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Abstract Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm for
solving finite-horizon stochastic dynamic programs with monotonic Bellman functions. MIDAS approximates
these value functions using step functions, leading to stage problems that are mixed integer programs. We
provide a general description of MIDAS, and prove its almost-sure convergence to a 2Tε-optimal policy for
problems with T stages when the Bellman functions are known to be continuous, and the sampling process
satisfies standard assumptions.

Keywords stochastic programming · approximate dynamic programming · sampling · mixed-integer
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1 Introduction

In general, multistage stochastic programming problems are extremely difficult to solve. If one discretizes the
random variable using a finite set of outcomes in each stage and represents the process as a scenario tree, then
the problem size grows exponentially with the number of stages and outcomes [14]. On the other hand, if the
random variables are stagewise independent then the problem can be formulated as a dynamic programming
recursion, and attacked using an approximate dynamic programming algorithm.

When the Bellman functions (or value-to-go functions) are known to be convex (if minimizing) or concave (if
maximizing) then they can be approximated by cutting planes. This is the basis of the popular Stochastic Dual
Dynamic Programming (SDDP) algorithm originally proposed by Pereira and Pinto [12]. This creates a sequence
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of cutting-plane outer approximations to the Bellman function at each stage by evaluating stage problems on
independently sampled sequences of random outcomes. A comprehensive recent summary of this algorithm and
its properties is provided by [15]. A number of algorithms that are variations of this idea have been proposed
(see e.g. [4,5,10]).

The first formal proof of almost-sure convergence for SDDP-based algorithms applied to problems with polyhe-
dral Bellman functions was provided by Philpott and Guan in [13]. Almost-sure convergence for general convex
Bellman functions was recently proved using a different approach by Girardeau et al. [7], and for risk averse
problems by Guigues [9].

In order to guarantee the validity of the outer approximation of the Bellman functions, SDDP-based methods
require these functions to be convex (if minimizing) or concave (if maximizing). However, there are many
instances of problems when the optimal value of the stage problem is not a convex (or concave) function of the
state variables. For example, if the stage problem involves state variables with components appearing in both
the objective function and the right-hand side of a convex optimization problem then the optimal value function
might have a saddle point (unless this function is jointly convex in both the state and decision). More generally,
if the stage problems are not convex then we cannot guarantee convexity of the optimal value function. This will
happen when stage problems are mixed-integer programs (MIPS), or when they incorporate nonlinear effects,
such as modeling head effects in hydropower production functions [3].

Our interest in problems of this type is motivated by models of hydroelectricity systems in which we seek to
maximize revenue from releasing water through generating stations on a river chain. This can be modeled as a
stochastic decision problem with discrete-time dynamics:

xt+1 = ft(xt, ut, ξt), x1 = x̄, t = 1, 2, . . . , T , (1)

where ft is an affine function. In this stochastic state equation, xt is an element of the set of feasible states
Xt, t = 1, 2, . . . , T + 1, the initial state x̄ = x1 being given. For t = 1 to T , the ξt are independent random
variables, elements of Ωt, and ut, the decision at time t, is an element of the set of feasible decisions Ut(xt, ξt).
This means that there is a complete observation of the state, and that we are in a hazard-decision setting. Also,
for each xt ∈ Xt and ut ∈ Ut(xt, ξt), ft(xt, ut, ξt) is an element of Xt+1. The decision ut generates a reward
rt(xt, ut, ξt) in each stage; there is also a terminal reward R(xT+1). Under technical hypotheses, the Bellman
values Vt(x) (maximum expected reward from the beginning of stage t onwards with state x) are well-defined
and satisfy the dynamic programming principle

Vt(x) = Eξt

[
sup

u∈Ut(x,ξt)

{rt(x, u, ξt) + Vt+1(ft(x, u, ξt))}

]
, (2)

VT+1(x) = R(x). (3)

We are interested in the case when the Xt are subsets of Rn, and the Bellman values are nondecreasing functions
of x. For example, in a single-reservoir hydro-scheduling problem, x = (s, p) might represent both the reservoir
stock variable s and a price variable p, and u = (v, l) represents the reservoir release v through a generator and
reservoir spill l. In this case, the dynamics might be represented by[

st+1

pt+1

]
=

[
st − vt − lt + ωt

αtpt + (1− αt)bt + ηt

]
,

where αt ∈ (0, 1) and bt is a time-varying average price towards which pt is mean reverting. Here ωt is (random)
reservoir inflow, and ηt is the error term for the mean-reverting price model, so ξt = [ωt ηt ]>. Here we might
define

rt(s, p, v, l, ωt, ηt) = pg(v),

giving the revenue earned by released energy g(v) sold at price p, and

Ut(xt, ξt) = {(v, l) : v ∈ Ū , l ≥ 0, 0 ≤ −v − l + xt + ωt ≤ a},
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where a is the capacity of the reservoir, and Ū is the set of feasible water releases through the generating
station. For such a model, it is easy to show (under the assumption that we can spill energy without penalty)
that Vt(s, p) is continuous and monotonic increasing in s and p. On the other hand Vt(s, p) is not always concave
which makes the application of standard SDDP invalid.

In this paper we propose a new extension of SDDP called Mixed Integer Dynamic Approximation Scheme
(MIDAS). MIDAS uses the same algorithmic framework as SDDP but, instead of using cutting planes, MIDAS
uses step functions to approximate the value function. The approximation requires an assumption that the value
function is monotonic (or close to monotonic in a precise sense) in the state variables. Each approximating stage
problem can be solved to global optimality as a MIP. The approximating stage problems are discretizations
of the true stage problems that become more accurate as the discretizations become finer. This enables us to
obtain approximate solutions of the stochastic decision problem.

A number of authors have looked to extend SDDP methods to deal with non-convex stage problems. The first
approach replaces the non-convex components of the problem with convex approximations, for example using
McCormick envelopes to approximate the production function of hydro plants as in [3]. The second approach
convexifies the value function, e.g. using Lagrangian relaxation techniques. A recent paper [17] by Thomé et al.
proposes a Lagrangian relaxation of the SDDP subproblem, and then uses the Lagrange multipliers to produce
valid Benders cuts. A similar approach is adopted by Steeger and Rebennack in [16]. Abgottspon et al [1]
introduce a heuristic to add locally valid cuts that enhance a convexified approximation of the value function.
More recently Zou et al [19] prove the almost sure convergence of their SDDiP algorithm, which extends SDDP
to problems with binary state variables. This method has recently been applied to a version of the river-chain
optimization problem by Hjelmeland et al [11].

When the non-convexity in the Bellman function arises from state variables appearing in the stage objective
function, as prices do in the reservoir optimization above, it is common to represent the price dynamics by
a Markov chain in which each price state has its own separate cutting plane approximation for the Bellman
function with price fixed (see e.g. [2] and [8]). MIDAS provides a different approximation to this discretization of
the Bellman function. We should also note that the linear price dynamics in the reservoir optimization problem
yields a value function that is concave in storage and convex in price, which enables one to linearly interpolate
the Bellman function in the price dimension. This approach is investigated by Downward et al in a recent
paper [6]. Since it exploits the specific strucure of the Bellman function, the performance of this method on
single reservoir problems is better than MIDAS (as reported in the thesis of Wahid [18]). This is not surprising
given that MIDAS is a general approach to solving these problems that does not exploit the saddle form of the
Bellman function.

The rest of the paper is laid out as follows. We begin by outlining the approximation of Vt(x) that is used by
MIDAS. In section 3 we prove the convergence of MIDAS to a 2Tε-optimal solution of a multistage deterministic
optimization problem. Lastly, in section 4, we extend our proof to a sampling-based algorithm applied to the
multistage stochastic optimization problem with T stages, and demonstrate its almost-sure convergence to a
2Tε-optimal solution. A simple hydro-electric scheduling example illustrating the algorithm is presented in
section 5. We conclude the paper in section 6 by summarizing the main contributions of the paper.

2 Static problem

Consider first the case of a static problem: T = 1, in a deterministic setting. The problem can then be written
in the form

max
u∈U

r(u) +R(f(u)). (4)

where r is an immediate reward and R can be interpreted as a terminal value function (as in the previous
section). Here the decision set U is a compact (possibly discrete) subset of RM . With u ∈ U is associated the
“state” f(u), f : U → X, where X is the set of feasible states, a compact subset of RN . The cost functions are
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r : U → R and R : X → R, with r and R ◦ f upper semicontinuous, Denote by 1 a vector with all components
equal to 1. We assume the existence of δ > 0, ε ≥ 0, such that

R(x) ≤ R(y) + ε, if x ≤ y + δ1, for all x, y in X. (5)

Remark 1 (i) If R is nondecreasing then (5) implies that R does not increase by more than ε for any change in
x with `∞ norm smaller than δ. We need not assume that R is nondecreasing, as long as ε takes a sufficiently
large value to satisfy (5). So we call the above condition an approximate nondecreasing condition.
(ii) If U (and hence X) is a discrete set, and R is nondecreasing, then (5) is satisfied by taking δ less than the
distance between two distinct points of X, and ε = 0.
(iii) Since X is compact, if R is continuous and nondecreasing, since R is uniformly continuous, for any ε > 0,
we can find δ > 0 such that (5) holds.
(iv) The parameter ε will play an important role in the MIDAS algorithm. As shown in Figure 1 and Figure 2
it gives a measure of how far a step function that approximates R from above is permitted to deviate below R.
This then determines the accuracy of an approximate upper bound for the optimal value of the problem we are
solving.

Before stating an algorithm, let us explain how to compute an upper-bound approximation of the function R(x).
Let R̄ ≥ max{R(x); x ∈ X}. Given a sequence xk in X, with k = 1 to H, set

qk := R(xk). (6)

Define the set
Ωk = {(xh, qh) : h = 1, 2, . . . , k − 1}. (7)

The set of supporting indices (at step k) of x ∈ X is defined as

Hk(x) := {h : 1 ≤ h < k, xi < xhi + δ, i = 1, . . . , N}. (8)

Consider also the following function, that may be viewed as an approximation of the function R (see the lemma
below):

Qk(x) =

{
R̄ if Hk(x) is empty,

min
{
qh : h ∈ Hk(x)

}
otherwise.

(9)

Note the strict inequality in (8); by virtue of this, the function Qk(x) is upper semicontinuous.

Lemma 1 (i) The function Qk is nondecreasing and upper semicontinuous in x, and nonincreasing in k:

Qk+1(x) ≤ Qk(x), x ∈ X. (10)

(ii) We have that

R(x) ≤ Qk(x) + ε, for any x ∈ X, (11)

k ∈ Hk+1(y), for any y with yi < xki + δ, i = 1, . . . , N, (12)

Qk+1(xk) ≤ qk, for any 1 ≤ k ≤ H. (13)

Proof (i) That Qk is nondecreasing as a function of x, follows from the fact thatHk(x) is itself nonincreasing as a
function of x. That Qk is nonincreasing as a function of k follows from the fact that Hk(x) is itself nondecreasing
as a function of k. Upper semicontinuity of Qk follows directly from its definition.
(ii) If Hk(x) is empty, (11) obviously holds, since then Qk(x) = R̄ ≥ R(x). Assume now that Hk(x) is not
empty. Let x ∈ X and h ∈ Hk(x). By (5) and the definition of Hk(x), we get

R(x)− ε ≤ R(xh) = qh. (14)

Minimizing over k ∈ Hk(x) and using (9) yields (11). If yi < xki + δ, i = 1, . . . , N , then (12) follows directly
from (8), and applying (9) then gives (13). ut
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Two examples of the approximation of R(x) by Qk(x) are given in Figure 1 and Figure 2.
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Fig. 1 Approximation of R(x) = x + 0.1 sin(10x) shown in grey, by piecewise constant Qk(x), shown in black. Here δ = 0.05
and xh = 0.2, 0.4, 0.6, 0.8.
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Fig. 2 Contour plot of Qk(x) when k = 4. The circled points are xh, h = 1, 2, 3, 4. The darker shading indicates increasing
values of Qk(x) (which equals R(xh) in the region containing xh.)

The definition of Qk in terms of supporting indices is made for notational convenience. In practice Qk(x) is
computed using mixed integer programming (hence the name MIDAS). We propose one possible formulation
for doing this in the Appendix.
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We propose the following algorithm:

Algorithm 1 Static MIDAS

1. Set k = 1, Ωk = ∅, and Qk(x) = R̄.
2. Forward pass:

(a) Solve max
u∈U

{
r(u) +Qk(f(u))

}
to give uk;

(b) If
∥∥f(uk)− xh

∥∥
∞ < δ for some 1 < h < k, then set xk := xh, else set xk := f(uk).

3. Backward pass: Ωk+1 := Ωk ∪
{

(xk, qk)
}

, where qk := R(xk).

4. Stopping test: Set εk := Qk(f(uk))−Qk+1(f(uk)). If εk ≤ ε̄, set H := k, and stop.
5. Increase k by 1 and go to step 2.

Remark 2 (i) The maximum in step 2(a) is attained if U is a discrete set, and more generally if f is continuous,
since r and Qk are upper semicontinuous, the latter as a consequence of lemma 1.
(ii) In general, f is an arbitrary continuous function, so step 2(a) requires the solution of a global optimization
problem. In practice Qk is defined by a MIP (as defined in the Appendix). If r and f are affine functions of
x and u then the optimization in step 2(a) also becomes a MIP. This makes the practical application of the
algorithm straightforward.
(ii) Note that εk ≥ 0.

Theorem 1 (i) At any iteration k, uk is a (2ε+ εk)-solution of problem (4).
(ii) The stopping test is activated after finitely many iterations.

Proof (i) Denote by V the value of problem (4). Since ‖xk − f(uk)‖∞ < δ, (12) implies that

k ∈ Hk+1(f(uk)). (15)

Therefore

V = max
u∈U

(r(u) +R(f(u))) definition of V

≤ max
u∈U

(
r(u) +Qk(f(u))

)
+ ε by (11)

= r(uk) +Qk(f(uk)) + ε definition of uk

= r(uk) +Qk+1(f(uk)) + ε+ εk definition of εk in the algorithm

≤ r(uk) + qk + ε+ εk consequence of (15) and (9)

≤ r(uk) +R(f(uk)) + 2ε+ εk consequence of (5) and ‖xk − f(uk)‖∞ < δ.

(ii) Since the algorithm generates finitely many points, after finitely many iterations, Qk+1 = Qk, and conse-
quently εk = 0. The conclusion follows. ut

Remark 3 (i) Once convergence of the algorithm is obtained, so that a 2ε+εH -solution has been found, one can
choose to continue the computations with a smaller value of ε. This may be efficient for avoiding small steps
that would occur when taking a small value of ε at first.
(ii) If the set X is discrete and if R is nondecreasing, taking δ > 0 less than the `∞ distance between two
distinct points in X, we can take ε = 0. The output of the above algorithm is then a solution of (4).
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3 Multistage optimization problems

In this section we describe the MIDAS algorithm for a deterministic multistage optimization problem, and prove
its convergence. Given an initial state x̄, we consider a deterministic optimization problem of the form:

MP: max
x,u

T∑
t=τ

rt(xt, ut) + R(xT+1)

s.t. xt+1 = ft(xt, ut), t = τ, . . . , T,
x1 = x̄,

ut ∈ Ut(xt), xt ∈ Xt, t = τ, . . . , T.

Here 1 ≤ τ ≤ T + 1. We have the state constraint xt ∈ Xt, where Xt is a compact subset of RN , and for each
xt ∈ Xt, Ut(x) is a compact subset of RM . The multimapping from Xt to the set of subsets of Rm, x 7→ Ut(x)
is assumed to be compatible with the state constraint, in the sense that ft(xt, ut) ∈ Xt+1, whenever xt ∈ Xt
and ut ∈ Ut(xt). We denote by Vτ (xτ ) the value of the above problem with initial value of the state equal to
xτ . It is well known that Vt satisfies the dynamic programming principle{

Vt(x) = supu∈Ut(x){rt(x, u) + Vt+1(ft(x, u))}, t = 1, . . . , T,

VT+1(x) = R(x).
(16)

Let V̄ be an upper bound on Vt(x), t = 1, 2, . . . , T + 1. We assume that there exist δ > 0 and ε ≥ 0 such that
the following approximate nondecreasing condition holds:

Vt(x) ≤ Vt(y) + ε, if x ≤ y + δ1, for all x, y in Xt, t = 2 to T + 1. (17)

Note that for t = 1 we need no such condition, since we need to estimate V1 only at the point x̄. In the multistage
case, we approximate each stage value function Vt(x) with a piecewise constant function Qkt (x). At each stage
t we have a sequence xkt ∈ Xt, k = 1, . . . , H. We will define the associated numbers qkt later, and set

Ωkt = {(xht , qht ) : h = 1, . . . , k − 1}, for all t = 1, . . . , T + 1.

Given these we now define the set of supporting indices

Hkt (x) := {1 ≤ h < k; xti < xhti + δ, i = 1, . . . , N}, (18)

as well as the following approximations of the Bellman functions:

Qkt (x) =

{
V̄ if Hkt (x) is empty,

min
{
qht : h ∈ Hkt (x)

}
otherwise.

(19)

We will make use of the following simple result.

Lemma 2 If h < k and
∥∥x− xht ∥∥∞ < δ then Qkt (x) ≤ qht .

Proof We have xi < xhti + δ, i = 1, . . . , N , so h ∈ Hkt (x). Thus Qkt (x) ≤ qht as required. ut

The deterministic MIDAS algorithm (Algorithm 2) generates a sequence of functions Qkt (x), t = 1, . . . , T + 1.
For each k we define:

the forward-step decision:

ukt ∈ arg max
u∈Ut(x

k
t )

{
rt(x

k
t , u) +Qkt+1(ft(x

k
t , u))

}
; (20)
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the backward-step decision:

ûkt ∈ arg max
u∈Ut(x

k
t )

{
rt(x

k
t , u) +Qk+1

t+1 (ft(x
k
t , u))

}
; (21)

the optimal decision:
ũkt ∈ arg max

u∈Ut(x
k
t )
{rt(xkt , u) + Vt+1(ft(x

k
t , u))}; (22)

the stage error :
εk,t := Qkt+1(ft(x

k
t , u

k
t ))−Qk+1

t+1 (ft(x
k
t , u

k
t )), t = 1, . . . , T. (23)

Note that εk,t ≥ 0. Given ε̄ ≥ 0, the stopping test is

T∑
t=1

εk,t ≤ ε̄. (24)

We can now write down the steps of the algorithm as follows.

Algorithm 2 Deterministic MIDAS

1. Choose ε̄ ≥ 0, and set k = 1, Ωkt = ∅, and Qkt (x) = V̄ an upper bound on Vt(x), t = 1, 2, . . . , T + 1.

2. Forward pass: Set xk1 = x̄. For t = 1 to T ,

(a) Solve max
u∈Ut(xkt )

{
rt(xkt , u) +Qkt+1(ft(xkt , u))

}
to give ukt ;

(b) If
∥∥ft(xkt , ukt )− xht+1

∥∥
∞ < δ for h < k then set xkt+1 = xht+1, else set xkt+1 = ft(xkt , u

k
t ).

3. Backward pass: Set Ωk+1
T+1 = ΩkT+1 ∪

{
(xkT+1, q

k
T+1)

}
where qkT+1 := R(xkT+1).

For every t = T down to 1,

(a) Compute qkt = max
u∈Ut(xkt )

{
rt(xkt , u) +Qk+1

t+1 (ft(xkt , u))
}

;

(b) Set Ωk+1
t = Ωkt ∪

{
(xkt , q

k
t )
}

.

4. Stopping test: if (24) holds, set H := k, and stop.
5. Increase k by 1 and go to step 2.

Observe that step 2 of Algorithm 2 does not typically generate a feasible state trajectory since step 2(b) can
jump to a nearby state xht+1 in Ωkt+1. We call the resulting sequence of states {xkt+1, t = 1 . . . , T} a pseudo
trajectory.

Lemma 3 For all iterations k,{
(i) Qkt (x) ≥ Vt(x)− (T + 2− t)ε, for all x ∈ Xt, t = 2, . . . , T + 1,

(ii) qk1 ≥ V1(x̄)− Tε.
(25)

Proof (i) We prove (25)(i) by backward induction. For t = T + 1, the result follows from Lemma 1 since
VT+1(x) = R(x) for all x ∈ XT+1. Now let (25) hold for some 2 < t ≤ T + 1. It follows that for every k

qkt−1 = max
u∈Ut−1(xk

t−1)

{
rt−1(xkt−1, u) +Qk+1

t (ft−1(xkt−1, u))
}

definition of qkt−1

≥ rt−1(xkt−1, ũ
k
t−1) +Qk+1

t (ft−1(xkt−1, ũ
k
t−1)) definition of a maximum

≥ rt−1(xkt−1, ũ
k
t−1) + Vt(ft−1(xkt−1, ũ

k
t−1))− (T + 2− t)ε induction hypothesis

= Vt−1(xkt−1)− (T + 2− t)ε. definition of ũkt−1

(26)
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Now let x ∈ Xt−1. If Hkt−1(x) is empty then Qkt−1(x) = V̄ , so (25) holds trivially. Otherwise suppose h ∈
Hkt−1(x), so xi < xht−1,i + δ, i = 1 to N . If t ≥ 3, by (17) and (26), we get that

Vt−1(x) ≤ Vt−1(xkt−1) + ε ≤ qht−1 + (T + 3− t)ε. (27)

Minimizing over h ∈ Hkt−1(x) and using (9) we obtain that (25) holds for t− 1. Point (i) follows.
(ii) In step (a) of this proof, we have obtained (26) also when t = 2, which upon setting xk1 = x̄ becomes

qk1 ≥ V1(x̄)− Tε, (28)

so (25)(ii) follows. ut

Lemma 4 (i) For each iteration k,

V1(x̄) ≤
T∑
t=1

rt(x
k
t , u

k
t ) +R(xkt+1) + Tε+

T∑
t=1

εk,t. (29)

(ii) The algorithm terminates after finitely many iterations at iteration k = H, and the resulting pseudo trajec-
tory satisfies

V1(x̄) ≤
T∑
t=1

rt(x
H
t , u

H
t ) +R(xHt+1) + Tε+ ε̄. (30)

Proof (i) After step 2(b) of iteration k we have, for t = 1 to T :∥∥∥xkt+1 − ft(xkt , ukt )
∥∥∥
∞
< δ.

So, ft(x
k
t , u

k
t ) < xkt+1 + δ1. This implies

k ∈ Hk+1
t (ft(x

k
t , u

k
t )). (31)

We also have that, for t = 1 to T :

qkt = rt(x
k
t , û

k
t ) +Qk+1

t+1 (ft(x
k
t , û

k
t )) by (21) and the definition of qkt

≤ rt(xkt , ûkt ) +Qkt+1(ft(x
k
t , û

k
t )) by the monotonicity of k 7→ Qkt+1

≤ rt(xkt , ukt ) +Qkt+1(ft(x
k
t , u

k
t )) by the definition of ukt in (20)

= rt(x
k
t , u

k
t ) +Qk+1

t+1 (ft(x
k
t , u

k
t )) + εk,t by the definition of εk,t

≤ rt(xkt , ukt ) + qkt+1 + εk,t by (31).

Also,
qkT+1 = R(xkT+1). (32)

Summing the previous inequalities and equality, we get that

qk1 ≤
T∑
t=1

rt(x
k
t , u

k
t ) +R(xkT+1) +

T∑
t=1

εk,t. (33)

By Lemma 3 for t = 1, we have that
V1(x̄) ≤ qk1 + Tε. (34)

The result follows by combining (33) and (34).
(ii) The algorithm visits finitely many points. So, by backward induction over t, we get that the pairs (xkt , q

k
t )

also take finitely many values. So, for large enough k, if the algorithm does not stop, the functions Qkt do not
depend on k, and therefore all εk,t = 0. But this contradicts the fact that the stopping test is never satisfied. ut
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The previous result applies to the sequence (xHt , u
H
t ) which satisfies

‖xt+1 − ft(xt, ut)‖∞ < δ, t = 1, . . . , T. (35)

Assume that with any such pseudo trajectory, we can associate a true trajectory by increasing the cost by some
nonnegative amount cδ. Denote by (x̄Ht , ū

H
t ), for t = 1 to T + 1, such a trajectory associated with (xH , uH).

We get then the following corollary:

Corollary 1 Set ε̂H := Tε+
∑T
t=1 εH,t + cδ. We have that, at each iteration 1 ≤ k ≤M : of the algorithm:

V1(x̄) ≤
T∑
t=1

rt(x̄
H
t , ū

H
t ) +R(x̄Ht+1) + ε̂H . (36)

In particular, the output trajectory (x̄H , ūH) is Tε+ ε̄+ cδ optimal.

The previous result is rather weak in that it gives no bounds of the size of cδ. If we set ε̄ = 0, then we can obtain
a bound on optimality for the trajectory obtained when the algorithm terminates. This will occur at iteration
k = H when for every t = 1, 2, . . . , T ,

QHt+1(ft(x
H
t , u

H
t ))−QH+1

t+1 (ft(x
H
t , u

H
t )) = 0, t = 1, . . . , T. (37)

This means that the forward pass in iteration H + 1 will visit the same points as in iteration H, so

(xH+1
t , uH+1

t ) = (xHt , u
H
t ), t = 1, 2, . . . , T + 1,

and so the functions QHt+1 and QH+1
t+1 will be identical for all t = 1, 2, . . . , T + 1. It follows that in the forward

pass, uHt will maximize rt(x
H
t , u

H
t ) +QH+1

t+1 (ft(x
H
t , u

H
t )) giving

rt(x
H
t , u

H
t ) +QH+1

t+1 (ft(x
H
t , u

H
t )) ≥ rt(xHt , ûHt ) +QH+1

t+1 (ft(x
H
t , û

H
t )),

and (21) implies
rt(x

H
t , u

H
t ) +QH+1

t+1 (ft(x
H
t , u

H
t )) ≤ rt(xHt , ûHt ) +QH+1

t+1 (ft(x
H
t , û

H
t )),

so
rt(x

H
t , u

H
t ) +QHt+1(ft(x

H
t , u

H
t )) = rt(x

H
t , û

H
t ) +QH+1

t+1 (ft(x
H
t , û

H
t )). (38)

We now can establish the following result.

Lemma 5 For every t = 1, 2, . . . , T,

QH+1
t+1 (ft(x

H
t , u

H
t )) ≤ Vt+1(ft(x

H
t , u

H
t )) + (T − t+ 1)ε.

Proof We proceed by backwards induction on t. When t = T , after step 2(b) of iteration H we have for some
h ≤ H ∥∥∥xhT+1 − fT (xHT , u

H
T )
∥∥∥
∞
< δ

so by Lemma 2

QH+1
T+1 (fT (xHT , u

H
T )) ≤ qhT+1

= VT+1(xhT+1)

≤ VT+1(f(xHT , u
H
T )) + ε,

by (17).



MIDAS: A Mixed Integer Dynamic Approximation Scheme 11

Assume as an inductive hypothesis that

QH+1
t+1 (ft(x

H
t , u

H
t )) ≤ Vt+1(f(xHt , u

H
t )) + (T − t+ 1)ε

We show that

QH+1
t (ft−1(xHt−1, u

H
t−1)) ≤ Vt(ft−1(xHt−1, u

H
t−1)) + (T − t+ 2)ε.

Since at termination of the algorithm

‖xHt − ft−1(xHt−1, u
H
t−1)‖∞ < δ,

it follows that

QH+1
t (ft−1(xHt−1, u

H
t−1)) ≤ qHt by Lemma 2

= r(xHt , û
H
t ) +QH+1

t+1 (ft(x
H
t , û

H
t )) by (21)

= r(xHt , u
H
t ) +QHt+1(ft(x

H
t , u

H
t )) by (38)

≤ r(xHt , uHt ) + Vt+1(ft(x
H
t , u

H
t )) + (T − t+ 1)ε induction hypothesis

≤ r(xHt , ũkt ) + Vt+1(ft(x
H
t , ũ

k
t )) + (T − t+ 1)ε optimality of ũkt

= Vt(x
H
t ) + (T − t+ 1)ε definition of Vt

≤ Vt(ft−1(xHt−1, u
H
t−1)) + (T − t+ 2)ε

where the last inequality follows from ‖xHt − ft−1(xHt−1, u
H
t−1)‖∞ < δ and (17). This establishes the result for

t− 1 and hence all t by induction. ut

Using Lemma 5, we can show that the first-stage decision uH1 obtained when Algorithm 2 terminates (at iteration
H where εH = 0) is 2Tε-optimal.

Theorem 2 Suppose ε̄ = 0. Upon termination of the algorithm the first-stage decision uH1 satisfies

r1(x̄, uH1 ) + V2(f1(x̄, uH1 )) ≥ V1(x̄)− 2Tε.

Proof For the optimal first stage decision u∗1, (25)(ii) gives

r1(x̄, u∗1) +QH2 (f1(x̄, u∗1)) ≥ r1(x̄, u∗1) + V2(f1(x̄, u∗1))− Tε

and by (20)

r1(x̄, uH1 ) +QH2 (f1(x̄, uH1 )) ≥ r1(x̄, u∗1) +QH2 (f1(x̄, u∗1))

so

r1(x̄, uH1 ) +QH2 (f1(x̄, uH1 )) ≥ r1(x̄, u∗1) + V2(f1(x̄, u∗1))− Tε. (39)

Now upon termination of the algorithm (38) gives

QH2 (f1(x̄, uH1 )) = QH+1
2 (f1(x̄, uH1 )), (40)

and Lemma 5 implies

QH+1
2 (f1(x̄, uH1 )) ≤ V2(f1(x̄, uH1 )) + Tε, (41)

so (39), (40), and (41) yield

r1(x̄, uH1 ) + V2(f1(x̄, uH1 )) ≥ r1(x̄, u∗1) + V2(f1(x̄, u∗1))− 2Tε,

giving the result. ut
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4 Multistage stochastic optimization problems

4.1 Setting

We extend model MP, described in Section 3, to include random noise on the state transition function. We
model the realizations of the noise in the form of a scenario tree with nodes n ∈ N and leaves in L, where n
represents different future states of the world. Each node n has a probability p(n). By convention we number
the root node n = 0 (with p(0) = 1). The unique predecessor of node n 6= 0 is denoted by n−. We denote the
set of children of node n ∈ N \L by n+, and let Mn = |(n+)|. The depth d(n) of node n is the number of nodes
on the path from node n to node 0, so d(0) = 1 and we assume that every leaf node has the same depth, say
dL. The depth of a node can be interpreted as a time index, so we can identify dL with time T + 1 as defined
in section 3. Set N∗ := N \ {0}. The formulation of MSP in the scenario tree is

MSPT: max
∑

n∈N∗\L

p(n)rn(xn−, un) +
∑
n∈L

p(n)R (xn)

s.t. xn = fn(xn−, un), n ∈ N∗,
x0 = x,
un ∈ Un(xn−), n ∈ N∗,
xn ∈ Xn, n ∈ N∗.

The above probabilities must satisfy

p(n) ≥ 0, n ∈ N ;
∑
n∈L

p(n) = 1; p(n) =
∑
m∈n+

p(m), n ∈ N \ L. (42)

Observe in MSPT that we have a choice between hazard-decision and decision-hazard formulations that was not
relevant in the deterministic problem. To be consistent with most implementations of SDDP, we have chosen a
hazard-decision setting. This means that u is chosen in node n after the information from node n is revealed.
The dynamic programming principle for MSPT can be expressed as

Vn(xn) =
∑

m∈n+

p(m)
p(n) maxu∈Um(xn) {rm(xn, u) + Vm (fm(xn, u))} , n ∈ N \ L,

Vn(xn) = R(xn), n ∈ L.

We seek a policy that maximizes V0(x̄). Below we give two different extensions of the MIDAS algorithm of the
deterministic setting; Full-tree MIDAS goes over every node at each iteration; and Sampled MIDAS computes
only one pseudo trajectory at each iteration.

Now given a scenario tree, we approximate each node value function Vn(x), n ∈ N∗, with a piecewise constant
function Qkn(x), where k = 1, 2, . . . , H is the algorithm iteration. We have a sequence xkn in Xn. Associated with
each xkn is a value qkn. For leaf nodes we have that

qkn := R(xkn), n ∈ L. (43)

As before we define
Ωkn = {(xkn, qkn) : h = 1, . . . , k − 1}, for all n ∈ N∗ \ L

We now define the supporting indices of x ∈ Xn as

Hkn(x) := {1 ≤ h < k; xi < xkn,i + δ, i = 1, . . . , N}, (44)

as well as the following function:

Qkn(x) =

{
V̄ if Hkn(x) is empty,

min
{
qkn : h ∈ Hkn(x)

}
otherwise.

(45)
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and as before we suppress the dependence of Hkn(x) and Qkn(x) on the parameter δ. The following result is
immediate.

Lemma 6 If h < k and
∥∥x− xhn∥∥∞ < δ then Qkn(x) ≤ qhn.

4.2 Full-tree MIDAS algorithm

The stopping test is based on the following amounts:
εk,m := Qkm(fm(xkn, u

k
m))−Qk+1

m (fm(xkn, u
k
m)), for all n ∈ N \ L and m ∈ n+,

εk : =
∑
m∈N∗

p(m)εk,m. (46)

Algorithm 3 Full tree MIDAS

Set k = 1, and Ωkn = ∅, for all n ∈ N .

1. Forward pass: Set xk0 = x, and n = 0. While n /∈ L, for each m ∈ n+:

(a) Solve max
u∈Um(xkn)

{
rm(xkn, u) +Qkm(fm(xkn, u))

}
to give ukm;

(b) If
∥∥fm(xkn, u

k
m)− xkm

∥∥
∞ < δ for some h < k then set xkm = xkm.

Otherwise, set xkm = fm(xkn, u
k
m).

(c) Set n = m.

2. Backward pass:

(a) For every n ∈ L, set

Ωk+1
n := Ωkn ∪ {(xkn, qkn)}, where qkn = R(xkn). (47)

(b) ‘In order of decreasing depth’, for each node n

i. Compute

qkn =
∑
m∈n+

p(m)

p(n)

[
max

u∈Um(xkn)

{
rm(xkn, u) +Qk+1

m (fm(xkn, u))
}]

. (48)

with maxima in computation of qkn attained at ûkm, for each m ∈ n+.

ii. Set Ωk+1
n := Ωkn ∪ {(xkn, qkn)}.

3. If εk, defined in (46), satisfies εk ≤ ε̄, set H := k and stop.
4. Increase k by 1 and go to step 1.

We assume that there exist δ > 0 and ε > 0 such that, for any n ∈ N∗, the following approximate nondecreasing
condition holds:

Vn(x) ≤ Vn(y) + ε, if x ≤ y + δ1, for all x, y in Xn. (49)

Lemma 7 For every n ∈ N∗, and for all iterations k

Qkn(x) ≥ Vn(x)− (dL + 1− d(n))ε. (50)

Proof For a leaf node m in L, with depth d(m) = dL, (50) follows from Lemma 1. Now let n ∈ N∗ \ L have
depth d(n), and suppose as an inductive hypothesis that (50) holds for all nodes with depth greater than d(n).
Let x ∈ Xn, and (h ∈ Hkn(x), for some h < k. Let

ũhm ∈ arg max
u∈Um(xh

n)

{
rm(xhn, u) + Vm

(
fm(xhm, u)

)}
, for any m ∈ n+.
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Then

qhn =
∑
m∈n+

p(m)

p(n)
max

u∈Um(xh
n)

{
rm(xhn, u) +Qh+1

m

(
fm(xhn, u)

)}
≥

∑
m∈n+

p(m)

p(n)

(
rm(xhn, ũ

h
m) +Qh+1

m

(
fm(xhn, ũ

h
m)
))

.

Applying (50) now yields

qhn ≥
∑
m∈n+

p(m)

p(n)
(rm(xhn, ũ

h
m) + Vm

(
fm(xhn, ũ

h
m)
)
− (dL + 1− d(m))ε)

= Vn(xhn)− (dL + 1− d(m))ε,

= Vn(xhn)− (dL − d(n))ε,

since d(n) = d(m)− 1. Now for h ∈ Hkn(x), xi < xkni + δ, i = 1, 2, . . . , N . By (49) and the above inequality, we
get that

Vn(x) ≤ Vn(xhn) + ε ≤ qhn + (dL + 1− d(n))ε. (51)

The conclusion follows by minimizing over h ∈ Hkn(x). ut

We next analyze the convergence of the Full-tree MIDAS algorithm. As in the deterministic case, we define

ukm ∈ arg max
u∈Um(xk

n)

{
rm(xkn, u) +Qkm(fm(xkn, u))

}
, m ∈ n+, (52)

ûkm ∈ arg max
u∈Um(xk

n)

{
rm(xkn, u) +Qk+1

m (fm(xkn, u))
}
, m ∈ n+ . (53)

ũkm ∈ arg max
Um(xk

n)

{
rm(xkn, u) + Vm(fm(xkn, u))

}
, m ∈ n+, (54)

u∗m ∈ arg max
u∈Um(x̄)

{rm(x̄, u) + Vm(fm(x̄, u))} , m ∈ n+, (55)

Theorem 3 i) We have, at each iteration k of the algorithm:

V0(x̄) ≤
∑

n∈N∗\L

p(n)rn(xkn−, u
k
n) +

∑
n∈L

p(n)R
(
xkn

)
+ (dL − 1)ε+ εk. (56)

ii) The stopping test is satisfied after a finite value number of steps (when k = H), and then, the current policy
is such that

V0(x̄) ≤
∑

n∈N∗\L

p(n)rn(xHn−, u
H
n ) +

∑
n∈L

p(n)R
(
xHn

)
+ (dL − 1)ε+ ε̄. (57)

Proof (i) Adapting the arguments for the deterministic case, we can write

p(n)qkn =
∑
m∈n+

p(m)
(
rm(xkn, û

k
m) +Qk+1

m (fm(xkn, û
k
m))

)
≤

∑
m∈n+

p(m)
(
rm(xkn, û

k
m) +Qkm(fm(xkn, û

k
m))

)
≤

∑
m∈n+

p(m)
(
rm(xkn, u

k
m) +Qkm(fm(xkn, u

k
m)
)

)

=
∑
m∈n+

p(m)
(
rm(xkn, u

k
m) +Qk+1

m (fm(xkn, u
k
m)) + εk,m

)
≤

∑
m∈n+

p(m)
(
rm(xkn, u

k
m) + qkm + εk,m

)
.

(58)
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As a special case

qk0 ≤
∑
m∈0+

p(m)
(
rm(x̄, ukm) + qkm + εk,m

)
,

so substituting for p(m)qkm recursively throughout the tree and using (58) and

p(n)qkn = p(n)R(xkn), for all n ∈ L, (59)

yields

qk0 ≤
∑
n∈N∗

p(n)rn(xn−, u
k
n) +

∑
n∈L

p(n)R
(
xkn

)
+
∑
n∈N∗

p(n)εk,n (60)

On the other hand, Lemma 7 gives

V0(x̄) =
∑
m∈0+

p(m)
(
rm(x̄, u∗m) + Vm(fm(x̄, u∗m))

)
≤

∑
m∈0+

p(m)
(
rm(x̄, u∗m) +Qk+1

m (fm(x̄, u∗m))
)

+ (dL − 1)ε

≤
∑
m∈0+

p(m)
(
rm(x̄, ûkm) +Qk+1

m (fm(x̄, ûkm))
)

+ (dL − 1)ε

= qk0 + (dL − 1)ε.

(61)

The result follows from combining (60) and (61).
(ii) The result is a consequence of (i) and the fact that, as in the deterministic case, after finitely many iterations,
we will have εk,n = 0 for each node n. ut

As before, if we set ε̄ = 0, then at some iteration k = H the forward pass in every iteration k > H will visit the
same points xHn as in iteration H, so for every t = 1, 2, . . . , T ,

QHn (fn(xHn−, u
H
n )) = QH+1

n (fn(xHn−, u
H
n )) (62)

This means that the functions QHn and QH+1
n will be identical for all n ∈ N∗. It follows that

rn(xn−, u
H
n ) +QHn (fn(xn−, u

H
n )) = rn(xHn−, û

H
n ) +QH+1

n (fn(xn−, û
H
n )) (63)

We now can establish the following result.

Lemma 8 For every n ∈ N∗,

QH+1
n (fn(xHn−, u

H
n )) ≤ Vn(fn(xHn−, u

H
n )) + (dL − d(n) + 1)ε.

Proof We proceed by induction on n. When n ∈ L, after step 2(b) of iteration H we have for some h < H∥∥∥xhn − fn(xHn−, u
H
n )
∥∥∥
∞
< δ

so by Lemma 6

QH+1
n (fn(xHn−, u

H
n )) ≤ qhn

= Vn(xhn)

≤ QH+1
n (fn(xHn−, u

H
n )) + ε.

by (49).
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Assume as an inductive hypothesis that for every m with dm = d we have

QH+1
m (fm(xHm−, u

H
m)) ≤ QH+1

m (fm(xHm−, u
H
m)) + (dL − d+ 1)ε.

We show that for every node n with dn = d− 1

QH+1
n (fn(xHn−, u

H
n )) ≤ QH+1

n (fn(xHn−, u
H
n )) + (dL − d+ 2)ε.

Since at termination of the algorithm

‖xHn − fn(xHn−, u
H
n )‖∞ < δ,

it follows that

QH+1
n (fn(xHn−, u

H
n )) ≤ qHn by Lemma 6

=
∑
m∈n+

p(m)
(
rm(xHn , û

H
m) +QH+1

m (fm(xHn , û
H
m)
)

by (52)

=
∑
m∈n+

p(m)
(
rm(xHn , u

H
m) +QHm(fm(xHn , u

H
m)
)

by (63)

≤
∑
m∈n+

p(m)
(
rm(xHn , u

H
m) + Vm(fm(xHn , u

H
m) + (dL − dm + 1)ε

)
induction hypothesis

≤
∑
m∈n+

p(m)
(
rm(xHn , ũ

H
m) + Vm(fm(xHn , ũ

H
m)
)

+ (dL − d+ 1)ε optimality of ũHm

= Vn(xHn ) + (dL − d+ 1)ε definition of Vn
≤ Vn(fn(xHn−, u

H
n )) + (dL − d+ 2)ε

where the last inequality follows from ‖xHn − fn(xHn−, u
H
n )‖∞ < δ and (49). This establishes the result for nodes

with depth d− 1 and hence all n ∈ N∗ by induction. ut

Theorem 4 Suppose ε̄ = 0. Upon termination of the algorithm, the first-stage decisions uHm satisfy∑
m∈0+

p(m)
(
rm(x̄, uHm) + Vm(fm(x̄, uHm))

)
≥ V0(x̄)− 2(dL − 1)ε.

Proof For every m ∈ 0+, d(m) = 2. So for the optimal first stage decisions u∗m, Lemma 7 gives

rm(x̄, u∗m) +QHm(fm(x̄, u∗m)) ≥ rm(x̄, u∗m) + Vm(fm(x̄, u∗m))− (dL − 1)ε,

and by (52)
rm(x̄, uHm) +QHm(fm(x̄, uHm)) ≥ rM (x̄, u∗m) +QHm(fm(x̄, u∗m)),

so
rm(x̄, uHm) +QHm(fm(x̄, uHm)) ≥ rm(x̄, u∗m) + Vm(fm(x̄, u∗m))− (dL − 1)ε. (64)

Now upon termination of the algorithm (62) gives

QHm(fm(x̄, uHm) = QH+1
m (fm(x̄, uHm), (65)

and Lemma 8 implies
QH+1
m (fm(x̄, uHm) ≤ Vm(fm(x̄, uHm)) + (dL − 1)ε (66)

so (64), (65), and (66) yield

rm(x̄, uHm) + Vm(fm(x̄, uHm)) + (dL − 1)ε

≥ rm(x̄, u∗m) + Vm(fm(x̄, u∗m))− (dL − 1)ε
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so ∑
m∈0+

p(m)(rm(x̄, uHm) + Vm(fm(x̄, uHm)))

≥
∑
m∈0+

p(m)(rm(x̄, u∗m) + Vm(fm(x̄, u∗m)))− 2(dL − 1)ε

giving the result. ut

4.3 Sampled MIDAS algorithm

We consider next a variant where, in the forward step, only one trajectory is explored, and no stopping test is
given.

Algorithm 4 Sampled MIDAS

Set k = 1, and Ωkn = ∅, for all n ∈ N .

1. Forward pass: Set xk0 = x, and n = 0. While n /∈ L:

(a) Sample m ∈ n+;

(b) Solve max
u∈Um(xkn)

{
rm(xkn, u) +Qkm(fm(xkn, u))

}
to give ukm;

(c) If
∥∥fm(xkn, u

k
m)− xhm

∥∥
∞ < δ for some h < k then set xkm = xhm.

Otherwise, set xkm = fm(xkn, u
k
m).

(d) Set n = m.

2. Leaf node update: Set Ωk+1
n := Ωkn, for all n ∈ N .

For the particular leaf node n ∈ L at the end of step 1:

(a) Set qkn = R(xkn) and Ωk+1
n := Ωk+1

n ∪ {(xkn, qkn)}.
3. Backward pass: While n > 0:

(a) Set n = n−;
(b) Compute

qkn =
∑
m∈n+

p(m)

p(n)

[
max

u∈Um(xkn)

{
rm(xkn, u) +Qk+1

m (fm(xkn, u))
}]

attained at
ûm ∈ arg max

u∈Um(xkn)

{
rm(xkn, u) +Qk+1

m (fm(xkn, u))
}
.

(c) Set Ωk+1
n := Ωk+1

n ∪ {(xkn, qkn)}.
4. Increase k by 1 and go to step 1.

Following [13] we assume that sample paths satisfy the Forward Pass Sampling Property.

Forward Pass Sampling Property (FPSP):

Each node is visited infinitely many times with probability 1. (67)

There are many sampling methods satisfying this property. For example, one method is to select a child node
at each node n in the forward pass, by independently sampling with a positive probability for each outcome
m ∈ n+. This meets FPSP by the Borel-Cantelli lemma. Another sampling method that satisfies FPSP is to
repeat an exhaustive enumeration of each scenario in the forward pass.

Recall that d(n) is the depth of node n. The following result ensures that Qkn is a (dL+ 1− d(n))ε-upper bound
on Vn. Its proof is identical to the one in the case of the full tree algorithm.
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Lemma 9 For every n ∈ N , and for all iterations k, (50) holds.

We can now state a convergence result for MIDAS.

Theorem 5 Suppose the approximate non-decreasing assumption (49) and FPSP (67) hold. Almost surely,
after finitely many (say H) iterations, the functions Qkn remain constant. Then, any policy is such that

V0(x̄) ≤
∑

n∈N∗\L

p(n)rn(xHn−, u
H
n ) +

∑
n∈L

p(n)R
(
xHn

)
+ dLε, (68)

and the first-stage decisions satisfy∑
m∈0+

p(m)
(
rm(x̄, uHm) + Vm(fm(x̄, uHm))

)
≥ V0(x̄)− 2(dL − 1)ε. (69)

Proof Since the algorithm generates finitely many points, it is clear that the functions Qkn remain constant after
finitely many iterations. Since the FPSP is satisfied, each node is a.s. visited infinitely many times. We easily
see that the estimates of the full tree algorithm are then valid. The conclusion follows. ut

In practical implementations of MIDAS, we choose to stop after a fixed number Hmax of iterations. Since
QHmax

0 gives a 2(dL− 1)ε-upper bound on any optimal policy, we can estimate an optimality gap by simulating
the candidate policy and comparing the resulting estimate of its expected value (and its standard error) with
QHmax

0 + 2(dL − 1)ε.

We also remark that Algorithm 4 simplifies when the random variables are stagewise independent. In this case,
the points (xkn, q

k
n) can be shared across all nodes having the same depth. This means that there is a single

approximation Qkn shared by all these nodes and updated once for all in each backward pass. The almost-sure
convergence result for MIDAS applies in this special case, but one might expect the number of iterations needed
to decrease dramatically in comparison with the general case.

4.4 Multistage stochastic integer programming

The MIDAS algorithm described above can be applied to any multistage optimization problem with value func-
tions that can be approximated by monotonic piecewise constant functions. The accuracy of the approximation
relies on the approximate non-decreasing assumption (49), namely

Vn(x) ≤ Vn(y) + ε, if x ≤ y + δ1, for all x, y in Xn. (70)

We can apply the algorithm to a problem in which x is required to be integer so Vn(x) is defined only at integer
points. In the formulation MSPT, define Un(xn−) ⊆ ZM , and define dynamics so that Xn ⊆ ZN . Now observe
that if Vn(x) is known to be nondecreasing in x and we choose δ < 1 then (70) holds with ε = 0. We then have
that MIDAS converges almost surely to an optimal solution in a finite number of iterations.

Theorem 6 Suppose MIDAS with δ ∈ (0, 1) and FPSP is applied to a problem in which x is required to be
integer and the Bellman functions Vn(x), n ∈ N∗ are known to be nondecreasing in x. Almost surely, after
finitely many (say H) iterations, the functions Qkn remain constant. Then, any policy is such that

V0(x̄) ≤
∑

n∈N∗\L

p(n)rn(xHn−, u
H
n ) +

∑
n∈L

p(n)R
(
xHn

)
. (71)

and the first-stage decisions satisfy∑
m∈0+

p(m)
(
rm(x̄, uHm) + Vm(fm(x̄, uHm))

)
≥ V0(x̄). (72)
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Proof If x is integer then Vn(x) jumps only at integer points. Since δ < 1 and Vn(x) is nondecreasing in x, the
approximate non-decreasing assumption (49) is true with ε = 0. Since, in addition, FPSP holds, Theorem 5
yields termination after H iterations almost surely and (68) and (69) with ε = 0. This gives (71) and (72) as
required. ut

In practical implementations of MIDAS applied to multistage stochastic integer programs, the choice of δ < 1
might lead to only incremental changes in um at each iteration, resulting in slow convergence. It is possible that
choosing δ larger than 1 would lead to faster convergence to good policies, albeit with a weaker bound on their
distance from optimality. In the next section we illustrate this phenomenon on a simple example.

5 Numerical examples

To illustrate MIDAS we apply it to an example problem with a continuous state variable. This problem is
an instance of a single-reservoir hydroelectric scheduling problem, as described in section 1. In the model we
consider, the state x = (st, pt) represents both a reservoir stock variable st and a price variable pt with the
following dynamics [

st+1

pt+1

]
=

[
st − vt − lt + ωt

αtpt + (1− αt)bt + ηt

]
,

where vt is reservoir release, lt is reservoir spill, ωt is (random) reservoir inflow, and ηt is the error term for
an autoregressive model of price that reverts to a mean price bt. This means that ξt = [ωt ηt ]>. We define the
reward function as the revenue earned by the released energy g(v) sold at price p,

rt(s, p, v, ωt, ηt) = pg(v).

We approximate the value function by piecewise constant functions in two dimensions, where qh represents the
expected value function estimate at sh and ph. Following the formulation in the Appendix, the approximate
value function Qkt (st, pt) for storage st and price pt is defined as:

Qkt (st, pt) = max ϕ
s.t.

ϕ ≤ qht + (V̄ − qht )(1− wh), h = 1, . . . , H,

st ≥ sht z
h
s + δs, h = 1, . . . , H,

pt ≥ pht z
h
p + δp, h = 1, . . . , H,

zhs + zhp = 1− wh, h = 1, . . . , H,

wh, z
h
s , z

h
p ∈ {0, 1} , h = 1, . . . , H.

(73)

Figure 3 illustrates an example of how the value function is approximated. At (st,pt) = (175, 17.5), the expected
value function estimate is 4000.
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Fig. 3 Value function approximation for k = 4. Qkt (x) at the point x = (st, pt) shown by the cross equals q4 = 4000.

We applied Algorithm 4 to problems ranging from T = 5 to T = 12 stages. The reservoir has capacity 100. The
generation function g(v) is a convex piecewise linear function of the turbine flow v, which is at most 70 units
unless the reservoir contents are smaller than this. So the stage problem (apart from the Bellman function) can
be modeled as a linear program. Table 1 summarizes the values of the parameters chosen.

Parameter Value
T 5, . . . , 12

αt for t = 1, 2, . . . , T 0.5
ηt for t = 1, 2, . . . , T Normal(0, 1)

bt

[61.261, 56.716, 59.159, 66.080,
72.131, 76.708, 76.665, 76.071,
76.832, 69.970, 69.132, 67.176]

Xδ [δs, 100]× [δp, 85]
l for t = 1, 2, . . . , T 0
ωt for t = 1, 2, . . . , T 0

U(st) v ∈ [[0, 70] ∩ [0, st]

g(v)


1.1v if v ∈ [0, 50],

v + 5 if v ∈ (50, 60],

0.5(v − 60) + 65 if v ∈ (60, 70],

0 otherwise.

Initial s 100
Initial p 61.261

Table 1 Model parameters for single-reservoir, twelve-stage hydroscheduling problem.

The price was modelled as an autoregressive lag 1 process that reverts to a mean defined by bt where the noise
term ηt is assumed to have a standard normal distribution that is discretized into 5 outcomes. The approximated
price process is illustrated by Figure 4.
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Fig. 4 Sampled price scenarios from a 12 stage price process with 5 discrete ηt values. The full tree has 48,828,125 scenarios.

MIDAS was coded in Python on a Dell XPS 13 with an Intel Core i5 processor and 8GB of RAM. All MIP
problems in MIDAS were solved using CPLEX 12.6 under default settings. The first set of results illustrates the
performance of MIDAS with δs = δp = 1 on problems with an increasing number of stages. MIDAS was run for
20 hours on each problem instance, and the 2Tε-upper bounds recorded at each iteration. These are plotted in
Figure 5. The bounds decrease and converge after about 1500 iterations. Occasionally a big decrease in bound
is obtained. This occurs when MIDAS adds a new point xkn to Ωkn that is some distance away from the points
already in Ωkn. In most of the other iterations the new state added is at `∞ distance δ = 1 from the set Ωkn, so
the upper bound decreases slowly.

Fig. 5 2Tε-upper bounds of MIDAS for different stage lengths. Here UBT denotes the upper bound for a T -stage problem.
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For comparison, we constructed the deterministic equivalent linear programming problem corresponding to the
full scenario tree and solved this on a 20 CPU virtual machine with 64 GB of RAM using Gurobi 7.5.2. The
results for T = 5 to T = 10 are shown in Table 2.

Deterministic equivalent tree MIDAS (δs = 1, δp = 1)
Stages Nodes Rows Columns Objective Time

(sec)
Lower
bound

Standard
error

2εT -
Upper
bound

Upper
bound

5 781 19530 31248 6593.14 0.27 6194.30 141.02 6089.45 7939.45
6 3906 97655 156248 7062.79 1.26 6532.16 226.77 6332.73 8552.73
7 19531 488280 781248 7365.29 6.16 6782.94 266.79 6622.91 9212.91
8 97656 2441405 3906248 7495.75 32.60 7010.64 313.75 6876.08 9836.08
9 488281 12207030 19531248 7579.33 197.41 7038.11 258.76 7050.20 10380.20

10 2441406 61035155 97656248 - - 7101.84 247.58 7164.96 10864.96

Table 2 MIDAS performance with increasing number of stages

For instances with 9 or fewer stages the deterministic equivalent tree formulation solves very fast to give the
true optimal objective value for these models. However, as the number of stages increases the size of the model
grows exponentially, so when applied to the instance with 10 stages, Gurobi runs out of memory on the 64GB
virtual machine. Similar memory limits were encountered earlier (at 8 stages) on the 8GB machine.

MIDAS gives solutions after 20 hours of computation that have 2εT -upper bounds that are below the true
optimal value. We can estimate ε for this single reservoir problem as 185 = 85δs + 100δp, since the maximum
price over the planning horizon is no more than 85 (see Figure 4), and the maximum we can store is 100, since
we assume zero inflows. This results in adjusted values in the column denoted “Upper bound” in Table 2.

Simulation of the MIDAS policies obtained in each instance (with 100 simulations) gives estimated revenues
shown in the column “Lower bound” in Table 2. These have standard errors of the order of 250 as shown, so 95%
confidence intervals of the MIDAS policy values are quite wide. In all cases these do not cover the upper bound,
so we cannot claim that the policies are close to optimal. The true optimal policies have objectives shown in the
fifth column of Table 2. These are reasonably close to the upper 95% confidence bound of the MIDAS policies
(although we could not tell this without the true optimal values).

Figures 6 and 7 show the results from applying MIDAS to the same problem with 12 stages, setting δp = 5
and choosing various δs values (denoted δx in the figures). For δx = 50, one can see from Figure 6 that the
2εT -upper bound (shown in red) converges rapidly to a low value. Recall that this choice of δx results in ε being
potentially as large as 4750 = 85 ∗ 50 + 100 ∗ 5, which provides little confidence in the solution. For δx = 10,
the 2εT -upper bound (shown in purple) converges more slowly. Here ε ≤ 1350, so one might expect a more
profitable policy. This is confirmed in Figure 7, which shows the results of simulating the policies obtained at
each iteration of MIDAS using different δx values.
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Fig. 6 Comparison of upper bound for various δx values of the MIDAS algorithm for a single reservoir hydro scheme.
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Fig. 7 Comparison of lower bound for various δx values of the MIDAS algorithm for a single reservoir hydro scheme.

Finally in Figure 8 we show the storage trajectories that are obtained in the forward pass of MIDAS when
applied to the 12-stage problem with δs = 10 and δp = 5. One can see from this figure that the algorithm visits
high storage states more often in periods 1 through 8, as the policy converges towards one that will retain water
for the highest price periods 6 to 10 (see Figure 4).
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Generated state trajectory by iteration: MIDAS

Fig. 8 Generated state trajectories for each iteration of the MIDAS algorithm (δs = 10). The coloring shows how many
simulations visit the state, where red indicates many visits, and blue infrequent visits.

6 Conclusion

In this paper, we have proposed a method called MIDAS for solving multistage stochastic dynamic programming
problems with nondecreasing Bellman functions. For a problem with T stages, we have demonstrated the almost-
sure convergence of MIDAS to a 2Tε-optimal policy in a finite number of steps. Based on the numerical example
in section 5, we may expect that the number of iterations will decrease as δ increases. Increasing δ increases
the distance between distinct states that are visited, hence reducing the number of piecewise constant functions
needed to cover the domain of the value function. However, the quality of the optimal policy will depend on
the value of δ, since a smaller δ will give a lower ε. Furthermore, since the current formulation treats each stage
problem as a MIP, the stage problems will increase in size with each iteration. Therefore it is important to
choose an appropriate δ to produce good optimum policies within reasonable computation time.

MIDAS can be extended in several ways. Currently, we approximate the stage problems using a MIP formulation
that treats the Bellman functions as piecewise constant. One formulation of such a MIP is given in the Appendix.
A more accurate approximation might be achieved using a stronger MIP formulation that combines piecewise
constant functions with cutting planes. As long as this provides an ε-outer approximation of the Bellman
function, we can incorporate it into a MIDAS scheme, which will converge almost surely by the same arguments
above.

The application motivating this paper yields nonconcave Bellman functions by virtue of the mean-reverting price
process. MIDAS can compute approximate solutions to instances of this problem that defeat state-of-the-art
LP solvers when applied to a scenario-tree version of the model.

Although our theoretical analysis has focused on problems with continuous Bellman functions, MIDAS can be
applied to multistage stochastic integer programming (MSIP) problems. Indeed as Theorem 6 demonstrates,
MIDAS with δ < 1 will converge almost surely to an optimal solution to a MSIP. Solving a deterministic
equivalent of a MSIP can be difficult, as the scenario tree grows exponentially with the number of stages and
the number of outcomes, and MIP algorithms generally scale poorly. However, since solving many small MIPs
will be faster than solving a single large MIP, we might expect MIDAS to produce good candidate solutions to
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MSIP problems with less computational effort. Our hope is that MIDAS will provide a practical computational
approach to solving these difficult multistage stochastic integer programming problems.

Appendix: A MIP representation of Qk+1(x)

Assume that X = {x : 0 ≤ xi ≤ Ki, i = 1, 2, . . . , N}, and let V (x) be any upper semi-continuous function
defined on X. Suppose for some points xh, h = 1, 2, . . . , k, we have V (xh) = qh. Recall V̄ = maxx∈X V (x),

Hk+1(x) = {1 ≤ h ≤ k : xhi > xi − δ, i = 1, 2, . . . , N},

Qk+1(x) = min
{
V̄ ,min

{
qh : h ∈ Hk+1(x)

}}
.

For δ > 0, and for any x ∈ Xδ = {x : δ ≤ xi ≤ Ki, i = 1, 2, . . . , n}, define Q̄k+1(x) to be the optimal value of
the mixed integer program

MIP(x): max ϕ

s.t. ϕ ≤ qh + (V̄ − qh)(1− wh), h = 1, 2, . . . , k,

xi ≥ xhi z
h
i + δ, i = 1, 2, . . . , N,∑n

i=1 z
h
i = 1− wh, h = 1, 2, . . . , k,

wh ∈ {0, 1} , h = 1, 2, . . . , k,

zhi ∈ {0, 1} , i = 1, 2, . . . , N,
h = 1, 2, . . . , k.

Proposition 1 For every x ∈ Xδ,
Q̄k+1(x) = Qk+1(x).

Proof For a given point x ∈ Xδ, consider wh, zhi , i = 1, 2, . . . , N , h = 1, 2, . . . , k that are feasible for MIP(x). If
wh = 0, h = 1, 2, . . . , k, then ϕ ≤ V̄ is the only constraint on ϕ and so Q̄k(x) = V̄ . But wh = 0, h = 1, 2, . . . , k
means that for every such h, zhi = 1 for some component i giving

xi ≥ xhi + δ.

Thus
Hk+1(x) = {h : xi < xhi + δ for every i} = ∅.

Thus Qk+1(x) = V̄ which is the same value as Q̄k+1(x).

Now assume that the optimal solution to MIP(x) has wh = 1 for some h. It suffices to show that

Q̄k+1(x) = min{qh : h ∈ Hk+1(x)}.

First if h ∈ Hk+1(x) then wh = 1. This is because choosing wh = 0 implies zhi = 1 for some i, so for at least
one i

xi ≥ xhi + δ,

so h /∈ Hk+1(x).

Now if h /∈ Hk+1(x) then any feasible solution to MIP(x) can have either wh = 0 or wh = 1. Observe however
that if

qh < min{qh
′

: h′ ∈ Hk+1(x)}
for any such h then choosing wh = 1 for any of these would yield a value of ϕ strictly lower than the value
obtained by choosing wh = 0 for all of them. So wh = 0 is optimal for h /∈ Hk+1(x). It follows that Hk+1(x) =
{h : wh = 1}. Thus the optimal value of MIP(x) is

Q̄k+1(x) = min{qh : wh = 1} = min{qh : h ∈ Hk+1(x)} = Qk+1(x).

ut
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