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Abstract

We consider an electricity generator making offers of energy into an electricity pool
market over a horizon of several trading periods (typically a single trading day).
The generator runs a set of generating units with given start-up costs, shut-down
costs and operating ranges. At the start of each trading period the generator must
submit to the pool system operator a new supply curve defining quantities of offered
energy and the prices at which it wants these dispatched. The amount of dispatch
depends on the supply curve offered along with the offers of the other generators and
market demand, both of which are random, but do not change in response to the
actions of the generator we consider. After dispatch the generator determines which
units to run in the current trading period to meet the dispatch. The generator seeks
a supply function that maximizes its expected profit. We describe an optimization
procedure based on dynamic programming that can be used to construct optimal
offers in successive time periods over a fixed planning horizon.



1 Introduction

There has been much attention in the power-systems optimization literature to unit
commitment problems. Traditional unit commitment addresses the scheduling of
start-up/shut-down decisions and operation levels for power generation units such
that fuel costs over some time horizon are minimal. This optimization problem
has received extensive coverage in the literature, see for instance [18]. With the
emergence of electricity trading, the prime objective in power optimization has
shifted from cost minimization to profit maximization. Integrated optimization
of power production and trading then becomes a crucial issue. This optimization
problem is inherently uncertain due to the lack of information agents in power
markets are facing about competitors’ market behaviour.
Stochastic programming offers a variety of models and solution techniques for

optimization under uncertainty. First stochastic programming contributions to unit
commitment consider uncertain parameters as exogenous random variables inde-
pendent of the decisions to be optimized. A prominent example is uncertainty of
power demand as has been addressed in [6], [8], [12], [20] for generation systems
including coal and gas fired thermal units as well as pumped-storage plants. Mod-
elling leads to large-scale mixed-integer linear stochastic programs with inherent
block structure. The latter is utilized for different decomposition algorithms, see
[17] for an overview.
This paper aims at optimizing energy offers into an electricity pool market made

by a utility who is running a power system consisting of thermal units. In electricity
pool markets each generator submits offers of energy in the form of supply curves
that specify how much they will offer to the market at each price. The central
dispatching authority then dispatches generation to meet demand at least cost. In
most pool markets the supply curves are submitted in the form of an offer stack,
consisting of a finite set of price-quantity pairs, indicating that the generator is
willing to produce those quantities at the corresponding prices. The number of
different price-quantity pairs that can be offered in any offer period depends on the
particular market rules.
It is important to be clear about the structure of the pool market we are study-

ing. We assume that the generator offers a (possibly) different supply curve in each
trading period over the planning horizon, and these are chosen immediately before
the demand in that period is realized. This may be thought of as re-offering as
the day unfolds, in contrast to the typical day-ahead supply function that must be
chosen once for all trading periods in the next day. Our model therefore is intended
to represent a balancing market, or the real-time spot markets that operate in New
Zealand and Australia.
In this context the dispatch for each generator is somewhat under its control,

since it can construct its offer in each trading period to tailor the dispatch. We
distinguish here between the unit commitment, which determines what units should
run, and the dispatch that determines the total output to be generated by these
units. The supply curve offered by the generator, of course, influences the outcome
of the random event of getting dispatched or not. This makes the unit commitment
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problem somewhat different from that in a centrally planned system, in which
generators choose unit commitments and generation to meet (possibly uncertain,
but exogenously random) demand at least cost, see again [18] and [6], [8], [12], [20].
For stochastic programming models dealing with exogenous price uncertainty in
unit commitment we refer to [14], [21], [23].
The problem of constructing optimal supply curves for a generator with startup

and shutdown costs has been discussed briefly in [11] in the case where the offers
of generators do not affect the electricity price. A dynamic programming recursion
is given, showing how an optimal unit commitment might be constructed in this
setting.
In this paper we extend this model to the situation in which the offers by market

participants have an effect on the clearing price in the current period. Our analysis
is based on the concept of a market distribution function (see [1]), which represents
for a given generator the impact of uncertainties in both demand and the behaviour
of other market participants on its dispatch and clearing price. In this setting we
assume that the market is not in equilibrium, and focus solely on the optimization
problem for a single generator. We assume that the other generators choose offer
curves that are fixed and do not respond to the choice that our generator makes,
but our generator does not know a priori what those offers might be. So the
generator’s offers will affect the clearing price, but not in a perfectly predictable
way. One interpretation of this setting might be a situation in which the market
has undergone a change in structure, and we believe that other players still play
their original equilibrium strategies, albeit with some random perturbation.
Formally, the market distribution function ψ (q, p) for a particular generator is

defined to be the probability that a single offer of (q, p) by the generator is not
fully dispatched. So ψ (q, p) incorporates information about the fixed (but proba-
bilistic) offer curves of the other generators. Under the assumption that the other
generators choose fixed offer curves, the market distribution function ψ for a given
generator is independent of the offer curve made by this generator, but given ψ
we can determine the effect of this generator’s offer on its observed clearing price
and dispatch quantity. More precisely, the market distribution function, when re-
stricted to any offer curve, defines the cumulative probability distribution function
of dispatch outcomes if this curve were to be offered. Thus, using a market distribu-
tion function, it is possible to derive general optimality conditions for supply-curve
offers that maximize expected profit (see [1] and [4]).
Another approach to incorporating market power of electricity generators of-

fering into a pool market has been taken in [13]. Uncertainty enters the model
via scenarios reflecting foreign bids. Decisions to be optimized involve own bids
and own generation. A linear stochastic program with mixed-integer recourse is
set up to maximize expected profit. Solution relies on scenario decomposition as
introduced in [7].
In this paper we assume that a market distribution function exists for each

trading period over a single day of K trading periods, and we wish to construct an
offer curve for each period to maximize expected profit. Let ψk(q, p) be the market
distribution function for trading period k = 1, 2, . . . ,K. We assume that all these
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functions are known at each point in the planning horizon. Methods for estimating
market distribution functions from observed data are explored in [3] and [16].
A key assumption in our approach is that the market distribution functions

in later trading periods do not alter in response to the offers of the generator
we are considering in the current period. It is plausible in a single-period-offer
optimization problem to model competitors’ offers and demand as being drawn
from known probability distributions, since in the short term, market outcomes in
electricity pool markets rarely correspond to one-shot Nash equilibria of the type
discussed in [2], [9], [10]. However when offers are repeated over K consecutive
trading periods this assumption becomes more difficult to sustain, as in practice
competing electricity traders will observe market outcomes and adjust their future
offers accordingly. We shall return to discuss this issue in our concluding remarks.
The generator on whom we shall focus is assumed to be risk neutral and seeks to

maximize its expected profit summed over each trading period. The profit function
accounts for switching units on and off and can include a position in derivative
contracts. For simplicity we assume that these amount to a single swap contract
for qc at strike price f . Observe that such a contract will have no effect on the
optimal offer in a price-taking model but may have a significant effect on the offer
curve when the generator has the ability to influence the clearing price.
The paper is laid out as follows. In section 2 we provide a model for the unit

commitment problem for a generator offering a single unit to the market. Here the
generator must decide in advance if it wants to run its unit, and if so to design
an appropriate offer curve. In section 3 we turn our attention to a generator with
several units. In this case the generator has a two-stage problem with recourse. The
first stage determines an offer to make and the second stage determines which units
to run to meet the dispatch. The second-stage cost accounts for future decisions
using a dynamic programming value function. Our approach is to represent this
value function as a cost function, to be used in the calculation of an optimal offer
curve. In general this cost function will be discontinuous, and so section 4 is
devoted to extending the optimality conditions to deal with such functions. In
section 5 we apply the optimality conditions to an example problem in which all
units are identical. In section 6 we discuss how our model might be extended to
deal with a generator with non-identical units.

2 The single unit

We begin by studying the case of a single unit. Suppose the generator has a single
unit with an operating range q ∈ [a, b] and running cost C(q). Suppose it costs
U to switch the unit on, and D to switch the unit off. At each trading period
k = 1, 2, . . . , K the generator must decide the offer curve for this unit.
Following [1] we define the offer by a parameterized curve s = {(x(t), y(t)) | 0 ≤

t ≤ 1}, where x(t) represents the quantity offered and y(t) represents its offer price.
We assume that x and y have continuous and bounded derivatives everywhere
except (possibly) at a finite number of points. At these points we require the
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existence of left and right-hand derivatives of x and y defined as

x′−(t) = lim
δ↓0

x(t)− x(t− δ)

δ
,

x′+(t) = lim
δ↓0

x(t+ δ)− x(t)

δ
,

with y′−(t) and y
′
+(t) defined similarly. This allows a variety of forms of supply

curve to be modelled including the step function offer stacks that are used in many
juristictions.
The supply curve offered will be dispatched a random amount Q by the market.

Ideally the offer should be designed so that Q ∈ {0} ∪ [a, b]. However it is not
possible in a pool market with a convex dispatch mechanism to construct a single
offer curve with this property. This means that the generator must decide before
offering the supply curve whether to run the unit. If it is to run, then the generator
must offer to ensure dispatch in [a, b], but if the unit is not to run then the generator
should not offer at all.
This gives a recursion that the generator can use to compute an optimal policy.

Let Vk(1) (Vk(0)) be the optimal expected profit the generator can make from the
end of trading period k to the end of period K, if the unit is running (not running)
at the end of period k. We assume that

VK(0) = VK(1) = 0.

Let

Rk = max
s

∫

s

(pq − C(q) + qc(f − p))dψk(q, p),

and

Sk =

∫ ∞

0

qc(f − p)dψk(0, p).

Here
∫
s
R(q, p)dψ(q, p) is interpreted as a Stieltjes line integral which can be shown

to be well-defined for continuous R and ψ (see [1]). This gives the recursion:

Vk−1(0) = max{Sk + Vk(0), Rk − U + Vk(1)},

Vk−1(1) = max{Sk −D + Vk(0), Rk + Vk(1)}.

In the formula for Rk, the offer curve s must be chosen so as to ensure dispatch
in [a, b]. In electricity pool markets the construction of so-called “must-run” offers
poses some difficulties, since the presence of this hard constraint effectively prices
that part of the offer that lies in [0, a) at −∞. Moreover, it may transpire (e.g.
in the case of low demand) that too many generators wish to be dispatched above
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their lower bound, in which case some generator will be dispatched by the market
(infeasibly) in [0, a).
To overcome this problem, some pool markets (e.g. New Zealand) restrict offer

prices to be strictly positive, except for generators who are successful bidders in an
auxiliary “must-run auction”. These generators are allowed to offer at price 0 (see
[15]). This gives a two-stage structure to the generator’s decision problem, in which
the first-stage decision seeks the offer to make to the must-run auction, and then
the second-stage decision computes the optimal offer to make to the pool market
given the results of this auction.
Here we have assumed that the generator has obtained rights (possibly by auc-

tion) to offer all their generation at price zero, thereby guaranteeing full dispatch.
Then in the above recursion we seek offer curves which have zero price where
q ∈ [0, a), and infinite price for q > b. In the interval [a, b], the optimal offer can
be computed using the optimality conditions of [1].
The model above can be extended to encompass the case where the unit has

a minimum down-time tD and minimum up-time tU , both assumed to be strictly
positive integers (see [20]). Let Vk(1) (Vk(0)) be the optimal expected profit the
generator can make from the end of trading period k to the end of period K, if the
unit has been running for at least tU periods (not running for at least tD periods)
at the end of period k. We adopt the convention that VK(·) = 0, even if the unit
has not satisfied the minimum up-time or minimum down requirements.
This gives the recursion:

Vk−1(0) = max{Sk + Vk(0),

l=min{k+tU−1,K}∑

l=k

Rl − U + Vmin{k+tU−1,K}(1)},

Vk−1(1) = max{

l=min{k+tD−1,K}∑

l=k

Sl −D + Vmin{k+tD−1,K}(0), Rk + Vk(1)}.

We can also extend the model to include ramping, by assuming that it takes tR
periods to ramp up to operating range. This gives the recursion:

Vk−1(0) =






max{Sk + Vk(0),∑l=min{k+tR+tU−1,K}
l=k+tR

Rl − U + Vmin{k+tR+tU−1,K}(1)}, k + tR ≤ K,

Sk + Vk(0), k + tR > K,

Vk−1(1) = max{

l=min{k+tD−1,K}∑

l=k

Sl −D + Vmin{k+tD−1,K}(0), Rk + Vk(1)}.

3 Unit dispatch by price

We now consider the case in which the generator has N > 1 units at its disposal.
We shall assume that the generator offers all its generation in one supply curve. If
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it were a price-taker then it is easy to see that an offer curve for each unit can be
computed individually and combined to give an overall offer (as long as this satisfies
the relevant rules of the market). Here the N -unit problem decouples into N single-
unit problems that can be attacked by the dynamic programming recursion of the
previous section.
In the price-setting case, this decomposition is no longer possible, as the to-

tal amount offered by the generator will affect the clearing price. In this case the
generator might decide in advance of a trading period what set of units to com-
mit, and then once these are switched on and ready to run, determine an optimal
offer curve for this set. The offer curve submitted must be constructed to ac-
count for the particular characteristics of the available units. In particular if each
unit n has an operating range [an, bn] then the dispatch must be constrained to
[
∑

n∈M an,
∑

n∈M bn] where M is the set of units that are running.
With an appropriate definition of state space that encapsulates the unit avail-

ability (e.g. using a Boolean vector z = (z1, z2, . . . , zN)) this model can be formu-
lated as a dynamic program along the same lines as that proposed for the single
unit in the previous section. This model requires an optimal curve calculation for
each possible state vector z, to yield Rk(z), say. Once computed Rk(z) can be used
in a recursion that tracks the admissible state transitions of the units to compute
for each state z the optimal value function Vk(z).
One drawback of this model is that the range of generation available is con-

strained by the units committed. To select the right level of unit commitment in
advance requires some degree of anticipation of prices in the coming trading period.
On the other hand, in a model without unit commitment constraints, the advan-
tage of offering a supply curve is that the offer can anticipate the power price in
the trading period and be dispatched by the market clearing mechanism an amount
that is adapted to this price. Indeed under some special conditions on the form of
offer of other generators, it is possible to construct a supply curve that defines an
optimal quantity to offer for each possible realization of the market price (see [2,
Theorem 4]). We would like to capture some of these benefits of a market dispatch
in our unit commitment model.
Therefore in this section we explore a unit commitment model in which both the

unit commitment and the dispatch are determined by the market outcome. In this
model an offer curve is submitted to the market. This results in a (random) dispatch
quantity, and corresponding clearing price. Given this quantity the generator must
decide as a recourse action which units to run, and how much each unit should
generate so as to deliver the dispatched quantity at least cost. The first-stage
decision is to determine what supply curve to offer so that the generator’s expected
profit is maximized.
The model we consider is therefore substantially different from the unit com-

mitment model in the previous section, in that we now ignore minimum up-times,
minimum down-times or ramp rates. This makes it inapplicable to generators with
large units that require several trading periods to warm up before generating. On
the other hand, generators with a number of small thermal units that are dispatched
as a block, and can be started quickly (albeit at some cost), will be faced with the
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problem we address here.
To simplify analysis we confine our attention to the case of N identical units,

each with an operating range q ∈ [a, b] and operating cost C(q), assumed to be
continuously differentiable. We assume that it costs U to switch each unit on, and
D to switch it off. In contrast with the previous section we assume here that the
unit commitment decision will be made after the dispatch is determined by the pool
market. Since the unit commitment is a random outcome to be determined by the
clearing price, we ignore minimum up-times or down-times or ramp rates.
For a dispatch of q the number of units to be run must lie in the set

J(q) = {j | j units can generate the amount q}.

In our model, it is easy to see that

J(q) = {⌈
q

b
⌉, ⌈
q

b
⌉+ 1, . . . , ⌊

q

a
⌋}.

The curve to offer in each trading period can be computed by applying a dynamic
programming recursion. We wish to choose an offer curve s with the property that it
maximizes the generator’s expected current revenue minus fuel costs plus expected
future profit from optimally switching units on or off and offering generation in
the next and future periods. Let Vk(n) be the optimal expected profit that the
generator can make from the end of period k to the end of period K if n units are
running at the end of period k. We set VK(n) = 0.
In our recursion it is helpful for each n to define the piecewise constant function

Gn(q) = max
j∈J(q)

{Vk(j)− U [j − n]+ −D[n− j]+},

representing the optimal future expected profit minus switching cost if the generator
has n units running and is dispatched q in period k. Here [y]+ = max{y, 0}.
Now recall

Sk =

∫ ∞

0

qc(f − p)dψk(0, p).

This gives

Vk−1(n) = max{Sk − nD + Vk(0), Rk(n)}, (1)

where

Rk(n) = max
s

∫

s

(pq + qc(f − p)− C(q) +Gn(q))dψk(q, p). (2)

A key calculation in this recursion is the computation of Rk(n), the expected
profit to be made from offering optimally in period k, k + 1, . . . , K. This is a
single-period offer optimization problem with cost function

Cn(q) = C(q)−Gn(q),
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and the requirement that the offer must guarantee a dispatch of more than a.
Observe that since Gn(q) is a piecewise constant function of q, the integrand in
(2) will be piecewise smooth with a finite number of jump discontinuities. We thus
need to verify that the Stieltjes integral in (2) is well defined for such integrands and
represents the expected profit. This discussion will be deferred to the next section,
where we also extend the optimality conditions of [1] to deal with this situation.

4 Optimality conditions

The function Cn(q) defined in the previous section is the sum of a step function
with a finite number of steps and a continuously differentiable function. In this
section we extend the optimality conditions of [1] to deal with such integrands,
so as to be able to derive optimal offer curves as part of a dynamic programming
recursion. We observe that optimality conditions for market distribution functions
with discontinuities in price have been obtained in [5]. In this work we continue
to assume that ψ is continuous in both arguments, but that the profit function is
smooth with a finite number of jump discontinuities in q. (For convenience, in this
section we suppress the dependence of ψ on trading period.)
We first consider a profit function that has a jump discontinuity at a single

point q̄. Suppose that

Rg(q, p) = R(q, p) + g(q)

where R(q, p) is continuously differentiable and

g(q) =

{
0, q < q̄,
ḡ, q ≥ q̄.

The expected profit from such a function will be the sum of expected profit from
R(q, p) and expected profit from g(q).
For any offer curve s = {(x(t), y(t)) | 0 ≤ t ≤ 1}, let

l = inf{t | x(t) = q̄}, u = sup{t | x(t) = q̄}.

Then ψ(x(l), y(l)) is the probability that s will be dispatched at a quantity q less
than q̄. Thus the expected profit Pg from g(q) when s is offered is

Pg = ḡ Pr(q ≥ q̄)

= ḡ[1− ψ(x(l), y(l))].

Thus we may write
∫

s

Rg(q, p)dψ(q, p) =

∫

s

R(q, p)dψ(q, p) + ḡ[1− ψ(x(l), y(l))].

A similar analysis applies to left-continuous functions Rh(q, p) = R(q, p) + h(q)
where

h(q) =

{
0, q ≤ q̄,
h̄, q > q̄.
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This gives
∫

s

Rh(q, p)dψ(q, p) =

∫

s

R(q, p)dψ(q, p) + h̄[1− ψ(x(u), y(u))].

Now let

g(q) =
∑

i∈G

gi(q)

where each gi(q), i ∈ G, is a right-continuous step function with a jump of ḡi at q̄i,
and li = inf{t | x(t) = q̄i}, and let

h(q) =
∑

i∈H

hi(q)

where each hi(q), i ∈ H is a left-continuous step function with a jump of h̄i at q̄i,
and ui = sup{t | x(t) = q̄i}. (Both G and H are assumed to be finite sets.) We let

Rgh(q, p) = R(q, p) + g(q) + h(q)

and define

V (s) =

∫

s

Rgh(q, p)dψ(q, p).

By the above discussion we have

V (s) =

∫

s

R(q, p)dψ(q, p) +
∑

i∈G

ḡi[1− ψ(x(li), y(li))] +
∑

i∈H

h̄i[1− ψ(x(ui), y(ui))].

The generator seeks an offer curve s to solve

P: maximize V (s).

We now proceed to derive optimality conditions for this problem. Offer curves
that satisfy these conditions will have the property that expected profit will be
reduced by feasible perturbations of the curve. Observe that variations to an offer
curve s will have an effect on

∫
s
R(q, p)dψ(q, p) as well as the terms containing li and

ui. Our optimality conditions will separately identify the effects of these changes
and combine them.
To identify the effect of curve perturbations on

∫
s
R(q, p)dψ(q, p) we follow [1]

and define

Z(q, p) =
∂R(q, p)

∂q

∂ψ(q, p)

∂p
−
∂R(q, p)

∂p

∂ψ(q, p)

∂q
.

(Henceforth for notational convenience we shall denote partial derivatives by sub-

scripts, so ψp =
∂ψ(q,p)

∂p
, for example). The effect of offer curve perturbations on
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the other terms will involve ψp. As shown in [1] the line integral of R(q, p)dψ(q, p)
around any closed curve C enclosing region S has the same value as

∫ ∫
S
Z(q, p)dqdp.

When a candidate stack s forms part of C, and when Z(q, p) has the same sign ev-
erywhere in S, we can use a variational argument to demonstrate the suboptimality
of s. The form of this argument is given in some detail in the proof of Lemma 4.2
below, but is only repeated in sketch form in other parts of the paper. A detailed
exposition can be found in [1].
First recall from [1] the definition of the set

I = {t | x′(t) > 0, y′(t) > 0},

and let

Q̄ = {q̄i | i ∈ G ∪H}.

We now have the following result.

Lemma 4.1 If s = {(x(t), y(t)), 0 ≤ t ≤ 1} is a local optimum for P then for
all t ∈ I, Z(x(t), y (t)) = 0. Moreover if for all t in some interval L ⊆ I, Z is
differentiable at (x(t), y (t)) then we have ∂Z

∂p
(x(t), y (t)) ≥ 0, and ∂Z

∂q
(x(t), y (t)) ≤ 0,

for t ∈ L.

Proof. See [1]

Lemma 4.1 means that an optimal offer curve will be horizontal or vertical at
all points except possibly where Z(x(t), y (t)) = 0. The horizontal sections of a
locally optimal offer curve must be such that small vertical perturbations of the
curve result in a stack with a profit that is no more than the original curve. This
leads to the following lemma.
Following [1] we let t0 = inf{t | x(t) > 0, y(t) > 0, ψ(x(t), y(t)) > 0}, and define

wx(t) =

∫ t

0

Z(x(τ), y(τ))x′(τ)dτ +
∑

i∈G(t)

ḡiψp(x(li), y(li)) +
∑

i∈H(t)

h̄iψp(x(ui), y(ui)),

where G(t) = {i ∈ G | li < t}, and H(t) = {i ∈ H | ui < t}.

Lemma 4.2 Suppose t1 > t0, t1 /∈ {li | i ∈ G} ∪ {ui | i ∈ H}, and x(t0) /∈ Q̄. If
wx(t1)− wx(t0) > 0, then s is not a local optimum for P.

Proof. The proof is similar to that of Lemma 4.3 in [1]. Let

t(ǫ) = inf{t | x(t) > 0, y(t) > ǫ, ψ(x(t), y(t)− ǫ) > 0},

where we choose ǫ > 0 small enough so that [x(t0), x(t(ǫ))]∩Q̄ = ∅. (x(t0) ≤ x(t(ǫ))
by the monotonicity of ψ.) We construct the perturbed stack

r(t) = (xr(t), yr(t)) =






(x(t), (y(t(ǫ))− ǫ)t/t(ǫ)), 0 ≤ t ≤ t(ǫ),
(x(t), y(t)− ǫ), t(ǫ) < t ≤ t1,
(x(t1), y(t1) + t− t1 − ǫ), t1 < t ≤ t1 + ǫ,
(x(t− ǫ), y(t− ǫ)), t1 + ǫ < t ≤ 1 + ǫ.
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x(t(ε) ) q

p

Figure 1: Plot of s (solid) and r (thin)

as shown in Figure 1. It is shown in [1, p.92] that if S is the region between r and
s then

∫

r

R(q, p)dψ(q, p)−

∫

s

R(q, p)dψ(q, p) =

∫ ∫

S

Z(q, p)dqdp

= ǫ

∫ t1

t0

Z(x(τ), y(τ))x′(τ)dτ + o(ǫ).

Now comparing r and s gives

V (r)− V (s) =

∫

r

Rgh(q, p)dψ(q, p)−

∫

s

Rgh(q, p)dψ(q, p)

=

∫

r

R(q, p)dψ(q, p)−

∫

s

R(q, p)dψ(q, p)

+
∑

i∈G

ḡi[1− ψ(x
r(lri ), y

r(lri ))]−
∑

i∈G

ḡi[1− ψ(x(li), y(li))]

+
∑

i∈H

h̄i[1− ψ(x
r(uri ), y

r(uri ))]−
∑

i∈H

h̄i[1− ψ(x(ui), y(ui))]

where

lri = inf{t | x
r(t) = q̄i}, uri = sup{t | x

r(t) = q̄i}.

Now observe by construction that xr(lri ) = x(li) and x
r(uri ) = x(ui), but y

r(lri ) =
y(li)− ǫ and yr(uri ) = y(ui)− ǫ. Thus

ψ(x(li), y(li))− ψ(x
r(lri ), y

r(lri )) = ψ(x(li), y(li))− ψ(x(li), y(li)− ǫ)

= ǫψp(x(li), y(li)) + o(ǫ)

and

ψ(x(ui), y(ui))− ψ(x
r(uri ), y

r(uri )) = ǫψp(x(ui), y(ui)) + o(ǫ).
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This gives

V (r)− V (s) = ǫ

∫ t1

t0

Z(x(τ ), y(τ ))x′(τ )dτ

+ ǫ
∑

i∈G(t1)

ḡiψp(x(li), y(li)) + ǫ
∑

i∈H(t1)

h̄iψp(x(ui), y(ui)) + o(ǫ)

= ǫ(wx(t1)− wx(t0)) + o(ǫ)

> 0

thus showing that s is not optimal.

Lemma 4.3 Suppose t1 > t0, t1 /∈ {li | i ∈ G} ∪ {ui | i ∈ H}, and x(t0) /∈ Q̄. If
wx(t1)− wx(t0) < 0 and y′+(t1) > 0, then s is not a local optimum for P.

Proof. Let t(ǫ) = inf{t | y(t) = y(t1) + ǫ}. Now define

r(t) =






(x(t), y(t)), 0 ≤ t ≤ t0,
(x(t0), y(t0) + t− t0), t0 < t ≤ t0 + ǫ,
(x(t− ǫ), y(t− ǫ) + ǫ)) t0 + ǫ < t ≤ t1 + ǫ,
(x(t− ǫ), y(t1) + ǫ), t1 + ǫ < t ≤ t(ǫ) + ǫ,
(x(t− ǫ), y(t− ǫ)), t(ǫ) + ǫ < t ≤ 1 + ǫ.

Here r is the result of shifting s up by ǫ, so now we have

∫

r

R(q, p)dψ(q, p)−

∫

s

R(q, p)dψ(q, p) = −ǫ

∫ t1

t0

Z(x(τ), y(τ ))x′(τ )dτ + o(ǫ).

This gives

V (r)− V (s) =

∫

r

Rgh(q, p)dψ(q, p)−

∫

s

Rgh(q, p)dψ(q, p)

=

∫

r

R(q, p)dψ(q, p)−

∫

s

R(q, p)dψ(q, p)

+
∑

i∈G

ḡi[1− ψ(x
r(lri ), y

r(lri ))]−
∑

i∈G

ḡi[1− ψ(x(li), y(li))]

+
∑

i∈H

h̄i[1− ψ(x
r(uri ), y

r(uri ))]−
∑

i∈H

h̄i[1− ψ(x(ui), y(ui))]
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= −ǫ

∫ t1

t0

Z(x(τ), y(τ ))x′(τ )dτ

+
∑

i∈G

ḡi[ψ(x(li), y(li))− ψ(x
r(lri ), y

r(lri ))]

+
∑

i∈H

h̄i[ψ(x(ui), y(ui))− ψ(x
r(uri ), y

r(uri ))] + o(ǫ)

= −ǫ

∫ t1

t0

Z(x(τ), y(τ ))x′(τ )dτ

− ǫ
∑

i∈G(t1)

ḡiψp(x(li), y(li))− ǫ
∑

i∈H(t1)

h̄iψp(x(ui), y(ui)) + o(ǫ)

= −ǫ(wx(t1)− wx(t0)) + o(ǫ)

> 0

thus showing that s is not optimal.

Although the above lemmas restrict the form of the optimal offer curve, they
are quite general and so are not straightforward to apply in any given situation,
since the exact form of optimality conditions in any circumstance will vary with
the form of the level curves of Z, as well as the particular form of g(q) + h(q).
Because our focus in this paper is the unit commitment problem, we shall in the

remainder of this section confine attention to this special case. For simplicity we
shall assume as in the previous section that all units are identical with fixed startup
and shutdown costs (section 6 discusses the extension to non-identical units). Under
this assumption we may show that the step function

Gn(q) = max
j∈J(q)

{Vk(j)− U [j − n]+ −D[n− j]+}

is unimodal with a maximum attained at any q ∈ [na, nb]. This is because the extra
future benefit in having one fewer unit running is no more than D. Similarly the
extra future benefit of having one more unit on is no more than U . (In effect there
is no benefit to be gained from switching machines before it is necessary). These
statements are made precise by the following lemmas. In the proof of these lemmas
it is helpful to define

F (s, n) =

∫

s

(pq + qc(f − p)− C(q))dψk(q, p) +
∫

s

max
j∈J(q)

{Vk(j)− U [j − n]+ −D[n− j]+}dψk(q, p),

where the Stieltjes integral of maxj∈J(q){Vk(j)−U [j−n]+−D[n−j]+} is well-defined
by virtue of the continuity of ψ.

Lemma 4.4 For all k ≤ K, and all n > 0, Vk(n− 1) ≤ Vk(n) +D.
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Proof. The result is trivial for k = K. We fix n and prove the result for any
k < K. For any k ≤ K, we have for any j,

[j − n]+ ≤ [j − (n− 1)]+

and so

Vk(j)− U [j − n]+ −D[n− j]+ +D ≥ Vk(j)− U [j − (n− 1)]+ −D[(n− 1)− j]+

Thus, for any q,

max
j∈J(q)

{Vk(j)− U [j − n]+ −D[n− j]+}+D

≥ max
j∈J(q)

{Vk(j)− U [j − (n− 1)]+ −D[(n− 1)− j]+}.

Since, for any offer curve
∫

s

Ddψk(q, p) = D,

we have

F (s, n− 1) ≤ F (s, n) +D

for any curve s. Denote by sn, the curve that maximizes F (s, n). Then

Vk−1(n− 1) = max{Sk − (n− 1)D + Vk(0), F (sn−1, n− 1)}

≤ max{Sk − (n− 1)D + Vk(0), F (sn−1, n) +D}

= max{Sk − nD + Vk(0), F (sn−1, n)}+D

≤ max{Sk − nD + Vk(0), F (sn, n)}+D

= Vk−1(n) +D,

which gives the result for k < K.

Lemma 4.5 For all k ≤ K, and all n > 0, Vk(n)− U ≤ Vk(n− 1).

Proof. The result is trivial for k = K. We fix n and prove the result for any
k < K. We have for any k ≤ K and for any j,

Vk(j)− U [j − n]+ −D[n− j]+ ≤ Vk(j)− U [j − (n− 1)]+ −D[(n− 1)− j]+ + U.

Thus, for any q,

max
j∈J(q)

{Vk(j)− U [j − n]+ −D[n− j]+}

≤ max
j∈J(q)

{Vk(j)− U [j − (n− 1)]+ −D[(n− 1)− j]+}+ U.
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Since, for any offer curve s

∫

s

Udψk(q, p) = U,

we have

F (s, n) ≤ F (s, n− 1) + U.

Again using sn to denote the curve that maximizes F (s, n), we have

Vk−1(n)− U = max{Sk − nD + Vk(0), F (sn, n)} − U

≤ max{Sk − nD + Vk(0), F (sn, n− 1) + U} − U

≤ max{Sk − (n− 1)D + Vk(0), F (sn, n− 1)}

≤ max{Sk − (n− 1)D + Vk(0), F (sn−1, n− 1)}

= Vk−1(n− 1),

which gives the result.

The lemmas above simplify the integral (2). By an abuse of notation let us write
n > J(q) to mean n > j for every j ∈ J(q), and n < J(q) to mean n < j for every
j ∈ J(q). Then it is easy to see from the lemmas above that Vk(j)−D[n − j]+ is
nondecreasing in j when j < n, and Vk(j)− U [j − n]+ is nonincreasing in j when
j > n. This gives

maxj∈J(q){Vk(j)− U [j − n]+ −D[n− j]+}

=






Vk(max J(q))−D(n−max J(q)), n > J(q),
Vk(n), n ∈ J(q),
Vk(min J(q))− U(min J(q)− n), n < J(q).

In other words, if the generator has to shut down or start up any units it should
switch as few as possible. This allows us to use the cost function

Cn(q) =






C(q)− Vk(max J(q)) +D(n−max J(q)), n > J(q),
C(q)− Vk(n), n ∈ J(q),
C(q)− Vk(min J(q)) + U(min J(q)− n), n < J(q),

and since the station has identical units with a running range q ∈ [a, b], we obtain

Cn(q) =






C(q)− Vk(⌊
q

a
⌋) +D(n− ⌊ q

a
⌋), a ≤ q < na,

C(q)− Vk(n), na ≤ q ≤ nb,
C(q)− Vk(⌈

q

b
⌉) + U(⌈ q

b
⌉ − n), q > nb.

In the first case, the dispatch q is so small that the generator must shut down
at least one machine. By Lemma 4.4 it makes sense to shut down as few units
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as possible, thus leaving ⌊ q
a
⌋ running. In the next case the generator can keep n

machines running so it does, and in the final case, q is so large that it must start up
at least one machine. By Lemma 4.5 it should only start as many units as required,
so this gives ⌈ q

b
⌉ running.

Observe that the generator may choose to either not be dispatched for the
coming period, in which case it switches all machines off and does not offer at all,
or to be dispatched at least a, in which case at least part of its offer curve must
offer a at price zero. The remainder of the curve s starting from the point (a, 0)
maximizes its expected current revenue minus fuel costs plus expected future profit
from optimally switching units on or off and offering generation in the next and
future periods. In this case we set t0 = inf{t | x(t) > a, y(t) > 0, ψ(x(t), y(t)) > 0}
and do not include a in Q̄. This allows us to apply Lemmas 4.2 and 4.3 in the case
where x(t0) = a.
We conclude this section by considering the special case in which Z(x(t), y (t)) =

0 defines a unique nondecreasing curve z with Z(x(t), y (t)) > 0 above z and
Z(x(t), y (t)) < 0 below. In the absence of unit-commitment effects (and limita-
tions on the functional form of z), this defines an optimal offer curve. The following
theorem gives optimality conditions for the unit commitment problem in this case.

Theorem 4.6 Suppose Z(q, p) = 0 defines a unique nondecreasing curve z =
(xz(t), yz (t)). Let Z0 = {(q, p) | Z(q, p) = 0}, Z+ = {(q, p) | Z(q, p) > 0}, and
Z− = {(q, p) | Z(q, p) < 0}, and suppose that Z(q, p) > 0 if for any t, q < xz(t) and
p > yz (t), and Z(q, p) < 0 if for any t, q > xz(t) and p < yz (t). Then any curve
s = (x(t), y (t)) that is a local maximum for P satisfies the following conditions.

1. Either (x(t), y (t)) ∈ Z0 or x′(t) = 0 or y′(t) = 0.

2. wx(t) = wx(t0) for all t where (x(t), y (t)) ∈ Z0, and for all t where (x(t), y (t)) /∈
Z0 and y′(t) > 0.

3. Suppose (x(t), y (t)) /∈ Z0.

(a) If y′(t) > 0 then x(t) ∈ Q̄.

(b) If y′(t) > 0 and x(t) = q̄i ≤ na, then (x(t), y (t)) ∈ Z−.

(c) If y′(t) > 0 and x(t) = q̄i ≥ nb, then (x(t), y (t)) ∈ Z+.

(d) If x′(t) > 0 and x(t) ≤ na, then (x(t), y (t)) ∈ Z−.

(e) If x′(t) > 0 and x(t) ≥ nb, then (x(t), y (t)) ∈ Z+.

4. If na < x(t) < nb then (x(t), y (t)) ∈ Z0.

Proof. It is easy to see that (1) follows directly from Lemma 4.1. Thus any curve
s = (x(t), y (t)) that is a local maximum for P will be horizontal or vertical when
(x(t), y (t)) /∈ Z0.
To show (2) observe that wx(t) = wx(t0) if s(τ ) = z(τ ), τ ∈ [t0, t]. For larger

values of t, Lemmas 4.2 and 4.3 together give wx(t) = wx(t0) for t lying strictly

16



between the endpoints of every vertical section of s. If this section is at q̄i, i ∈ G,
and finishes on z, then wx(t) is continuous at ui and so wx(ui) = wx(t0). Thus

wx(t) = wx(t0) +

∫ t

ui

Z(x(τ), y(τ))x′(τ)dτ (3)

on the next section of s. If this section matches z, then the integrand in (3) is zero,
so wx(t) = wx(t0) on this section. Similarly, if s has a vertical section at q̄i, i ∈ H,
then wx(·) is continuous at li. If s matches z just before then, we have for t < li,

wx(t0) = wx(li) = wx(t) +

∫ li

t

Z(x(τ ), y(τ ))x′(τ )dτ = wx(t).

Finally if s leaves {(q, p) | q > 0, p > 0, ψ(q, p) < 1} at (x(tM), y(tM)), and matches
z just before this, then it is easy to show using a similar argument to Lemma 4.2
that wx(tM) = wx(t0). This then gives wx(t) = wx(t0) on the last section of s.
To show (3a), observe that the conditions imply the existence of a vertical

section of s between t1 and t2 with at least one endpoint not in Z0 with y
′
−(t1) = 0

or y′+(t2) = 0. Suppose x(t1) = x(t2) /∈ Q̄, so small horizontal perturbations of the
vertical section do not alter (x(li), y(li)) and(x(ui), y(ui)). Then in the case where
y′−(t1) = 0, V (s) can be improved by perturbing the section below Z0 to the left,
and if y′+(t2) = 0 then V (s) can be improved by perturbing the section above Z0
to the right. This gives a contradiction, and so establishes (3a).
For (3b), suppose that the vertical section of s between t1 and t2 with x(t1) =

x(t2) = q̄i ≤ na meets Z+. If x′−(t1) > 0, x
′
+(t2) > 0, then we have

∫ t2

t1

Z(x(τ ), y(τ ))y′(τ )dτ ≤ 0

otherwise V (s) can be improved by perturbing the section to the right. This means
that the vertical section crosses z, and so V (s) can be improved by perturbing
the section above z to the right giving a contradiction, and thus showing that
(x(t), y (t)) ∈ Z−. A similar argument shows that any vertical piece at q̄i ≥ nb does
not intersect Z−, giving (3c).
To show (3d) observe that (x(t), y (t)) lies on a horizontal section of s. Suppose

(x(t), y (t)) ∈ Z+. By (3b), for x(t) ≤ na there are no vertical sections of s meeting
Z+, so s is horizontal for all τ ≤ t, and so lies in Z+ for all such τ . It follows that

wx(t) =

∫ t

0

Z(x(τ), y(τ ))x′(τ )dτ +
∑

i∈G(t)

ḡiψp(x(li), y(li)) > wx(t0)

contradicting the optimality of s by Lemma 4.2. Similarly (3e) can be established
using (2) and Lemma 4.3.
For (4) suppose na < x(t) < nb. By (3a), either y′(t) = 0 or (x(t), y (t)) ∈ Z0,

and so s consists of horizontal pieces alternating with sections of z, and since z
is nondecreasing there are at most two horizontal sections (one at either end of
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the interval). Consider the horizontal section at the left end of the interval. For
x(t) ≤ na there are no vertical sections of s meeting Z+, so s is horizontal for all
x(t) ≤ na. Thus for any t where x(t) > na and lies in the left interval we have

wx(t) =

∫ t

0

Z(x(τ), y(τ ))x′(τ )dτ +
∑

i∈G(t)

ḡiψp(x(li), y(li)) > wx(t0)

contradicting the optimality of s by Lemma 4.2. A similar argument yields a
contradiction for the horizontal section at the right-hand end.

5 Example

When the Z(q, p) = 0 curve is known the optimality conditions of Theorem 4.6
can be used to determine the optimal offer curve for each state n (assuming the
generator wishes to be dispatched).
As an illustrative example consider a market distribution function defined by

ψ(q, p) =






q2+p2

400
, q ≥ 0, p > 0, q2 + p2 ≤ 400,

1, q ≥ 0, p ≥ 0, q2 + p2 > 400,
0, otherwise.

and set

R(q, p) = qp− q

corresponding to a fuel cost of 1, and zero contracts. This gives

Z(q, p) = (p− 1)
1

200
p−

1

200
q2

whereby the contour Z = 0 is the hyperbola

(p− 1) p− q2 = 0

as shown in Figure ?? below. Here Z > 0 for all points above the hyperbola, and
Z < 0 for all points below the hyperbola, and the curve Z = 0 gives the optimal
offer if we ignore unit-commitment effects.
Now suppose a = 1, b = 3, and U = 7, and Vk(n) is defined by the following

table

n 0 1 2 3 4 5 6
Vk(n) 0 6 12 18 24 29 34

To illustrate the optimality conditions, we shall suppose that there are currently
two machines running (so n = 2). This means that the current running range is
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p

q

Figure 2: Z(q, p) = 0 and ψ(q, p) contours.

[2, 6]. We have

C2(q) =






q − 6, 1 ≤ q < 2,
q − 12, 2 ≤ q ≤ 6,
q − 11, 6 < q ≤ 9,
q − 10, 9 < q ≤ 12,
q − 8, 12 < q ≤ 15,
q − 6, 15 < q ≤ 18,

as shown in Figure 3.

-10

-5

0

5

10

2 4 6 8 10 12 14 16 18
x

Figure 3: Plot of C2(q)
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The optimal stack can be written as

p(q) =






0, q < 1,
0.430, 1 ≤ q < 2,
1
2
+ 1

2

√
(1 + 4q2), 2 ≤ q < 6,

7.581, 6 ≤ q < 7.063,
1
2
+ 1

2

√
(1 + 4q2), 7.063 ≤ q < 9,

10.556, 9 ≤ q < 10.043,
1
2
+ 1

2

√
(1 + 4q2), 10.043 ≤ q < 12,

13.977, 12 ≤ q < 13.468,
1
2
+ 1

2

√
(1 + 4q2), 13.468 ≤ q < 15,

as shown in bold in Figure 4.

p

q

Figure 4: Optimal stack for example problem

This gives an optimal value of
∫

s

Rgh(q, p)dψ(q, p) =

∫

s

[q(p− 1) + 6]dψ(q, p)

+ 6[1− ψ(2, 0.430)]

− [1− ψ(6, 7.581)]

− [1− ψ(9, 10.556)]

− 2[1− ψ(12, 13.977)]

= 96.565 + 4. 349

= 100.914
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and so we set Vk−1(2) = 100.914 in (1). (In the absence of a contract, this exceeds
Sk + Vk(0).)
The offer curve shown is easily verified to satisfy the local optimality conditions.

We set x(t0) = 1, y(t0) = 0.430, and for example consider x(t1) = 2, y(t1) = 2.562,
so (x(t1), y(t1)) lies in z. Then

∫ t1

t0

Z(x(τ ), y(τ))x′(τ)dτ =

∫ 2

1

Z(q, 0.430)dq

= −0.0129

and

∑

i∈G(t1)

ḡiψp(x(li), y(li)) = 6
∂ψ

∂p
(2, 0.430)

=
6

200
0.430

= 0.0129

and so

w(t1)− w(t0) =

∫ t1

t0

Z(x(τ ), y(τ ))x′(τ )dτ +
∑

i∈G(t1)

ḡiψp(x(li), y(li))

= 0

as required by condition (2) of Theorem 4.6.
Similarly consider x(t1) = 12, y(t1) = 12.510 , and x(t2) = 13.468, y(t2) =

13.977, both lying in z. Then we get

∫ t2

t1

Z(x(τ), y(τ))x′(τ)dτ =

∫ 13.468

12

Z(q, 13.977)dq

= 0.1398

and

∑

i∈H(t2)

h̄iψp(x(ui), y(ui))−
∑

i∈H(t1)

h̄iψp(x(ui), y(ui)) = −2
1

200
13.977

= −0.1398.

Therefore

w(t2)− w(t1) =

∫ t2

t1

Z(x(τ), y(τ))x′(τ)dτ

+
∑

i∈H(t2)

h̄iψp(x(ui), y(ui))−
∑

i∈H(t1)

h̄iψp(x(ui), y(ui))

= 0,
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as required by condition (2) of Theorem 4.6.
The optimal offer curve has an appealing interpretation. Observe that at the

discontinuities of Cn that arise from ḡi (an expected future cost incurred by shutting
down and having to restart a unit later) the generator offers at a discount to its
optimal offer. (This behaviour can be seen in the figure for dispatches less than
2.) Offering at a discount will increase the likelihood of sufficient dispatch to avoid
the shutdown. The discount is computed so that the marginal expected loss from
discounting the offer price matches the change in expected future cost avoided.
At the discontinuities of Cn that arise from h̄i (a cost incurred by starting a new

unit) the generator offers at a premium to its optimal offer. This will decrease the
likelihood of being dispatched an amount that is large enough to force a startup.
The premium is computed so that the marginal expected loss from offering too high
matches the change in expected future cost avoided (which includes the startup
cost).

6 Non-identical units

The example in the previous section assumed identical units. This allowed us to
define the state of a generator at stage k to be an integer n indicating how many
units are running at that stage. We could then define a piecewise continuous cost
function

Cn(q) =






C(q)− V (⌊ q
a
⌋, t), q < na,

C(q)− V (n, t), na ≤ q ≤ nb,
C(q)− V (⌈ q

b
⌉, t) + U(⌈ q

b
⌉ − n), q > nb,

for which an optimal offer stack can be constructed.
Suppose now that we have N non-identical units. Suppose that unit n =

1, 2, . . . ,N , has startup cost Un, shutdown cost Dn, operating range [an, bn], and
fuel cost φn. The state of the generator’s plant at stage k can be encoded by the
Boolean vector (z̄1, z̄2, . . . , z̄N ). The expected future profit is now

Vk−1(z̄1, z̄2, . . . , z̄N) = max
s

∫
(pq + qc(f − p)− Ck(z̄, q))dψk(q, p)

where

Ck(z̄, q) = −maxzk,qk Vk(z1, z2, . . . , zN )−
∑

n φnqn
−
∑

nUn[zn − z̄n]+ −
∑

nDn[z̄n − zn]+

subject to anzn ≤ qn ≤ bnzn, n = 1, 2, . . . , N,∑
n qn = q,

zn ∈ {0, 1}.
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With an appropriate definition of W , the cost function can be defined as

Ck(z̄, q) = minzn minqn W (z, z̄, t) +
∑

n φnqn

subject to anzn ≤ qn ≤ bnzn, n = 1, 2, . . . ,N,∑
n qn = q,

zn ∈ {0, 1}.

The offer optimization with this cost function can be carried out as before. It is
helpful here to be able to identify the values of q at which Ck(z̄, q) is discontinuous.
Observe that for any fixed z ∈ {0, 1}N , the optimal value function

ϕz(q) = minqn W (z, z̄, t) +
∑

n φnqn

subject to anzn ≤ qn ≤ bnzn, n = 1, 2, . . . , N,∑
n qn = q.

is piecewise linear and convex on its domain of definition, and it is assumed to be
+∞ outside this.
Now

Ck(z̄, q) = min{ϕz(q) | z ∈ {0, 1}
N},

whereby Ck(z̄, ·) is the pointwise minimum of extended real-valued convex functions.
Discontinuities of Ck(z̄, ·) can therefore only occur at points that lie on the boundary
of domϕz, for some z. These points have the following characterization.

Lemma 6.1 If q belongs to the boundary of domϕz then q =
∑

n anzn or q =∑
n bnzn.

Proof. The domain of definition of ϕz(·) coincides with the Minkowski sum of
one-dimensional intervals

∑

n:zn=1

[an, bn] = [
∑

n

anzn,
∑

n

bnzn]

which yields the result.

By virtue of Lemma 6.1 we have that Ck(z̄, q) has a finite number of jump
discontinuities, so the optimality conditions of section 4 are still applicable, albeit
with more computational effort.

7 Conclusion

In this paper we have studied the unit commitment problem from the perspective
of a generator making strategic offers to an electricity pool market. Our analysis
has distinguished between two essentially different models. In the first we study a
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single unit that is either offered or withdrawn from the pool. This model can be
extended to cover minimum up-times and down-times, and possible ramping rates.
It also extends in a natural way to the case of N units that are committed prior to
an offer being made.
The second model concernsN units that are collectively offered to the pool using

an offer curve that ensures an optimal dispatch and unit commitment. In this model
we have focussed on a generator with identical units, and derived a series of lemmas
that can be used to determine an optimal stack for a single period offer when the
system is in a given state (i.e. has n machines running). The (optimal) expected
value of this offer is then used to compute an expected future cost that can be used
in a dynamic programming recursion. The second model is difficult to apply when
the units have minimum up-times, minimum down-times, or ramping rates.
In either model in order to use our dynamic programming recursion, we need to

assume perfect knowledge of the market distribution function ψk for k = 1, 2, . . . , K.
Even if these functions were straightforward to estimate, it is probable that they
will change over time as other agents in the market respond to the optimal decisions
of the generator we are studying. Our models assume that the other agents are not
behaving strategically in this way.
One extension to our model to accommodate the reactions of other participants

might represent ψk as a Markov process that depends on some “market” state
variable. In this framework a random transition from market state µ in period k to
market state ν in period k+1 would occur as a result of observed market outcomes
in period k. Since these outcomes are to some extent influenced by the generator
constructing optimal offers, the optimization problem to determine Vk−1(n, µ) at
the start of period k in market state µ will use ψk(q, p, µ) and replace Gn by

Gn(p, q, µ) = max
j∈J(q)

{
∑

ν

Pk(µ, ν, q, p)Vk(j, ν)− U [j − n]+ −D[n− j]+},

where Pk(µ, ν, q, p) is the probability of moving from market state µ in period k
to market state ν in period k + 1, when the generator is dispatched q at price p
in period k. Clearly estimating the state structure and the form of Pk(µ, ν, q, p)
represents a major modelling hurdle to this approach.
A further extension might seek a sub-game perfect Nash equilibrium in the dy-

namic game played by a number of generating companies. We conjecture that a
feature of such an equilibrium would be sub-optimal offers by some thermal gener-
ators (as played in the single-period model) that force shutdowns in competitors in
order to secure profits in later periods. Computing such an equilibrium in supply
curves would seem also to be a very challenging project.
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