices will

vary with time of day, being more expensive in peak hours when the market

clears at high-price points on the sellers’ supply curves. Consumers who are

flexible have incentives to move production out of these peaks. In choosing

their supply curves, sellers of electricity should account for this consumer

response in seeking to maximize their own profit. A simple model of this

phenomenon is discussed in Pettersen et al. (2005).

Our focus in this paper is, however, not on the sellers’ pricing decisions,

but on the purchaser’s decision problem given these prices. The prices we

consider are market pricing outcomes for energy and reserve, and peak-

load tariffs imposed by the grid owner. We assume that the purchaser

is not strategic, and so acts as a price taker. The purchaser then uses

a mathematical programming model to optimize its production facilities.

When prices are known, this becomes a deterministic optimization problem

that can be attacked with standard mixed-integer programming software.

See for example Henning (1998) and Ashok and Banerjee (2001) for models

of this type. When prices are uncertain, but can be modelled with scenarios

one might adopt a stochastic programming approach to this problem (see

e.g. Philpott and Everett, 2002).

In this paper we focus on the purchaser’s decision problem in a

particular industrial setting in New Zealand in which a single product is

made to meet a known demand occurring at known future points in time.

The particular industry we have in mind exports products by ship, and

enough stock must be on hand to satisfy a given schedule of ship visits.

The production problem is relatively simple when electricity prices are

known - one simply produces in sufficiently many low priced periods to

generate enough stock to meet demand. When prices are random, but can

be modelled as a Markov chain, this problem can be solved as a Markov

decision process using dynamic programming (see e.g. Ravn and Rygaard

(1994) for such a model for meeting heat and power constraints over time).

We follow this line of reasoning in developing our model.
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The model we discuss in this paper has two new features. Production

facilities that are running may be paid a reserve price l to provide an

interruptible load in circumstances where there is some contingency (e.g.

a generating unit failure). In other words, the system operator pays l in

every trading period for the option to disconnect the power supply to the

production units if such an event happens. If the industry has agreed to

such a contract then this payout effectively decreases the price p that is paid

for electricity. (The decision to offer reserve in this way is exogeneous to our

model.) Our stochastic price process is therefore estimated from historical

sequences of the net price

e = p− l,

where both p and l are determined for each trading period by the electricity

market clearing mechanism.

The second feature of our model that is novel concerns a payment

that depends on the regional peak demand. In New Zealand, the grid

owner records the peak demands in each region for each trading period

(each having duration half an hour) in the 12 months from September 1

to August 31. These are called coincident peaks as they relate to all loads,

not just those of the electricity consumer we are modelling. On August 31

each year the grid owner sums each consumer’s load in the 100 highest

coincident peak periods of the past 12 months. The consumers then pay the

grid owner a peak charge M for every megawatt-hour (MWh) purchased

in those periods. As regional demand increases towards the daily peak, the

purchaser of power is faced with a delicate decision problem: should she

shut down her plant in anticipation that the next half hour will be one of

the highest 100 periods, even though this fact might not be known until

many months in the future?

We show how this problem can be solved by dynamic programming

producing a threshold-type policy. This policy requires an estimate at each

point in time of the probability that the regional load being observed will

exceed the 100th highest regional load observed over the 12 months from

September 1 to August 31. This estimate is made using a model for these

peak demands.

The paper is laid out as follows. In the next section we formulate the

decision problem we wish to solve as a dynamic programming problem, and

show that a threshold policy is optimal. We then describe models of random

electricity prices and coincident peak demand that have been developed to

incorporate some of the serial correlation in these data. In the following
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section we use these models to extend the dynamic programming model,

and illustrate its output on an example with fictitious plant data, but real

price and peak demand data from the New Zealand electricity market. The

paper concludes with a discussion of the implementation of this model in a

practical setting.

2 A dynamic optimization model

In this section we derive a dynamic optimization model for production

planning using machines that consume electrical energy. We assume for

simplicity that production levels are binary - either machines are all running

at full capacity, or they are all turned off. In the last section of the paper

we will discuss how this assumption can be relaxed.

The model we describe has two levels of time discretization. We denote

by t = 1, 2, . . . , T , the stages of a dynamic decision problem, where for

each stage we will compute an optimal action. Within each stage there are

trading periods denoted k = 1, 2, . . . , K. In the New Zealand application,

we choose a stage length of one day, divided up into 48 half-hour trading

periods.

The decision to be made in any stage t and any trading period k is to

determine whether to run the plant given:

1. the current inventory level of our product (z);

2. the current electricity price (p) and price (l) for interruptible load;

3. the current value of total regional demand (x).

We assume that p, l, and x for the trading period are all known at the time

the decision is made to shut down. In practice, p, l, and x will be short-term

forecasts based on data recorded in previous trading periods. This of course

makes them subject to some forecast error, which we assume is neglible in

this description. We will discuss the implication of this assumption in the

conclusion of the paper.

We consider first the optimal action to be taken at any given stage t,

assuming that z is known at the start of stage t. Suppose that the producer

requires a given amount y to be produced in stage t. The optimal decision

at stage t will depend on realizations of p, l, and x at every k = 1, 2, . . . , K,

which we must treat as random variables P (k), L(k), and X(k). We define

the random variable E(k) to be the net price per MWh of procuring energy

in trading period k, where E(k) = P (k) − L(k) is the difference between

the electricity spot price and the price of interruptible load.
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First, consider a situation in which the net price and regional demand

(E(k), X(k)), k = 1, 2, . . . , K, are i.i.d. random variables with joint density

f(e, x) over sample space Ω. For any realization (e, x) we wish to decide

whether to run the plant or not. Let ρ(e, x) be an indicator function that

is 1 if the plant is run (at full capacity) and 0 if it is shut down. The

probability that the plant runs in any trading period is
∫

Ω

f(e, x)ρ(e, x)dedx.

Suppose that we observe e and x. Then the expected cost per MWh of

running in realization (e, x) is

e + M Pr(x ≥ X100)

where X100 is the (random) 100th highest regional demand, and M denotes

the peak period charge per MWh. Suppose we know the distribution G(x) =

Pr(X100 ≤ x). Then the expected cost per MWh of running in realization

(e, x) is

e + MG(x).

In order to produce y tonnes on day t, the producer seeks an indicator

function ρ to solve

P : minimize
b

a

∫

Ω

(e + MG(x))f(e, x)ρ(e, x)dedx

s.t. b

∫

Ω

f(e, x)ρ(e, x)dedx = y

where b is the capacity of the plant in tonnes per day, and a is the number

of tonnes of product from one MWh of electricity consumption.

The Lagrangian for P is

L(ρ, λ) = yλ +
b

a

∫

Ω

(e + MG(x)− aλ)f(e, x)ρ(e, x)dedx.

Minimizing L defines a threshold policy

ρλ(e, x) =

{

1, e + MG(x) ≤ aλ

0, e + MG(x) > aλ

where λ is chosen so that this policy gives

b

∫

Ω

f(e, x)ρλ(e, x)dedx = y.
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The optimal value of λ can be interpreted as the marginal value of an extra

tonne of production and will be an increasing function of the requirement y.

In a multi-stage setting, we wish to adjust the amount we produce

in each stage t depending on how much inventory has been accrued. The

optimization problem that we wish to solve is to determine whether to

shut down the plant when we observe high values of e + MG(x) on a

particular day. The peak values usually occur in the morning and early

evening when domestic demand is high. Typically the firm would stop

production for these periods for sufficiently high values of e + MG(x).

Production typically resumes in the late evening, and the procedure repeats

the following morning.

For any given day t in the planning horizon, we seek an optimal

threshold value λ. Given this value, the plant will shut down completely

in every trading period that has e + MG(x) > aλ. Given a value of λ, the

amount of product produced by policy ρλ(e, x) is

wt(λ) = b

∫

Ω

ft(e, x)ρλ(e, x)dpdx,

and its expected cost is

ct(λ) =
b

a

∫

Ω

(e + MG(x))ft(e, x)ρλ(e, x)dedx.

Observe that the density ft(e, x) may now vary with the stage t.

Given this optimization model for each stage t, we can derive a dynamic

programming recursion for t = 1, 2, . . . , T . Let Ct(z) be the minimum

expected future cost of meeting demand dτ , τ = t + 1, t + 2, . . . , T , if there

is a stock level of z at the end of day t. Then at the start of day t we seek

Ct−1(z) = E













minρ,y
b

a

∫

Ω

(e + MG(x))ft(e, x)ρ(e, x)dedx

+ Ct(z + y − dt)

s.t. y = b

∫

Ω

ft(e, x)ρ(e, x)dedx













(1)

The stage problem (1) gives Lagrangian

L(ρ, µ) =
b

a

∫

Ω

(e + MG(x))ft(e, x)ρ(e, x)dedx + Ct(z + y − dt)

+λy − λb

∫

Ω

ft(e, x)ρ(e, x)dedx
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and a policy

ρλ(e, x) =

{

1, e + MG(x) ≤ λa

0, e + MG(x) > λa
(2)

where

0 ∈ λ + ∂Ct

(

z + b

∫

Ω

ft(e, x)ρλ(e, x)dedx− dt

)

.

Thus λ is the marginal value of storage at z + b
∫

Ω
ft(e, x)ρλ(e, x)dedx−dt.

If we assume that λ is constant over the range of production then this gives

a threshold policy defined by (2).

3 Statistical models

The recursion (1) used in the model in the previous section assumes a

stagewise independent distribution for (E, X). In reality, (E, X) follows

a more complex stochastic process with some stagewise dependence. In

the next section, we will derive the dynamic programming recursion for

this more complex model, which we now proceed to describe in more

detail.

Although we are primarily interested in the electricity price, much

of the structure of price series in a hydropower-dominated system (like

New Zealand) is derived from the underlying hydrology. This is illustrated

in the plot in Figure 1 that shows regional electricity spot prices in

New Zealand varying with storage in its largest hydro-electric catchment

(the Waitaki system). The first step in modelling prices that depend on

hydrology is to develop a process for representing inflows and releases to

the hydro catchments. The dynamics of a hydro reservoir are governed by

the equation:

St+1 = St + It −Rt

where St is the stock of water, It is inflow and Rt is release of water (for

generation and spill). Although releases represent actions of the generators,

they are influenced by storage levels to the extent that one can derive

reasonable statistical models that represent this (see e.g. Tipping and Read,

2010). In other words high storage levels tend to give large releases and low

storage levels give small releases.
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Figure 1 Electricity spot prices and hydro storage levels in the Waitaki hydro system.
Prices spike when hydro storage levels drop because of low inflows.

3.1 Inflows

We begin our discussion of hydrological processes by discussing inflows.

It has been traditional to model hydropower inflows by replaying inflow

sequences from past years, starting at the appropriate time of year. This

is a generally sound idea, as it reproduces the appropriate distributions,

serial correlation structure, etc. But if the sequences are to be regarded as

possible scenarios for the immediate future, one should take some account

of current conditions. If recent weeks have been dry, one should not use

sequences taken from wet years. The following model is an attempt to make

a simple adjustment for this.

Our model is:

log It = α log It−1 + T I
t + error

where It is the inflow in week t, and T I
t is an annual seasonal factor consist-

ing of a second-order trigonometric polynomial with a 1-year period. That

is, the log-inflows consist of a fixed seasonal pattern with superimposed red

noise.



July 21, 2012 11:14 9in x 6in Applications in Finance, Energy, Planning and Logistics b1392-ch14 FA

An Electricity Procurement Model With Energy and Peak Charges 407

We can use this in conjunction with historical inflow sequences as

follows. The model gives

It = Iα
t−1 × (seasonal and random factors).

If the historical sequence is h0, h1, h2, . . ., and we have already observed

this year’s inflow for the week corresponding to h0 to be I0, then a scenario

for the following week’s inflow is

I1 =

(

I0

h0

)α

h1.

For the week after that, we get

I2 =

(

I1

h1

)α

h2 =

(

I0

h0

)α2

h2,

and similarly,

Ij =

(

I0

h0

)αj

hj . (3)

Since α < 1, we have αj → 0 and so Ij ≈ hj after the first few weeks.

We use a single model of this type to represent the combined inflows

(in energy-equivalent, i.e. gigawatt-hour, terms) for all the large hydro lakes

in the New Zealand power system. (The lakes included are named Tekapo,

Pukaki, Ohau, Hawea, Te Anau, Manapouri, Taupo, and Waikaremoana.)

The fitted value of α is approximately 0.44.

3.2 Releases

We now turn attention to the hydroelectric energy released from storage

by the electricity industry. The reservoirs included are the same as those in

the inflow model.

The model is:

Rt = β1St + β2S
2
t + β3S

3
t + β4It + T R

t + error (4)

where Rt is the energy released in week t, St the total stored energy at the

beginning of week t, and T R
t is an annual seasonal factor consisting of a

first-order trigonometric polynomial with a 1-year period.

After fitting this model the residuals are found to be fairly symmetrical

about 0, to be approximately normally distributed, and to have little serial

correlation.
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3.3 Electricity prices

Electricity prices are less well-behaved than the hydrology, and so the

following models are inevitably somewhat more approximate.

3.3.1 Price duration curves

The optimization problem that we wish to solve is to determine whether

to shut down the plant when we observe high values of e + MG(x) on

a particular day. The key data input in this decision is a price duration

curve,

D(s) = the number of trading periods where e + MG(x) ≤ s.

The inverse D−1(s) can be thought of a realization of values of e + MG(x)

over a 48-period day, ordered from lowest to highest. Such a curve is

illustrated in Figure 2.

If one knows the price duration curve, then it is straightforward to find

an optimal threshold policy by conducting a line search for λ that yields the

desired production amount of y. Recall that there are K trading periods

per day, a is the tonnes produced per MWh, and b is the daily production

capacity. Then the optimal λ solves

b
D(λ)

K
= y.

D(λ)

λ

K

(a/b)Kct(λ)

Figure 2 A price duration curve. D(λ) is the number of periods with price at most λ.
The shaded area when divided by K is the average cost per MWh of policy λ.
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The cost of this choice per day is given by the area between the price

duration curve and D(λ)

ct(λ) =
b

aK

(

λD(λ) −

∫ λ

0

D(s)ds

)

.

In our model, the price duration curve is random, having a finite

distribution on each day. This distribution is determined by the weekly

hydrology models above, and the random curves on consecutive days are

not independent but are correlated in a way that we describe below.

We illustrate the modelling approach we have adopted by applying it to

the spot price p; a similar process is used to model e+MG(x). To estimate

a model for scenarios of duration curves for p, it helps to transform the

data. Some very high prices occur, and we first attempt to rein these in by

applying the following transformation to all our price values:

P = c

(

(

1 +
3p

c

)1/3

− 1

)

;

the value c = $3/MWh is found to be suitable. Of course, this means that

when using models for P , we will eventually have to transform back via

p =
(P + c)3 − c3

3c2
.

Let Pt,k denote the kth largest (transformed) price occurring on day

t (k = 1, . . . , 48). To estimate price-duration curves, we use quantile

regression (Koenker and Bassett, 1978). The model equations are:

Qτ (Pt,k) =

4
∑

j=0

(

γ1,jSt + γ2,j
1

St
+ γ3,jIt + γ4,jHt

)

fj(t) + error,

where:

1. Qτ (Pt,k) is the τ -quantile of the distribution of Pt,k;

2. St the hydro storage at the beginning of the week that includes t, and

It the inflow during the week that includes t;

3. Ht a holiday indicator (0 if t is a business day, 1 otherwise);

4. f0, . . . f4 are seasonal trigonometric functions with a 1-year period:

f0(t) = 1, f1(t) = cos(ωt), f2(t) = sin(ωt),

f3(t) = cos(2ωt), f4(t) = sin(2ωt).
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Fitting these models for τ = 0.05, 0.15, . . . , 0.95 (and k = 1, . . . , 48)

gives a set of ten model price duration curves, each of which is a

function of the covariates (St, It, and Ht, and seasonality) for the day in

question.

For some values of the covariates, some of these curves can be slightly

non-monotone; if this is important, the prices should be sorted into

descending order after they have been computed.

3.3.2 Transition model

Each of the ten model scenarios should occur about 1/10th of the time, but

this does not happen at random for each day, independently of previous

days, as this would ignore the substantial serial dependence. Fitting quantile

regressions as above, but for τ = 0.1, 0.2, . . . , 0.9, allows us to classify each

historical price according to which model scenario it most closely resembles

(e.g. if a historical price lies between the τ = 0.1 and τ = 0.2 models for the

day on which it occurs, it is associated with the τ = 0.15 model scenario).

We associate each historical day to a scenario using the classification given

by its 6th largest price. This gives a sequence of scenarios which “occurred”

historically.

The serial dependence in this sequence of scenarios is much stronger

than for a Markov chain with the same one-step transition matrix M .

To represent this, we use the following “sticky” random model. Let

Xt ∈ {1, . . . , 10} be the scenario used on day t, and Vt ∈ {1, . . . , 10} a

“background state” pertaining to that day. Then (Xt, Vt) follows a Markov

process given by

• Xt is chosen according to the Vt−1th row of M ;

• Vt = Xt with probability δ, otherwise Vt−1;

with these random choices being made independently of those on previous

days. The value chosen for δ is currently 0.10. This allows for a moderate

degree of dependence between Xt and Xt−r when r is small (as they are

likely to have been picked from the same row of M), which does not

disappear too quickly as r gets larger.

3.4 Peak demand

The final ingredient in our model is regional peak demand. Figure 3 shows

an example of peak demand from September 1, 2006 to August 31, 2007
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Figure 3 Regional half-hourly demand in 2006–2007. The 100th highest demand
realization is shown by the solid horizontal line.

for a region of New Zealand. Observe that most of the peaks occur in the

period May 1 to August 31. The horizontal line in the figure is set at the

100th largest demand (1855 MW).

The basis of our peak-load model is a suite of statistical models giving

the expected highest, second-highest, etc. load each morning and evening

of the winter (April–September). These are simply functions of time (the

number of days before or after July 1) and the day of the week (allowing for

public holidays). An offset (additive constant) to be added to each model

is estimated using recent historical load data beginning on April 1. To this

is added a random process chosen so that its serial and cross-correlations

between adjacent mornings and evenings are the same as in the data. This

allows peak loads to be simulated arbitrarily far ahead. The random process

is initialized with a value for the current day predicted from the previous

day’s loads and air temperatures. The loads are then simulated from the

current day until August 31, and the simulation repeated 10,000 times in

order to obtain the statistics shown.

Thus for any temperature data provided the model delivers probabilis-

tic estimates of what the 100th largest half-hourly load of the pricing year

will be. It gives P5, P50, and P95 estimates (i.e. values with 5%, 50%

and 95% probability, respectively, of exceeding the threshold) as well as an

estimate of the distribution G(x).
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4 Dynamic programming recursion

We now discuss the dynamic programming recursion for determining an

optimal policy over the time stages t = 1, 2, . . . , T . The curse of dimen-

sionality precludes a high-dimensional state space. By experimentation

we have identified the key states being a national reservoir storage level

(represented by u ∈ {1, . . . , U}), electricity price state and background

state (represented by v ∈ {1, . . . , 10} × {1, . . . , 10}) and stock on hand of

product (z ∈ {0, 1, . . . , L}).

Based on this structure we have developed for fixed M , a statistical

model for duration curves of

A = e + M Pr(X100 < x),

for all possible values of u and v, as well as probabilities for transitioning

between states (u, v) at each stage. We look at each of these in turn.

At each future stage t, we estimate a distribution for inflows at time

t, based on the observed inflow at time 0, and simulations using the model

represented by (3). This model induces a stochastic process on the storage

levels and therefore on the releases according to (4). Thus, at any stage t

and reservoir state u, we can estimate a transition probability q(u, u′) to

state u′ ∈ {1, . . . , U} at the next stage by computing a release decision for

each inflow realization using (4) and a sampled error term. The inflows used

at each stage in this process are assumed to be statistically independent

from those in the preceding stage.

The model for A is very similar to the model for price duration curves

described in subsection 3.3.1, except that now we construct duration curves

for A rather than p. These curves are estimated a priori and stored for all

possible values for t, u and v. We now write

Dt(s, u, v) = the number of trading periods in stage t and state(u, v)

where A ≤ s.

Given such curves and a choice of threshold λ, we can compute the expected

daily production wt(λ, u, v) of the plant, and the expected daily cost of

production ct(λ, u, v) that results. Formally

wt(λ, u, v) =
b

K
Dt(λ, u, v)

and

ct(λ, u, v) =
b

aK

(

λDt(λ, u, v)−

∫ λ

0

Dt(s, u, v)ds

)

.
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We also estimate transition probabilities r(v, v′) for moving from state

v at time t to state v′ at time t + 1. (These are independent from the

transitions in u.) As described in subsection 3.3.1 we use a sticky random

model where the second component of v is a background state that changes

in only about 10% of the transitions, and r(v, v′) depends only on this

second component.

Now we can write down the dynamic programming recursion that

we use.

Ct−1(z, u, v) = ht(z) + min
λ
{ct(λ, u, v))

+ γ
∑

u′

∑

v′

q(u, u′)r(v, v′)Ct(z + wt(λ, u, v)− dt, u
′, v′)]}

CT (z, u, v) = V (z)

where

Ct(z, u, v) = future cost at end of stage t if in state (u, v)

and inventory is z

ht(z) = holding cost for inventory z over stage t

dt = demand for product in stage t

V (z) = terminal future cost with z in stock

γ = daily discount factor

The dynamic programming recursion gives a threshold value λ =

λ∗(t, u, v, z) at each stage t and state (u, v, z) to determine at what

(adjusted) price the company should reduce load. To determine what

action to take, the company needs to estimate the current state. This is

straightforward for u, but to estimate v (the price state) one requires the

current duration curve for A at stage (t− 1) which can be estimated from

the previous time period’s observations.

To determine whether a shutdown is necessary in trading period k at

stage t, the company must estimate the current value of A(k) to compare it

with the threshold value. This is computed using the current observation of

x(k) and sample values of X100 computed by the peak pricing model from

subsection 3.4. If the sample values of X100 are sorted and compared to

x(k) then Pr(X100 < x(k)) can be estimated as x(k) is observed. Thus to

determine an optimal action in each trading period, the peak pricing model
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must be solved at the start of the day to provide the appropriate estimate

of Pr(X100 < x(t)).

We do not allow backlogging of stock, so z is penalized from becoming

negative. In fact, given constraints on production capacity, there is a

minimum stock level that must be held at each stage to ensure that there

will be enough stock on hand to meet demand (which is known a priori).

Deviations below this minimum stock level are heavily penalized, as we can

guarantee that they will lead to a shortage in demand. Moreover, in our

computations we need only consider values of z that lie above this riskzone

level. An example of such a riskzone level is shown in Figure 4.

The form of the solution to the dynamic programming recursion is

best illustrated by an example. Figure 5 shows a contour plot of the

optimal threshold values (with different shadings between contours) for

state (u, v) = (5, 10, 10) and varying z levels over the same period covered

by the ship visits shown in Figure 4. In this example we have used 10

reservoir states, so (5, 10, 10) corresponds to an average reservoir storage

state (5), but high electricity price and background states (10). The shaded

region at the top of the figure corresponds to the range λ∗(t, u, v, z) ∈ [0, 20].
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Figure 4 A typical riskzone that includes demand. Ship visits occur on May 8, June
21 and August 4. The model must maintain a cumulative production above the blue line
to ensure that the demand from these ship visits can be met. The sloping sections grow
at the maximum production rate.
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Figure 5 Contours of threshold values λ∗(t, u, v, z) for state (u, v) = (5, 10, 10).
Shadings of (t, z) indicate different ranges of threshold values. The contours are vertical
at times where demand deliveries must be made.

One can see from the plot that for fixed t, λ∗(t, 5, 10, 10, z) decreases

as the storage z increases. In the top region we have more than enough

stock to meet the ship visits, and to avoid inventory costs a threshold value

of close to zero is optimal. In this region the plant should shut whenever

A gets above 20. The triangular regions where (t, z) lies in the riskzone are

easy to see, and the contours of λ∗(t, 5, 10, 10, z) become close together as

(t, z) approaches the boundaries of these, since, to avoid a stockout, the

optimal value of λ must increase at a higher rate to ensure production is

not interrupted.

The most valuable information from our model is not so much the

threshold policy that it computes, but the marginal value of storage λ that

is obtained. This gives the slope of the expected future cost Ct(z, u, v) of

meeting the demand from time t to T , with z in stock, given an optimal

threshold policy is followed. The future cost is defined for all possible values

of the national storage state (u) and market state (v). It is also defined for

all possible levels of storage (z) above the riskzone. An example of such a

marginal cost curve for June 5, 2010 is shown in Figure 6.

This information can be used to guide a daily optimization model that

incorprates the details of the company’s plant operations. To do this a plan
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Marginal value of storage (NZ$/tonne) in state (4,9) on June 5, 2010
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Figure 6 Marginal value of product stored as a function of inventory level (z), for
market state (5,10,10) at t = 2010605 (as annotated on Figure 5).

is computed for the current day that uses forecasts (or scenarios) for A(t)

in the current day, and minimizes today’s cost plus the expected future cost

as defined by Ct(z, u, v).

The daily optimization can be of higher fidelity than the optimizations

used to compute the marginal value of storage, and include several operating

units, ramping constraints, startup costs and shutdown costs. The marginal

cost curve ensures that a close to optimal trade off is made between running

and increasing the amount of inventory stored, and shutting down and

avoiding energy and possible peak charges.

An example of such a model is the following mixed integer programming

model of the unit commitment type. To see how this would work, assume

that we have predicted A(t) over the course of the coming day. This gives the

expected cost of purchasing a MWh of electricity (accounting for maximum–

demand charges, electricity price and reserve.) Let

x(t) =

{

1 if plant runs in period t

0 otherwise

Let N be the cost of switching the plant off, and let y denote the total

amount of product produced in a day. Suppose the amount of product

in inventory is z0 and we increase this to z0 + z. Let aj + bj(z0 + z),

j = 1, 2, . . . , J , be cutting planes representing the future expected savings
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from producing z over the day. The savings function is then given by the

function

Q(z) = min
j=1,...,J

{aj + bj(z0 + z)}.

The mixed integer program we solve is:

min
∑48

t=1
Nx(t) + A(t)y(t) − θ

s.t. x(t) ≥ y(t)− y(t + 1),

k

48

∑48

t=1
y(t) = z,

θ ≤ aj + bj(z0 + z), j = 1, 2, . . . , J,

x(t), y(t) ∈ {0, 1}.

This gives a sequence x(t) of ones and zeros that can be used to deter-

mine when to shut down the plant. The switching cost N will prevent too

many shutdowns in a day. The optimal value z∗ obtained will be the total

production over the day. The optimal value θ∗ from this model will satisfy

θ∗ ≤ aj + bj(z0 + z∗), j = 1, 2, . . . , J,

and be as large as possible to minimize the objective of MIP and so

θ∗ = min
j=1,...,J

{aj + bj(z0 + z∗)}

= Q(z0 + z∗)

the future savings from producing z∗.

5 Conclusions

This paper has described a simple but effective model for peak-shaving

industrial electricity demand. The model relies on a “top-down” statistical

model of electricity prices and regional peak demand. Peak shaving models

are well understood in a deterministic framework, but have received little

attention in an uncertain environment, and none when peak charges are

incurred in hindsight. Our model is a first attempt at constructing a model

for problems of this type. Although the model is specifically adapted for use

in the New Zealand context, the approach should be readily applicable to

other settings, albeit with some structural changes to the statistical models.

The current version of our model assumes that the national inflows are

independent from week to week. This assumption is made for computational
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convenience, and it does have implications for the policies that are

computed. In essence, if a week is dry then the model will not assume that

the next week is more likely to be dry and so it will not be as conservative

in maintaining production as it should be. Similarly if the week is wet, then

the model might recommend producing more than needed because it does

not account for an increased probability of high inflows in the following

week.

The effect of stagewise dependence in national inflows can be investi-

gated by increasing the state space to include the previous day’s inflows,

with an increase in computational complexity. However the extent of

this effect is not as bad as it might seem at first because the dynamic

programming model is in some sense “self correcting”. This happens

because in applying the solution from the model, a sequence of dry inflow

weeks and a less conservative policy will eventually give a low national

storage level, and lower than needed inventory levels. As this occurs, the

optimization model will increase the threshold value of λ until the user

starts to shut down less and act more conservatively.

In our model we have assumed that the plant operator can predict e and

x immediately prior to the trading period to which these pertain (so that

they can shut the plant before incurring the charge e+MG(x)). In practice,

large firms have data feeds to these parameters, and so the forecasts are

relatively precise (in contrast to a prediction that the next period’s regional

demand will be one of the 100 highest). The model could incorporate

some uncertainty in these forecasts with some increase in complexity by

estimating probability distributions of e, and x about forecast values ê,

and x̂. The threshold policy then becomes

ρλ(ê, x̂) =

{

1, E[e + MG(x) | ê, x̂] ≤ aλ

0, E[e + MG(x) | ê, x̂] > aλ

requiring some additional computation in the dynamic programming

recursion.

A futher restrictive assumption in our model is that a single commodity

is being produced. Even the process industries that we have in mind

in this work admit different product types (e.g. corresponding to purity

of aluminium or basis weight of paper). Unfortunately, the curse of

dimensionality means that increasing the number of commodities increases

the complexity of the dynamic programming problem considerably, unless

the production processes can be decoupled so that they do not share

costs of electricity procurement. With this proviso, the complexity of the
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production scheduling process on the day of operation can be considerably

more complex than the one we have modelled, as illustrated in the previous

section. The model of this paper gives some end conditions on a daily

scheduling model that will ensure that the production schedule makes

appropriate tradeoffs in electricity procurement.
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