Chapter 31

On the Marginal Value of
Water for Hydroelectricity

Andy Philpott?!

31.1 = Introduction

This chapter discusses optimization models for computing prices in perfectly
competitive wholesale electricity markets that are dominated by hydroelectric gener-
ation. We revisit the relationship between partial equilibrium in perfect competition
and system optimization of a social planning problem, and we use the latter to show
how perfectly competitive electricity prices correspond to marginal water values.

Most industrialized regions of the world have over the last 20 years established
wholesale electricity markets that take the form of an auction that matches supply and
demand. The exact form of these auction mechanisms varies by jurisdiction, but they
typically require offers of energy from suppliers at costs at which they are willing to
supply, and clear a market by dispatching these offers in order of increasing cost. Day-
ahead markets, such as those implemented in most North American regions, seek to
arrange supply well in advance of its demand so that thermal units can be prepared in
time. Since the demand cannot be predicted with absolute certainty, these day-ahead
markets must be augmented with balancing markets to deal with the variation in load
and generator availability in real time.

In this chapter, we study markets with hydroelectric generators that use reservoirs
of stored water. Generators with hydroelectric reservoirs face an inventory problem.
They would like to optimize the release of water from reservoirs to maximize profits
using a stochastic process of prices, but this process is not known and must be deduced
by each agent using current and future market conditions and hydrological models of
future reservoir inflows. For an agent controlling releases from a hydroelectric reser-
voir, the marginal cost of supply in the current period involves some modeling of op-
portunity cost that includes possible high prices in future states of the world with low
inflows.

2'The research described in this paper has benefited from discussions with Ziming Guan, Tony Down-
ward, Geoffrey Pritchard, and Golbon Zakeri.
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In this chapter, we restrict our attention to a setting in which all agents are
price-takers who do not act strategically. Under this assumption, it is well known
that electricity prices for a single trading period and a single location can be com-
puted as shadow prices from a deterministic convex economic dispatch (ED) model
that maximizes total social welfare. In a stochastic setting, where there is a stochastic
process of inflows that is known to all agents, and they maximize expected profit using
the probability law determining these inflows, a competitive (partial) equilibrium will
correspond to the water-release policy that maximizes the expected welfare of a social
planner. A stochastic optimization (SO) for maximizing expected social welfare can
therefore be used to estimate the marginal cost of electricity supply in future states of
the world. These values are estimates of the wholesale electricity prices in these states.
This approach is demonstrated in Section 31.2 using a simple model.

In a system with a single storage reservoir, electricity prices can be shown to be
equivalent to the expected marginal value of water in the reservoir, in other words the
extra social benefit that would be obtained from the optimal deployment of an extra
cubic meter of stored water. Observe that this value comes from the optimal marginal
use of the water and so the planner must have an optimization problem in mind. Policy
iteration algorithms based on an early paper by Stage and Larsson [ 1713 ] are often used
in practice to compute these marginal values. In Section 31.3, we apply these methods
to a simple example.

Most hydroelectricity systems comprise several reservoir storages, and so the so-
cial planner’s optimization problem becomes a stochastic dynamic programming (DP)
problem with a matching number of state variables. When this number exceeds the
acceptable state dimension for classical DP (about three or four), the optimization
method used most in practice is stochastic dual dynamic programming (SDDP) due
to Pereira and Pinto [1458]. In Section 31.4, we outline this method, and we apply
it to an example problem from the New Zealand electricity system in Section 31.5.
The estimated prices from a case study in 2008 are then compared with their historical
counterparts.

31.2 = The Social Optimum

We consider a social planning problem in an electricity system of hydroelectric gener-
ating plants fed by reservoirs (i € ) that are subject to uncertain inflows over some
decision horizon of T periods. The system also has generating plants (j € 7) that run
on thermal fuel at some known generation cost, and consumer segments ¢ € 6. For
simplicity we shall assume that all generating plants sell power into an unconstrained
transmission grid so that consumer demand can be aggregated at a single location to
which power is sent.

In general, the reservoirs are connected in a set of river chains represented by a
network of 7 nodes (reservoirs and junctions) and / arcs (canals or river reaches). The
topology of the network can be represented by the m X [ incidence matrix A, where

1 if node i is the tail of arc %,
a;, =3{ —1 ifnode is the head of arc &,
0, otherwise.

By adding dummy nodes if necessary, we can ensure that every pair of nodes is joined
by at most one arc. If there are several river chains, then the network need not be
connected.
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We first describe a deterministic model over the planning horizon r = 1,2,...,T.
We let u () be a vector of flow rates (cubic meters per period) in the arcs in the network
in period t. Some arcs correspond to generating stations. Some might correspond to
spill around a station. For each arc & = 1,2,...,/, we specify a generation function
G, (u,,) that is zero when the arc does not contain a station, and otherwise is a strictly
concave function of flow rate #,, for arcs corresponding to stations, giving the energy
output in a period when the flow rate is #,. Let x(¢) denote a vector of reservoir
storages in each node at the beginning of period ¢ and «w(z) be a vector of uncontrolled
reservoir inflows (in cubic meters) that have occurred in period ¢. These define a water
balance constraint

x(t+1)=x(t)—Au(t)+ w(t), t =1,2,...,T.

The hydro generators are accompanied by thermal generators j € 7 that produce
a vector v of energy that costs 3. C;(v;) to produce, where C; is a strictly convex
function. Demand of consumer segment ¢ € 6 is represented by d,, where the strictly
concave function D,(d,) denotes the welfare accrued by consumer segment c. Note
that the derivative D! represents the inverse demand curve for consumer ¢, which is
strictly decreasing by assumption. Demand must be satisfied in each time period, so,
in a deterministic model,

/

DGt + D vi()= D d (1), t=1,2,...,T.

k=1 €T ceE€

When inflows to the reservoirs are random variables, the sequence of time intervals
1,2,...,T is replaced by a stochastic process. We represent this by a scenario tree, as
shown in Figure 31.1. Here each scenario tree node 7 spans a period ¢ (which in our
models is a week) and corresponds to a realization (%) of reservoir inflows in that
period. To account for different inflow sequences, all variables previously indexed by
t are now indexed by 7. Each node has probability ¢(7), where the probabilities of
nodes in a given period sum to one. We denote by #— the unique parent node of node
n and by n+ its set of children.

The leaf nodes £ of the tree correspond to the end of the decision horizon (pe-
riod 7). For each leaf node 7 € £, we specify a strictly convex future-value function

V., (x(n)) that measures the total future welfare in state 7 of having reservoir levels

We are now in a position to formulate a stochastic social planning (SSP) problem.

This is

SSP: min Z ¢(”)<ZC]'('U]'(”))_ZDC(‘{C(”))

neN €T ceb

->. ¢<n>V<x<n>>>

ne¥

I
subject to (s.t.) ZGk(uk(n))+ va]»(n) > ch(n), neN,

k=1 €T ceC
x(n) = x(n—)—Au(n)+ w(n), neN,

d(n)>0,v(n)>0, x(n)eX,u(n)e¥U,neN.
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Prob ¢(n)

Figure 31.1. Each node n spans a period and corresponds to a realization Q(n) of reservoir
inflows in that period.

Here we assume that & and % are compact convex sets and SSP has a nonempty
feasible region. We shall assume in what follows that all nonlinear constraints satisfy
constraint qualifications to guarantee the existence of Lagrange multipliers. In partic-
ular, we have Lagrange multipliers (1) p(n) for each n € A so that we can solve SSP
by minimizing the Lagrangian

LSSP: min Zgﬁ <Zp )d.(n) ZDC(d(n)

neN cEE cEE

/
+Z(cj<v,<n>>—p<n>v/~<n>)—V<x<n>>—2p<n>ck<uk<n>>>

€7 k=1
s.t. x(n)=x(n—)—Au(n)+ w(n), neN,

d(n)>0,v(n)>0,x(n)e X, u(n)e¥U,neN.

LSSP separates by agent. The consumer solves

CP(e):max > ¢(n)(D(d (n))— p(n)d.(n))

neN
st. d.(n)>0.

Each thermal generator solves

TP():max S $(n)(p(n)v;(n)—C;(v,(n))

neN

st. v;(n) =0,
and the hydro generators together solve

HP: max Z P(n Zp n)Gy, (uy(n))+ Z d(n)V(x(n))

neN nelf
s.t. x(n)_x( ) Au(n)+ w(n), neN,

x(n)eX,u(n)e U, neN.
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If all the river chains are operated by a single agent, then HP represents the problem of
maximizing this agent’s expected revenue and residual value given prices p(7) in each
state of the world. If there is more than one hydro agent and HP is not separable by
agent, then we require an additional condition to establish a correspondence between
competitive equilibrium and an optimal social plan. Let S denote the set of hydro
agents and x; the vector of water stocks for reservoirs operated by agent i. We require
the existence of functions V(x;) so that

=> Vilx(n
1€

Even with this condition, to enable a separation into agent problems, in general we
require a price ¢(n)m(n) for the flow conservation constraint. This gives a Lagrangian
for HP, which is

L(x,u,7) ZQS Z n)Gy (n,(n +Z¢ sz(xz(”»

neN nel 1€
+> $(n) n—)—Au(n)+ w(n)—x(n)),
neN

that we maximize over x(n) € X, u(n) € U . £ (x,n, ) can be rearranged to give

L(x,u,m) Z d(n <Zp n)G,, (n,(n))—n(n )TAu(n)>

neN
Zmen+¢ )7‘[(7}’1)
+ n)x(n —t(n
2 Pt )< 3(n) ( >>
+ > () D (Vilx,(n)— mi(n)x;(n)
ne¥ e
+ Z gzs(n)n(n)Ta) n
neN

The values of 7(n) are water prices, often called marginal water values. At the end of
the planning horizon, if x;(7) is not at a bound, then we require for a maximum that

Vi) =), ne.
For flow #,,(n) through station arc k from 4 to 7, we have
—re(n) Au(n) = (rt,(n) — 7)) my(m),
so the owner of station k attempts in state of the world 7 to maximize
/
;P )Gy, (7)) + (70, (n) — 72, (n)) 1y, ().

In other words, he/she maximize revenue from u,(n) at price p(n), while paying
7, (n) for upstream water and getting paid 7t;(7) for the water supplied to the down-
stream reservoir. At the optimal solution #;, we have

my(n)—m;(n) = p(n)Gy (u(n)), (31.1)
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which relates the spot price of energy p(n) to the marginal water value difference and
the marginal conversion factor from water to energy.

A reservoir owner in state of the world 7 makes x() as large as possible when the
expected marginal water value at the next time period exceeds that at the current period
and makes x(7) as small as possible when the expected marginal water value at the next
time period is lower than that at the current period. These prices in equilibrium enable
different owners on the river to extract the maximum welfare from the water. If there
is no possibility of trading in water at market prices, then the market is incomplete,
and the competitive equilibrium may not be the same as the optimal social plan. This
observation is well known and is studied by Lino et al. [1198].

Henceforth we will assume that all the reservoirs and generating stations on a given
river chain are owned and operated by the same generator, and that all the river chains
have separate catchments. This means that HP separates into independent river chains
each operated by a single agent. Hydro agent i solves

1(z)
HP(): max . ¢(n) D p(n)Gy (m(n) + D $(n)Vi(x(n))
k=1

neN nef
st. x(n)=x(n—)—Au(n)+ w(n), neN,
x(n),u(n) >0,
where now x(7) (e (7)) denotes the vector of reservoir storages (inflows) on river chain
i and #(n) € R the vector of flows through the /(i) arcs in the river chain.

This defines a perfectly competitive equilibrium defined by the individual optimal-
ity conditions and market clearing condition:

CE: u'(n),x'(n) € argmax HP(:),
v;(n) €argmaxTP(7),

d.(n) € argmax CP(c),

1) A
0< D > Gy (#(n) + D v;(n)— > d.(n) L p(n)>0.

i€ k=1 €T ce6
By comparing optimality conditions, we have the following result.

Proposition 31.1. Suppose all the reservoirs and generating stations on any given river
chain are owned and operated by the same generator and

V(x)= > Vilx).

1€

The (unique) welfare-maximizing solution to SSP is the same as the (unique) competitive
equilibrium solution to CE.

Each model HP(z) can be solved by computing an optimal water release policy to
maximize the expected revenue at energy prices p(7). The optimal policy will gener-
ate Lagrange multipliers 7t(7) for the water conservation constraints. These will be
related to the energy prices through (31.1). When each hydro agent controls a single
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reservoir, then it is tempting to suppose that its optimal water release policy can be
computed by price decomposition and DP. Unfortunately, this is not always straight-
forward because the energy prices p(7) are not guaranteed to be stagewise independent
even if the inflows are independent [166]. On the other hand, DP can be applied to
the system optimization problem as long as the number of reservoirs (corresponding
to states) is not too large. Given a system optimal solution to the social planning prob-
lem, it is possible to derive the competitive equilibrium prices and agent policies using
the above proposition.

In the next section, we study the computation of competitive equilibrium prices
for the simplest possible system, with one hydro agent and one reservoir. We then
show how models with several reservoirs might be solved using SDDP [1458, 1671].
We conclude with some results of estimating competitive prices in the New Zealand
wholesale electricity market.

31.3 = A Single-Reservoir Model

One of the first models for reservoir water valuation was developed by Stage and Lars-
son [1713]. It seeks to compute marginal water values w;(t) corresponding to discrete
reservoir levels 7 = 0,1,..., N using a form of policy iteration. When the reservoir is
full 7 = N), the marginal value of water is set to zero (here we assume that surplus wa-
ter can be spilled with no penalty). When the reservoir is empty (i =0), the marginal
value of water is set to some high value that we denote as C. Typically this will be a
shortage cost, also known as the value of lost load. Note that this convention implies
that the marginal value at level 7 is the directional derivative
w; =W, — Wiy,

where W, is the average expected cost of meeting demand in each future period if the
current reservoir level is i. If W is linearly interpolated, then we obtain a nonsmooth
convex function. This implies

Ww.

1—1

—Wi=w_ 2w, =W, — W,
with strict inequality occurring as the rule.

The expected marginal value of water at level i = j, say, is determined in [1713]
by constructing sample paths of reservoir levels that would be produced by an opti-
mal release policy (say to meet a known demand) under random sequences of inflows.
Starting at level 7 = j at time of year ¢, s out of § such sample paths will reach i =0
before i = N. The expected marginal water value w(z) is then estimated to be zC.
This process is repeated for all starting levels and times.

Although the Stage and Larsson method is quite general, we will examine it here as
applied to a specific problem instance. We assume that reservoir inflows are stagewise
independent and have the same distribution at each time of the year. Thus we can
dispense with the time index in the formulation and seek values w;. To simplify the
analysis further we will assume that the reservoir has inflow in each period that equals
two with probability p and zero with probability (1— p). Demand for energy requires
that we release exactly one unit of water in each period. Thus in each time step the
reservoir level is a simple random walk, increasing by one unit with probability p and
decreasing by one unit with probability 1 — p. Observe that there is no policy choice
since the water usage is prescribed by demand. In this setting, the Stage and Larsson
method amounts to iterating toward the solution of a fixed-point problem.
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In other words, we obtain the following procedure:

Set v=0, w’ =0
repeat
for i=0toN do

if:=0, set inH: C;

ifi=N, set wl.”'l = 0

if0<i<N, setwt'= (1—p)w!  +pw!;

end for;
set vi=v+41

until  w"tl=w.

It is easy to see that this procedure converges to the fixed point defined by

w,=(1=p)w,_+pw,, i=12,....N—1, w,=C, wy=0. (312

1

In fact this simple model can be solved exactly for w because there is a closed-form
solution for the probability that any random walk starting at i = j will hit barrier

i = O before it hits barrier = N (see, e.g.,[854]). When p = 0.5, this gives w; = C%.
Otherwise, letting » = FTP, we get
o — C%<77+77+1+---+7N_1>, j <N,
/ 0, j=N
The solution corresponds to the fixed-point calculation
N+ Wo=C+(1—p)(Wo)+pW,,
n+W,=(1=p)W,_+pW, 4, :=1,2,...,,N, (31.3)

WN+1 =Wy,

for an average cost per period Markov decision process, where 7 is the long-run average
cost per period of meeting demand. Given a solution W to (31.3), it is easy to see that
setting w; = W, — W, solves (31.2).

An alternative model uses discounting. Suppose costs are discounted in each period
with rate o, giving a discount factor y = HLQ This gives a slightly different fixed-point
problem:

w,=(1=p)yw,_+pyw,,, :=12,...,.N—1, w,=C, wy=0. (31.4)
The discounted solution corresponds to the fixed-point calculation
Wo=C+y((1—p)Wo+ pW,),
W=y (1=p)W,_ +pW,y), i=12,...,N, (31.5)
N1 = Wy
Here W, is the expected discounted cost of meeting demand starting from reservoir
level 2 = j. Given asolution W to (31.5), setting w; = W; — W, ; solves (31.4).
In both of these models there is an implicit assumption on how shortage costs are

incurred. When the reservoir level hits zero, it is assumed that the cost C is incurred
immediately. This assumes that none of the inflow occurring over the next period



Andy Philpott 413

31.31=

can be used to cover demand. In other words, this is a here-and-now or decision-hazard
problem, which is modelled using (31.3) or (31.5).

In contrast, one might use a wait-and-see or hazard-decision assumption. Given a
reservoir level 7 = j, the random inflow is observed and used with reservoir water to
meet demand if possible. Inflow that cannot be stored is spilled. Thus, when the reser-
voir is empty, with probability 1— p we must meet demand with no inflow, incurring
a cost of C, resulting in an empty reservoir, or we meet demand with an inflow of two
units, leaving the reservoir with one unit in it. When the reservoir is full and inflow
is two, we can use half of it and leave the reservoir full. If the inflow is zero, then the
reservoir moves to state N — 1. The fixed-point problem (31.3) is now

n+S=1—p)C+5)+pS,,
77+Sl:<1_P)Slfl+pSl+l’ i:1,2,...,N, (31.6)
Snt1 =N

and (31.5) becomes

So=(1=pNC+rS)+prSH
S, =(1=pyySiy+prSiy1»  i=1,2,...,N, (31.7)
Snt1 = Sws

where in (31.6) S is the expected (wait-and-see) discounted cost of meeting demand
starting from reservoir level 7 = 7, and in (31.7) §; is the corresponding value in the
average cost per period model.

Thermal Generation

The Stage and Larsson methodology can be extended to a setting where the policy
being simulated generates energy using thermal plant (at some cost) as well as using
releases from the hydro reservoir. This is the basis for a number of reservoir optimiza-
tion models in practical use (see, e.g., [326]). It is important to observe that the values
w; derived from such a simulation will only be an expected marginal value for an opti-
mization problem, if the policy being simulated is indeed optimal for that problem. In
other words, the expected marginal value of water is the expected extra benefit that ac-
crues from using this water in the most beneficial way. The optimal policy ultimately
requires the solution of a stochastic dynamic optimization problem.

To include thermal generation in our example, we alter demand so that it is two
units per period and suppose there is a thermal generator that costs ¢ < C to produce
one unit of energy. Thus, to meet demand, we can either release two units of water or
release one unit of water and run the thermal plant. The thermal generator is assumed
to be flexible in that it can be switched on and off with no penalty. It is typical to
specify an optimal policy in terms of a marginal water value as follows. If ¢ < w;, then
we run the thermal plant. If ¢ > w;, then we release water. If ¢ = w;, then the policy
can be any combination of thermal generation and water release.

In this model, the Stage and Larsson methodology (with discounting) might yield
the following marginal water value algorithm:
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Set v=0, w’=0;
repeat
for i=0to N do

ifi=0, set wl.VH: C;

ifi=N, set wl‘.’H: 0;

if0<i<N, ifw'<c, w™=1-pyw ,+pro;

if w!>c, fwiv+1 =(1—pyyw! +pyw!
end for;
set v:i=v+1;

until  w@w*tl=w.

If we relax the integrality constraint so that the thermal plant can generate any
amount between zero and one, then the marginal water value will equal ¢ when this
plant is partially dispatched. There is a range of fractional water levels between x and
x + 1, say, for which this will be the optimal action. For almost every instance of this
relaxed problem, the marginal value of water will equal ¢ at exactly one integer level
i and be different from c for other levels. The correct stationarity conditions (for any
choice of y) that correspond to the minimum cost solution are

w,=C,

w, =y ((1=p)w,_ +pw,), i=1,...k—1,

Wy = ¢ € [Wpyp, @], i=k, (31.8)
w,=y((1—plw,_,+pw), i=k+1,.,N—1,

wy =0.

The correct value of k can be found by computing an optimal policy. Let W, denote
the expected future discounted cost of meeting demand. The here-and-now fixed-point
problem (with discounting) is

Wo=C+c+y((1=p)Wo+pW)),
Wi=c+y(1—p)Wo+pW)),
W =minfc+y (1=p)Wioi +pWipt)y (1=p)Wia +p W)} i=2,.0N,
Wy = Wy
(31.9)
The optimal solution gives a threshold type of policy, i.e., we release two units of
water if
Y ((A=pWia+p W) <c+y(1=p)Wiei +pWi)
or
>y ((1=p)w;_,+ pw;).
The right-hand side is the expected discounted marginal water value if we meet de-
mand from hydro only, and water is released if this is less than the cost ¢ of thermal
generation.
An optimal policy can be found using linear optimization (LO) and determines a
threshold index k& below which the thermal plant is always run at capacity and above
which it is not. Given this value of &, the optimal policy satisfies

Wo=CHc+y(1=p)Wo+pW)),
Wy=c+y(1—p)Wo+pW)),
Wi=cty((I=p)W_ i +pWpy), i=2...k
W, =y ((1—p)W,_,+pW,), i=k+1,...,N
Wyt = Wy
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By setting w; = W, — W,

1> we can derive the marginal values w that will hold at
optimality. These satisfy

wy=C,

w, =y (1=p)wi_+pwi ), i=1...k—1,

W =C €[ Wy, W],

w; =y ((1—p)w,_,+pw,;), i=k+1,...,N—1,

wy =0, (31.10)
which are the same equations as (31.8).

The case without discounting is similar. If we form an average cost per period
Markov decision problem, then we seek the solution to

max g
Wo=—n+C+c+(1—p)Wo+pW,,

W1:_0+C+<1_P>W0+PW2’ (3111)

‘WZS_’7+C+(1_P>VVZ—1+p‘X/l+1’ Z:2)"')Ns
W, <—n+(1—=p)W, ,+p W, 1=2,...,N,
WNJrl:WN'

As before, the optimal policy can be found using LO and determines a threshold index
k below which the thermal plant is always run at capacity and above which it is not.
Given this value of k, we can derive the marginal values w that will hold at optimality.
This gives the system

w,=C,

wi:(l_P)wi_1+pwi+1, izl,...,k—l,

=6 (31.12)
w,=(1—p)w, ,+pw;, i=k+1,...,N—1,

wy =0,

which is the same as (31.8) when y = 1. In fact in the average cost per period Markov
decision problem for this system, k turns out to be always equal to N — 1, and

C, 1 =0,
CitC(N—1—i) . _ o
w={ N1 > i=L.oN=2 (31.13)
c, 1=N—1,
0, i=N,
when p =0.5 and
C, 1 =0,
1—r ; i+1 N-2
leﬁﬁ‘,l(rl_'_rl —|—...+_,; >, =1 N—2
w; = +CW(1+7+...+71 ) (31.14)
c, 1=N—1,
0, i=N

otherwise.

Proposition 31.2. If C > c, then there is a unique monotonic solution to (31.12) defined
by choosing k = N — 1.
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Proof. 1f k < N —1, then

Wpy1 = ((1 —p)wp_+ P’wk+1) )
yielding
@1 = @h—1>
and hence by monotonicity of w;, we obtain
Wp—1 = Wp1 = W =C-
Solving
w; =(1=p)w; 1+ pw;y,

fori=1,...,k—1gives
w,=c¢, 1=0,....k+1,

contradicting wy = C > ¢. Thus # = N—1, and the unique solution is given by (31.13)
if p=0.5,0r (31.14) if p #0.5. a

31.4 = Multiple-Reservoir Models

In most real applications, marginal water values are obtained from the optimal op-
eration of many reservoirs, sometimes linked in a cascaded river system, and almost
always linked by some electricity transmission system. When the number of reservoirs
is larger than two or three, representing their optimal operation using Markov decision
problems becomes more difficult, due to the curse of dimensionality. Approximations
of various forms are necessary.

The approximation in widespread use is based on the SDDP algorithm of Pereira
and Pinto [ 1458]. Here the marginal values of water emerge from an approximate stage
problem that is modeled as an LO problem. This method can be shown to converge
to an optimal policy almost surely under mild assumptions on the sampling process
(see [804,1471]). The subgradients of the optimal value function define the marginal
water value.

The class of problems we consider have T stages, denoted by r = 1,2,..., T, in each
of which a random right-hand side vector b,(w,) € R” has a finite number of realiza-
tions defined by w, € 2,. We assume that the outcomes w, are stagewise independent,
and that ©, is a singleton, so the first-stage problem is

z=min ¢ x; +E[Q,(x},,)]
st. Ayx;=by, (31.15)
Xq >0,

where x; € R” is the first-stage decision, and ¢; € R” is a cost vector, A, isan m X n
matrix, and b, € R™.

We denote by Q,(x;,w,) the second-stage costs associated with decision x, and
realization w, € Q,. The problem to be solved in the second and later stages ¢, given
decisions x,_; and realization w,, can be written as

Qt(xt—l’ C‘)t) = min Ctht + ]E[Qt+1(xt’ C‘)z+1)]
st. A,x,=b,(w,)—E,x,_, [7,(w,)], (31.16)
x, >0,
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where x, € R” is the decision in stage ¢, c, its cost, and A, and E, m X n matrices. Here
7,(w,) denotes the dual variables of the constraints. In the last stage we assume either
that E[ Q. (7, w7,)] = 0 or that there is a convex polyhedral function that defines
the expected future cost after stage 7'. For all instances of (31.16), we assume relatively
complete recourse, whereby (31.16) at stage ¢ has a feasible solution for all values of
x,_; that are feasible for the instance of (31.16) at stage r — 1. Relatively complete
recourse can be ensured by introducing artificial variables with penalty terms in the
objective.

The SDDP algorithm performs a sequence of major iterations, each consisting of
a forward pass and a backward pass through all the stages, to build an approximately
optimal policy. In each forward pass, a set of N scenarios is sampled from the scenario
tree and decisions are made for each stage of those N scenarios, starting in the first
stage and moving forward up to the last stage. In each stage, the observed values %, (s)
of the decision variables x,, and the costs of each stage in all scenarios s, are saved.

The SDDP algorithm builds a policy that is defined at stage ¢ by a polyhedral
outer approximation (OA) of E[Q,, (x,,w, )]. This approximation is constructed
using cutting planes called Benders cuts, or just cuts. In other words, in each zth-stage
problem, E[Q, (x,,w, )] is replaced by the variable &, , |, which is constrained by
a set of linear inequalities

01— & p X Zhriips  kE=12..K, s=12,..,N, (31.17)

where K is the number of backward passes that have been completed and g and 5 are
defined by (31.20) and (31.21) below.
With this approximation, the first-stage problem is

— T
z=min ¢ x;+0,

st. Ayx; =by, )
62—g‘2T,€,lezh2,,€’s, k=1,2,....K, (31.18)
s=1,2,...,N,
Xq >0,
and the tth stage problem becomes
Qy(x,_y;,) = min Ctht + 9t+1
s.t. Azxt :bt(wt>_Et t—1 [nt(wt)]
01— &1 Z P k=12, K, (3119
s=1,2,...,N,
x, >0,

where we interpret the set of cuts as being empty when K =0.

At the end of the forward pass, a convergence criterion is tested, and if it is satisfied
then the algorithm is stopped; otherwise it starts the backward pass, which is defined
below. In the standard version of SDDP (see [1458]), the convergence test is satisfied
when z, the lower bound on the expected cost at the first stage, is statistically close to
an estimate of the expected total operation cost obtained by averaging the cost of the
policy defined by the cuts when applied to the N sampled scenarios. In this simulation,
the total operation cost for each scenario is the sum of the present cost (¢, x,) over all
stages ¢ and any end-of-horizon future cost.

If the convergence criterion is not satisfied, then SDDP amends the current pol-
icy using a backward pass that adds N cuts to each stage problem, starting at the
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penultimate stage and working backward to the first. To compute the coefficients for
the cuts, we solve the next-stage problems for all possible realizations (€, ;) in each
stage ¢ and scenario s. The cut for (31.19), the ¢th (approximate) stage problem in
scenario s, is computed after its solution X (s) has been obtained in the forward pass
immediately preceding the backward pass k. Solving the (¢ 4 1)th (approximate) stage
problem for every w, ; €9, gives 77,1,  =E[7, (e, )], which defines the cut

gradient
- T
8tk = TrpipsLrr (31.20)
and its intercept
h =E[Q,,(x*(s), w0, )+ 7, E,  xF(s). (31.21)
t+1,k,s t+1\ "t s %1 t+1,k,s 17t

The SDDP algorithm is initialized by setting , = —oc0, t =2,...,T,K =0, k =
1. Thereafter, the algorithm performs the following three steps repeatedly until the
convergence criterion is satisfied:
1. Forward Pass
For t = 1, solve (31.18) and save a'cf(s) =x;,s=1,...,N,and 7k =z;
Fort=2,...,Tands=1,...,N,
Solve (31.19) setting x, , = y_cf_l

QL () ,):
2. Standard Convergence Test (at 100(1— @)% confidence level).

(s), and save xF(s) and

N T
Calculate the upper bound: z, = % S ST xk(s),
s=1t=1

o=\ A (Sere)

s=1

Calculate the lower bound: z;, = z¥;
Stop if
Za

zl>zu—ﬁz\ja

ud

where Z, is the (1— ) quantile of the standard normal distribution;
otherwise go to the backward pass.
3. Backward Pass
Fort=1T,...,2,ands=1,...,N,
For w, € ,, solve (31.19) using x*_,(s) and save g = E[7,(w,)]
and Qt(a_cf_l(s), w,);
Calculate the kth cut for s in stage t — 1 using (31.20) and (31.21).
Set K=K+1,k=k+1.

SDDP terminates when the estimated value z, of the current policy is closer than

N

x
2

70, t0a lower bound z; on the optimal value. The expected value of an optimal
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policy for the model (with finitely many inflow outcomes) can then be assumed to lie
in the interval [z, 2, + %au] with probability at least (1— ).

Energy prices are deduced from the solution to SDDP by simulating a single
stage of the (approximately) optimal policy (using cutting planes to represent the Bell-
man function) and recording the shadow prices on the demand constraint. Marginal
water values in each reservoir at level x are determined from the subdifferential of
E[Q,(x,_;,w,)] evaluated at x. Often this will be a singleton defined by the coetfi-
cients of the highest cut at x.

It is important to observe that the above algorithm operates under a wait-and-see
assumption. In other words, we solve (31.19) with full knowledge of the current pe-
riod’s inflow, which can be used to generate electricity to satisfy demand. This means
that shortage costs might be avoided even when all reservoir levels are at their min-
imum (see Section 31.2 above). Since shortages arising in simulations of an optimal
policy yield marginal water value estimates, the wait-and-see assumption is likely to
underestimate prices.

Based on the single-reservoir analysis, an optimal generation schedule will use a
merit order of water release and thermal generation based on marginal water value
and marginal cost. With linear dynamics and with linear production functions, this
produces a bang-bang type of control policy. It is well known, however, that many
such systems admit singular control (i.e., one not uniquely determined by the adjoint
solution). For example, the separated continuous LO problems discussed in [81] have
this property. Examples in a hydro-scheduling context are given in [ 1468].

31.5 = Application

We now show how SDDP can be applied to estimate wholesale prices for the New
Zealand electricity system under the assumption of perfectly competitive risk-neutral
agents. We begin by solving a model in which the inflows are assumed to be stagewise
independent. We use the DOASA software described in [1473].

We seek to estimate New Zealand wholesale electricity prices for the week begin-
ning March 10, 2008. The physical characteristics of the system are described in [1473]
and [1472] (which together provide a more detailed study of the New Zealand whole-
sale electricity market over the period 2001-2008). The electricity network shown in
Figure 31.2 is approximated by a four-reservoir system by aggregating the storage reser-
voirs in the Waitaki river system into a single lake (Lake Waitaki). The resulting Wait-
aki system is shown in Figure 31.3.

Lake Ohau (OHU), which has limited storage capacity, is now treated as a run-
of-river resource, and reservoirs Benmore (BEN), Pukaki (PKI), and Tekapo (TEK)
are treated as a single lake. Since these occur in a cascade in the river system, the ag-
gregation of water in each must account for their specific energies. Thus Benmore and
Pukaki storage and inflows are discounted by their specific energies before being added
to the aggregate Lake Waitaki, which has the same specific energy as Tekapo. To allow
for the storage ability of Benmore and Pukaki, Lake Waitaki water can be restored
to these lower lakes through the arcs connecting Lake Waitaki to its children. These
arcs have multipliers that inflate the water volume transferred to correspond to the
difference in specific energies of Lake Waitaki and the lower lakes.

The transmission network is approximated by three nodes, one for the South Island
and two for the North Island. Limits on power transfer between nodes correspond to
reported transmission limits. Energy deficit in any stage is met by load shedding at an
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Figure 31.2. Approximate nerwork representation of New Zealand electricity nerwork
showing main hydroelectricity generators. Reprinted with permission from Elsevier [1473].

increasing shortage cost in three tranches. This is equivalent to having three dummy
thermal plants at each node with capacities equal to 5% of load, 5% of load, and 90%
of load, for each load sector, and costs as shown in Table 31.1. Load shed above 10% of
demand costs a value of lost load of $20,000/MWh, which is roughly equivalent to five
hours of load curtailment per year assuming annual amortized peaking-plant costs of

$100/kW.

Table 31.1. Load reduction costs (NZD/MWh) and proportions of industrial load, com-
mercial load, and residential load in each island.

Upto5% 5%to10% Above 10% NorthIs. SouthIs.

Industrial $1,000 $2,000 $20,000 0.34 0.58
Commercial $2,000 $4,000 $20,000 0.27 0.15
Residential $2,000 $4,000 $20,000 0.39 0.27

We choose historical inflows from each week in the years 1997-2006 to give an
empirical inflow distribution with 10 outcomes per stage. We assume that these are
stagewise independent.

The first model attempts to compute an optimal policy for 52 weeks starting at
midnight on March 10, 2008. The computed electricity prices for the week beginning
March 11, 2008, are the same at each node. They are $38.45/MWh, $38.76/MWHh,
and $39.84/MWh, corresponding to off-peak, shoulder, and peak periods. We can
simulate the corresponding policy using inflows sampled from the assumed stagewise-
independent distribution. This gives storage levels in Lake Waitaki from 100 random
sequences, as shown in Figure 31.4. If we simulate the same policy with the 30 most
recent historical inflow sequences, then we obtain storage levels in Lake Waitaki as
shown in Figure 31.5. The storage levels shown hit both extremes more often than the
simulation that assumes stagewise independence.

A heuristic that has been suggested to overcome the optimistic biases from assum-
ing stagewise independence is called inflow spreading [ 1548]. Assuming independence
over k weeks results in a lower variance in total inflow over this period than the data
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Figure 31.3. Aggregated model of Waitaki system with storage lakes Pukaki, Tekapo, and
Benmore combined to make Lake Waitaki. Their inflows (scaled by specific energies) combine to
produce an inflow ro Lake Waitaki.

support. Inflow spreading modifies the inflows using a heuristic that increases the
variance of assumed independent inflows so that the variance of &£ consecutive inde-
pendent inflows matches the observed variance of this sum.

Consider historical inflow sequence 4(z,y) of inflows in week ¢ of yeary =1,2,...,
N, and suppose k = 4. Let

w(t,y)=h(t,y)+h(t+1,9)+h(t+2,y)+h(t +3,y),

2, h(t,y) 2, w(t,y)
“(t):yTs b(t):yT,

()b},
2

and
d(t,y)=max {O,a(t) +
The model then uses adjusted inflows

_ Nd(t,)a(r)

AEN=5 )
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Figure 31.4. Simulated volumes in Lake Waitaki reservoir for 100 randomly generated
inflow sequences.

Figure 31.5. Simulated volumes in Lake Waitaki reservoir for historical inflow sequences
1979-2008.

An optimal policy for 52 weeks starting at midnight on March 10, 2008, can be
computed using adjusted inflows with & = 4. We can simulate the corresponding pol-
icy using inflows sampled from the assumed stagewise-independent distribution. This
gives storage levels in Lake Waitaki from 100 random sequences (with spread inflows)
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Figure 31.6. Inflow spreading policy simulated volumes in Lake Waitaki reservoir for
100 randomly generated inflow sequences.

Figure 31.7. Inflow spreading policy simulated volumes in Lake Waitaki reservoir for
historical inflow sequences 1979-2008.

as shown in Figure 31.6. If we simulate the same policy with the 30 most recent his-
torical inflow sequences, then we obtain storage levels in Lake Waitaki as shown in
Figure 31.7. The stock levels hit zero in only one year out of 30. The electricity prices
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for the week beginning March 11, 2008, are computed and are the same at each node.
They are $40.10/MWh, $40.81/MWh, and $41.02/MWHh, corresponding to off-peak,
shoulder, and peak periods. The inflow spreading has resulted in slightly higher prices.

The prices estimated by our model have been computed using SDDP, which makes
use of a sampling procedure. This means that there will be some sampling error in their
estimation. We first attempt to estimate this error by simulating the policy that we have
obtained with perturbed initial reservoir levels. A simulation of the optimal (inflow
spreading) policy over 2,500 random inflow sequences yields a sample average optimal
cost of $354,861,576. Increasing the initial reservoir volume by 1 million cubic meters
and simulating with common random numbers yields a sample average optimal cost
of $354,812,679. The difference in costs is $48,897, with a standard error of $2,685.
Assuming that the SDDP policy is optimal yields an estimate of marginal water value
for Lake Waitaki of $0.0489/m°, with a 95% confidence interval [0.0435, 0.0543]. To
convert a cubic meter to an energy value, we must divide by the specific energy of
Lake Waitaki, which is 0.001131 MWh/m?, giving a 95% confidence interval for the
perfectly competitive wholesale Benmore price of [$38.46, $48.01].

31.6 = Discussion

One can compare the computed estimates of weekly prices with observed prices in the
New Zealand wholesale market in the week beginning March 11, 2008. These range
from $60/MWh to $190/MWh. The marginal water values computed by our SDDP
algorithm are significantly lower than those reflected in observed electricity prices.
There are several possible causes of this.

1. Poor representation of stagewise dependence in inflows: We have represented
stagewise dependence in inflows using an inflow spreading heuristic based on
the approach currently used by some New Zealand electricity generators. We
have also ignored the melting of snowpack, which affects the inflow dynamics
in the Waitaki catchment. The true reservoir inflow processes in New Zealand
exhibit a more complicated long-range dependence than we have in our model.
New inflow models that aim to improve the modeling of this dependence are
discussed in [1518].

2. Wait-and-see representation of uncertainty: Our SDDP model assumes that in-
flows are observed in any week before release decisions are made for that week.
As discussed above, this assumption implies that the model will underestimate
the probability of a shortage event, which will underestimate marginal water val-
ues. On the other hand, local meteorologists make reasonably reliable weather
forecasts for the next three to five days, so we conjecture that the wait-and-see
model should give reasonably accurate estimates, all else being equal.

3. Assumptions about constant fuel costs not reflecting fuel contract structure: In
the New Zealand wholesale market, all large electricity generators (including
thermal generators) offer increasing supply functions to the system operator. We
have assumed that thermal short-run marginal cost is constant for each plant, so
these supply functions in our model are assumed to be constant. Increasing sup-
ply functions for thermal plant are often interpreted as evidence of market power
exercise, but they have alternative explanations. The owners of these plants typi-
cally operate under fuel contracts that affect the cost of their day-to-day fuel con-
sumption. For example, coal is stockpiled, and so if replenishment is expensive
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and time-consuming, its marginal value increases as a stock is depleted. On the
other hand, gas is typically supplied under take-or-pay contracts over a contract
period of several months. This effectively makes above-average consumption in
any period more costly as it incurs a risk of exceeding the contract volume and
having to pay a penalty.

Agents making different assumptions about the probabilities of dry inflow
outcomes: We have assumed that all agents have the same probability distribu-
tion of inflow outcomes, sampled with equal probability from historical records.
Recent climate observations (such as El Nino Southern Oscillation forecasts)
might affect agents’ subjective assessments of these probabilities.

Agents acting strategically in offering generation at higher than competitive
prices: We have assumed that all agents act as price-takers. This is not required by
the rules governing the operation of the New Zealand wholesale electricity mar-
ket. Some increase in price might be attributed to agents behaving strategically.

Agents not being risk neutral: We have assumed that all agents are risk
neutral, and so they act to maximize expected profits. However, generators and
purchasers are generally risk averse, so there is a possible discrepancy between a
social optimum (and corresponding marginal water values) and a competitive par-
tial equilibrium. This dlscrepancy is explored in detail in [ 1470], where competi-
tive agents facing uncertain reservoir inflows are endowed with possibly different
coherent time-consistent risk measures. In [ 1470], it is shown that if enough con-
tracts are made available to agents to trade, and they are not too different in their
attitudes to risk, then a social risk measure emerges in equilibrium that can be
used to compute a risk-averse social plan that coincides with the partial competi-
tive equilibrium. The risk-averse social plan can be computed using a risk-averse
version of SDDP (see [1469]). In this setting, prices will increase as agents trade
off their current costs against risk-adjusted future costs, which will make them
more conservative than a risk-neutral agent when water is scarce. If the market
for risk is incomplete, so thermal plant owners and hydro plant owners have no
ability to hedge their different risk positions, then a perfectly competitive equi-
librium need not correspond to a social planning solution, even if the planning
solution is risk averse. Of course, even if we assume completeness in markets for
risk, agents in hydro-dominated electricity markets face a plethora of commer-
cial risks apart from uncertain inflows (which are the sole source of uncertainty
in our model). It is conceivable that these other uncertainties are regarded as
more critical than inflow risk, influencing the price markups we observe in the
week beginning March 11, 2008.

Identifying which combination of these factors is driving the difference between mod-
eled and observed prices is difficult. However, for regulators of hydro-dominated
electricity markets who monitor inefficiencies arising from imperfect competition or
market incompleteness, this is a critically important task. SO models and stochastic
equilibrium models are powerful tools to enable this to happen.






