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Abstract

We consider the incorporation of a time-consistent coherent risk measure into a
multi-stage stochastic programming model, so that the model can be solved using a
SDDP-type algorithm. We describe the implementation of this algorithm, and study
the solutions it gives for an application of hydro-thermal scheduling in the New Zealand
electricity system. The performance of policies using this risk measure at different levels
of risk aversion is compared with the risk-neutral policy.

1 Introduction

Multi-stage stochastic linear programming models have been solved using decomposition
for over thirty years, originating with the seminal work of [2], but there are still very few
implementations of these models in commercial settings. The classical version of this model
constructs a scenario tree that branches at each stage. Even with a small number of outcomes
per stage, the size of the scenario tree grows exponentially with the number of stages. In two-
stage problems with many scenarios, the sample average approximation approach enables
large-scale problems to be solved within reasonable error bounds [11]. However, as argued
by [22], the exponential growth of the scenario tree makes all but the smallest instances of
multi-stage problems intractable for sample average approximation.

One area in which multi-stage stochastic linear programming models are widely applied
is in the long-term scheduling of water resources, in particular in hydro-thermal electricity
systems. This problem involves determining a policy of releasing water from reservoirs for
hydro-electricity generation and generating from thermal plant over some planning horizon
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of months or years so as to meet the future demand for electricity at the lowest expected
fuel cost. The first models (dating back to [14],[12]) for these problems used dynamic pro-
gramming, a tool that was confined to systems with one or two reservoirs, unless reservoir
aggregation heuristics (see e.g. [24]) were used.

An effort to model systems with multiple reservoirs led to the development in the 1980s
and 1990s of various multi-stage stochastic linear programming models (see e.g. [10]) using
scenario trees. Stochastic Dual Dynamic Programming (SDDP) [17] was developed as a
response to the problem of dealing with a rapidly growing scenario tree. This method
approximates the future cost function of dynamic programming using a piecewise linear
outer approximation, defined by cutting planes or cuts computed by solving linear programs.
This avoids the curse of dimensionality that arises from discretizing the state variables.
The intractability arising from a branching scenario tree is avoided by essentially assuming
stage-wise independent uncertainty. This allows cuts to be shared between different states,
effectively collapsing the scenario tree.

The ability to share cuts under some specific forms of stage-wise dependency as discussed
by Infanger and Morton [9] is now included in most commercial implementations of the SDDP
algorithm. Monte Carlo sampling is also used in estimating bounds. These features make
SDDP look more like an approximate dynamic programming method than a multi-stage
stochastic linear programming algorithm. Commercial implementations of SDDP are in
widespread use around the world, and are used to schedule hydro-electric plant in a number
of South American countries including Brazil and Chile.

The standard implementations of SDDP are risk neutral, in that they seek policies that
minimize expected cost. In hydro-thermal systems this cost comes about from thermal
fuel and penalty costs, such as shortages. A cost-minimizing system operator would accept
occasional shortages in electricity if this made the long-run cost of fuel a minimum. In
practice, shortages do not occur very often, but when they do, they are so disruptive that
politicians and system operators would wish to avoid them. It therefore makes sense to
compute hydro-thermal scheduling policies that are risk averse. In some circumstances it is
possible to have a significantly less risky policy with a modest increase in expected cost.

In this paper we describe a version of SDDP that models risk. Our work is based on
the recent paper by Shapiro [23], but draws also on work by [21] and [15]. Our measure
of risk in each stage is a convex combination of expectation and conditional value at risk
[19], [20]. This makes it coherent as defined by [1]. The risk measure we use also satisfies
a dynamic programming recursion, and so it is time-consistent in the sense defined by [21].
The recursive nature of its definition, and its convexity also admits approximation using
cutting planes, and so we can modify SDDP to accommodate this.

Several other authors have developed SDDP implementations that account for risk. In
[8], Iliadis et al describe a hydro-thermal scheduling model that accounts for the conditional
value at risk of accumulated revenue shortfall at the end of the planning horizon, however
there are few details in this paper about its implementation in the SDDP method. Guigues
and Sagastizabal [5] study a rolling horizon model that repeatedly solves and implements
the solution to a single stage problem with chance constraints. Guigues and Romisch [4]



present a general framework for extended polyhedral risk measures in the context of SDDP.
The general risk measure they use makes use of a state space augmented by a vector of costs
representing a possible history up to the current time. In contrast the model proposed by
Shapiro [23] uses one extra state variable in each stage and so is more straightforward to
compute. As we shall see, even in this case the algorithm takes some time to converge to a
good solution.

Our aim in this paper is to demonstrate that risk-averse policies for this class of large-
scale stochastic programming problems can be computed reasonably easily using SDDP-type
methods. Moreover, by simulating these policies on a representation of a real hydro-thermal
system, we are able to draw some conclusions about the value of these models as decision
tools.

The paper is laid out as follows. In the next section, for completeness, we describe the
risk-neutral SDDP algorithm, and describe a version of this model using a Markov chain to
represent stage-wise dependence in our model. This section can be skipped by readers who
are familar with this class of algorithms. In Section 3, we define conditional value at risk and
describe how this is implemented in a multi-stage context in Section 4. We describe this in
some detail, starting with a two-stage model to build the reader’s intuition. The final model
that we discuss in this section uses a Markov chain with states that can be used to adapt the
level of risk aversion. In Sections 5 and 6 we describe a model of the New Zealand electricity
system and some computational results of experiments where this approach is applied to this
system, respectively. Section 7 concludes the paper.

2 Multi-stage stochastic linear programming

In this section we review the Stochastic Dual Dynamic Programming (SDDP) algorithm
proposed by [17] as a solution strategy for risk-neutral multi-stage stochastic linear pro-
gramming. For a more detailed discussion of this algorithm, the reader is referred to [1§]
and [23]. The class of problems we consider have T stages, denoted ¢t = 1,2,...,T, in each
of which a random right-hand-side vector b;(w;) € R™ has a finite number of realizations
defined by w; € ;. We assume that the outcomes w; are stage-wise independent, and that
(), is a singleton, so the first-stage problem is

z=min ¢z, + E[Q2(z1,ws)]
s.t. A1$1 = bl, (1)
T1 Z 07

where 1 € R" is the first stage decision and ¢; € R™ a cost vector, A; is a m X n matrix,
and b; € R™.

We denote by Q2(x1,ws) the second stage costs associated with decision z; and realization
wy € €)y. The problem to be solved in the second and later stages t, given decisions x; 1 and
realization w;, can be written as



Qi(r_1,w;) = min ¢ 2 + BlQuy1 (w4, wiy1)]
s.t. Atl't = bt(wt> - Etl‘t—h [ﬂ-t<wt)] (2)
Ty 2 07

where x; € R" is the decision in stage ¢, ¢; its cost, and A; and E; denote m X n matrices.
Here 7, (w;) denotes the dual variables of the constraints. In the last stage we assume either
that BE[Q7.1(z7,wri1)] = 0, or that there is a convex polyhedral function that defines the
expected future cost after stage 7. For all instances of (2) we assume relatively complete
recourse, whereby (2) at stage ¢ has a feasible solution for all values of x;_; that are feasible
for the instance of (2) at stage ¢ — 1. Relatively complete recourse can be ensured by
introducing artificial variables with penalty terms in the objective.

2.1 Stochastic dual dynamic programming

The SDDP algorithm performs a sequence of major iterations, each consisting of a forward
pass and a backward pass through all the stages, to build an approximately optimal policy.
In each forward pass, a set of N scenarios is sampled from the scenario tree and decisions
are taken for each stage of those N scenarios, starting in the first stage and moving forward
up to the last stage. In each stage, the observed values z;(s) of the decision variables z;,
and the costs of each stage in all scenarios s are saved.

The SDDP algorithm builds a policy that is defined at stage ¢ by a polyhedral outer
approximation of B[Q;1 (s, w;r1)]. This approximation is constructed using cutting planes
called Benders cuts, or just cuts. In other words in each tth-stage problem, E[Q¢1 (¢, wii1)]
is replaced by the variable #;,,; which is constrained by a set of linear inequalities

Ori1 = Gt ps®t = Puit s, k=1,2,..K, s=1,2,..,N, (3)

where K is the number of backward passes that have been completed.
With this approximation, the first-stage problem is

z = min clTarl + 64
s.t. Ala:l = bl,

Os — Gy o T1 > hors, k=1,2,.. K, (4)

s=1,2,..., N,

T 2 07
and the ¢-th stage problem becomes
Qt(l‘t—lawt) =min ¢z + 01

s.t. Atht = bt(wt) Etxt 1 [ (wt)]

9t+1 gt+1ksxt > ht+1k8; k= 1727 "7K> (5)
s=1,2 N

thO



where we interpret the set of cuts as being empty when K = 0.

At the end of the forward pass, a convergence criterion is tested, and if it is satisfied then
the algorithm is stopped, otherwise it starts the backward pass, which is defined below. In
the standard version of SDDP (see [17]), the convergence test is satisfied when z, the lower
bound on the expected cost at the first stage (called the Lower Bound), is statistically close
to an estimate of the expected total operation cost (called the Upper Bound) obtained by
averaging the cost of the policy defined by the cuts when applied to the N sampled scenarios.
In this simulation the total operation cost for each scenario is the sum of the present cost
(¢] z¢) over all stages t. For completeness we have descibed this test in our mathematical
description of SDDP, but in our computational experiments we adopt a different approach
in which the algorithm is terminated after a fixed number of iterations. This has proved to
be more reliable than the standard test for the problems we are solving. (See [7],[23] for a
discussion of the drawbacks of the standard convergence criterion.)

If the convergence criterion is not satisfied, then SDDP amends the current policy using
a backward pass that adds N cuts to each stage problem, starting at the penultimate stage
and working backwards to the first. To compute the coefficients for the cuts, we solve the
next stage problems for all possible realizations (€;,1) in each stage ¢ and scenario s. The
cut for (5), the t-th (approximate) stage problem in scenario s, is computed after its solution
7% (s) has been obtained in the forward pass immediately preceding backward pass k. Solving
the ¢+ 1-th (approximate) stage problem for every w;i1 € 11 gives Tiy1 45 = E[mir1(wes)],
which defines the cut gradient

= _T
Jt+1,k,s = _7Tt+1,k,sEt+1 (6)

and its intercept

i1 s = BlQui1 (2 (8), wir1)] + Ty g o B Z1 (5). (7)

The SDDP algorithm is initialized by setting ; = —oo, t = 2,....T, K =0, k = 1.
Thereafter the algorithm performs the following three steps repeatedly until the convergence
criterion is satisfied.

1. Forward Pass

For t = 1, solve (4) and save 7¥(s) =2, s = 1,..., N, and 2% = z;
Fort=2 .., Tands=1,...N,
Solve (5) setting x;_1 = Z¥ ,(s), and save ZF(s) and Q(ZF | (s),w).

2. Standard Convergence Test (at 100(1 — a))% confidence level).

Calculate the Upper Bound: =z,




Calculate the Lower Bound: z = z*:

Stop if
Za

Z1 > 2y — —\/%O'u,

where 7, is the (1 — «) quantile of the standard normal distribution;
otherwise go to the backward pass.

3. Backward Pass
Fort=1T,...,2,and s=1,.... N,
For w; € Q, solve (5) using 7¥ , (s) and save 7, ., = B[m(w;)] and Q,(ZF_,(s),w,);
Calculate the kth cut for s in stage ¢t — 1 using (6) and (7).
Set K=K +1,k=k+1.

2.2 Markov process in the SDDP algorithm

The algorithm described above assumes that the random variables are stage-wise indepen-
dent. In many settings this is not a suitable model, and there is some correlation over time.
A popular approach to dealing with this is to model the random variables as an autore-
gressive process with independent errors (see e.g. [13]). As long as one assumes that the
random variables on the constraint right-hand sides are affine functions of the errors, this
approach can accommodate cut sharing using the approach discussed in [9]. In many set-
tings, the right-hand side random variables are best modelled by a nonlinear transformation
of an autoregressive process. For example, in hydro-thermal scheduling problems, the inflows
are often transformed by a shifted logarithmic function to give close to normal disturbances
before their correlation structure is extracted. In these circumstances, the affine assumption
is not valid, and so cut sharing is not admissible.

In this paper, we describe a different approach in which the random variables have a prob-
ability distribution that depends on an underlying state which follows a Markov process. This
method was originally developed in [16] to model randomly varying objective coefficients.
When the state is continuous (as in an autoregressive process) we require that the future cost
function is convex as a function of this state. This is usually not the case, and so the state
is discrete (as in a finite Markov chain), and we must enumerate a future cost function for
each value that the state may take, thus increasing the dimension of the dynamic program
to be solved. This is the main computational disadvantage of this approach.

On the other hand, the Markov process approach has some modelling advantages that
are not shared by the autoregressive process, that might make the extra effort worthwhile.
In some systems, the realizations of the random variables do not match the fitted autore-
gressive process very well. The historical data for these systems can indicate the existence of
random regime changes that are not captured well by considering variations around histori-
cal averages. These regime changes are better represented by a point process, around which



disturbances can be modelled. So-called hidden Markov models such as that described in [6]
can be quite sophisticated and incorporate autocorrelated disturbances (such as an ARMA
model) around an unobserved Markov state to deliver synthetic hydrological inflow sequences
that match observed data very well.

The states of the Markov process can be quite general, and encapsulate all historical
information that may be relevant to the actions taken at each stage of the optimization
problem. For example, in the hydro-thermal scheduling context, the Markov state could
include hydrological information from the current stage, market information, and factors
influencing demand. One aim of this paper is to develop and test methodologies for incorpo-
rating a Markov model into SDDP, in both a risk-neutral and risk-averse framework. For our
numerical experiments, we have chosen a very simple model with a small number of inflow
states, and stage-wise independent variation about these. This structure enables us to use
SDDP with cut sharing in this framework, without being concerned with disturbances that
are not affine (as modelled in [13] and [6]).

To give a formal description of our approach, suppose that the process W, t =1,2,...T,
is a Markov chain with transition matrices P®. For simplicity we denote the realizations of
Wy by integers ¢ = 1,2,...,5. In our hydro-thermal scheduling model, each Markov state
realization ¢ at stage ¢ corresponds to a set §2;; of reservoir inflow outcomes wy;. Thus, the
particular inflow outcome wy; that occurs in stage ¢ is conditioned on the realization of W;.
We can simulate a realization of the overall process by alternately generating an outcome ¢
for W; and then an outcome for wy; chosen randomly from €2;. Since in our computational
results in section 6 we restrict attention to an implementation where N = 1, we shall assume
henceforth that the forward pass contains only one scenario. This serves also to ease the
notation needed for the description of the approach.

In the first-stage problem, we assume the system is in known state s;, and )4, is a
singleton, giving

z=min ¢z + Zle Ps(llj)E[sz(xthj) | Wa = Jj]
st. Az = by,
€1 2 07

where (Q2j(71,ws;) represents the second stage costs associated with decision x; and realiza-
tion wy; € €2y;. The problems to be solved in the second and later stages ¢, given the decision
variables x;_; from stage t — 1, and given Markov state ¢ and realization w;; can be written
as

Qti(T4-1,wy) = min Ctht + Zle PZ']?)E[Qt—H,j(xtywt—&-l,j) | Wisr = j
S.t. Atfft = bt(wti) — Etl’t_l, [Wt(wtl)]
Tt 2 0.

The forward pass of SDDP (with N = 1) now consists of a sequence of alternately
sampled Markov state realizations and conditional inflow outcomes. At each stage ¢t we solve
a stage problem given the Markov state realization and observed inflow at this stage, using



a cutting-plane approximation of the future cost. This then yields a sequence of Markov
states and values for decision variables Z;, t = 1,2,...,T — 1, that optimize each of the
approximate stage problems.

The backward pass computes cuts at stage ¢t at the point z;_;, where a different cut is
recorded for each state i = 1,2,...,S of the Markov chain. Thus in the backward pass at
each stage t > 1, we solve Zle |€24;| linear programs, each having a right-hand-side vector
by(wy) € R™ wy; € Q. Note that each of these problems is solved at the same Z;_; computed
in the preceding forward pass.

In each stage problem, there are several possible ways to define the future cost function
using cuts. In the single-cut version, for each Markov state i at stage t after K iterations, we
compute a solution to an outer approximation of the stage problem at the point Z; | using

Qti(T4—1,wy;) = min CtT%t + 0ry1,

S.t. At.rt = bt(wti) Eth't 1, - [Wt(wti)]
Opri + 35 PR B 2 35 PR, k=1,2,..K,
Tt 2 0.

where, for each £ =1,2,..., K,

Tir16 = Blmgr(wesr;) | Wigr = j] evaluated at iterate ¥, 9)
herrjr = BlQuii (@, wirry) | Wosr = j) + & 1 B ®y (10)
The optimal value function Qt+1,j($,wt+1,j) for the subproblem solved in state j and

outcome w41 ; at stage ¢ + 1 is a convex polyhedral function of x, having subgradient
—E/ mi1(wig1,;) at @ = Z;. The conditional expectation of the optimal value function at

given state j is B[Qsy1,(%,wiy1,) | Wi = j] which is convex with subgradient
E(~E 1T (Werig) | We = j] = =BT

at © = 7;. The (approximate) future cost function ;4 ;(z) evaluated at x in state i with
outcome wy; at stage t is then the expectation of the optimal value function in each Markov
state that might occur in the next stage. This is

S
Or1,i(x ZPZ Qt+1,] T, wiy) | Wi = g,

Jj=1

which is convex with subgradient —F,, ZJ 1 P )7rt+1 j at * = 7. So this future cost
function satisfies

s
Or1,i(2) > Opai( Z Rt T Bz — )
j=1



Figure 1: Example of state transitions.

showing that
S S
Ory14 + Z -P7;(;)ﬁ;|—+17j7kEt+lx > Z Pi(jt)htﬂ,j,k
j=1 j=1

is a valid cut for the approximate future cost.
In the multi-cut version of this method, we represent the future cost by cuts for each of
the possible Markov states in the next stage. Thus at stage ¢, we compute

Quilwi—1,wy) =min ¢z + 37| PO,

st. Ay = bt(wti) — By, [7Tt m)]
17 2’ * 57 (11)
1

2, ..K,

€

T ; j
9t+1,j + 7Tt+17j7kEt+lxt > ht+1,j,k, L

ZL’tZO,

where 7/, ;. and hyiq are defined by (9) and (10) respectively. A similar analysis to the
above shows that this defines a valid outer approximation to the future cost function using
cutting planes.

In both single-cut and multi-cut versions of the algorithm it is necessary to maintain S
sets of cuts at each stage. In the multi-cut version of the algorithm, each of the S subproblems
will use one set of cuts, so the stage optimization problems will be larger, whereas in the
single-cut case, each node will use only one set of cuts. Although the size of each stage
problem grows more quickly in the multi-cut case, this strategy is expected to require fewer
iterations to achieve convergence.

This construction can be illustrated with an example. Suppose that the Markov chain
has two states, 1 and 2, which are shown in Figure 1 with the transition probabilities ¢, 1 —q,
and p, 1 — p. Here and henceforth we will colour nodes in state 1 black and nodes in state
2 white.We augment the state space with a new state variable which takes values 1 and 2.
Suppose that the random realizations in each stage can take only four values, £,, &, &., €45
and that these can be classified into two states as shown in Figure 2.

For a three-stage problem, this corresponds to a scenario tree as shown in Figure 3, in
which the black nodes correspond to state 1 and the white nodes represent state 2. From
Figure 3 it is possible to see that the set of descendant nodes is the same for any given
stage, but they may have different probabilities depending on the value of the current state.



State 2

Figure 2: Markov process states. The outcomes £, and &, are equally likely conditional on
being in state 1, and £, and &, are equally likely conditional on being in state 2.
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Figure 3: Scenario tree with the Markov Process.

Therefore, cuts cannot be shared directly. However as the dual solutions in one node are
valid for all nodes with the same realization in that stage, one can use the solutions to
compute a cut for each state by using the appropriate probabilities.

The single-cut approach constructs the conditional expectation of each cut with the

appropriate transition probabilities and stores a single extra cut in each state at stage 2.
This gives

931 + [q7r3a-2&-7r3b + (1 _ C]) 7r:>,c-&2-7r3d]—r Esry > [qQ(fsa);rQ(E%) + (1 i Q) Q(fsc);r@(§3d)i|

+ [q—m“;mb +(1—9q) —“3";”3‘1}T Es%,.  for state 1
039 + [(1 B p) 7r3a-2&-7r3b _i_p7r:>,c-&2-7r3d}—r Esy > [(1 B p) Q(fga)'Qi‘Q(§3b) _|_pQ(f3c)';‘Q(§3d)

+ [(1 —p) ”3“;”3*’ + p”"?‘”f EsT5.  for state 2

In the multi-cut approach the third stage problems would generate the following pair of cuts
for the second stage

O+ (w3a+w3b)T By > Qaa 1) 4 (7ot )T

>
— 2
Oseq + (M) Fsze > Q(&sc);Q(f:ad) + (7T3c‘57"3d)—|—

10



and the future cost at stage 2 is represented by

031 = @030 + (1 — q)03cq

when the node corresponds to state 1 (black) and by

032 = (1 — p)bsap + (P)03ca

when the node corresponds to state 2 (white).

We observe that the version of SDDP described in this section will be computationally
effective only in cases where S is small (our experiments in Section 5 are limited to a model
with S = 4), and in its current form, it may not be suitable for large S. Nevertheless, we
can use the approach to test the efficacy of using risk-averse models to avoid high costs in
situations where there is some stage-wise dependence in the random variables that might
make a solution that assumed independence and risk neutrality perform quite badly (even
on average).

3 Risk measures

In this section we begin our discussion of how to make the policies generated by SDDP risk
averse in the sense that they penalize large losses, without compromising the expected cost
too much. One common approach to measure the risk of a loss distribution of a given random
variable Z is the 1 — a value at risk, VaR;_,[Z], that is defined by [20] as

VaR, ,[Z] =inf{u: Pr(Z <wu)} >1-—a,

where « is typically chosen to be some small probability e.g. 0.05. This means that VaR;_,[Z]
is the left-side (1 — a)th percentile of the loss distribution. It is well known that even when
Z is a convex function of a decision x, the function VaR;_,[Z] is not guaranteed to be convex
in z, which makes optimization difficult in general, and impossible in SDDP. The tightest
convex safe approximation of VaR;_,[Z] is called the conditional value at risk. This can be
written [20] as

CVaR,_,[Z] = igf{u +a 'B[(Z —u) ]},

where we write (a), for max{a,0}.
In this paper we study a combination of the expected total cost and the conditional value
at risk, as suggested by Shapiro [23]. Therefore, we use a risk measure

p(Z) = BB[Z] +~7CVaR,_a[Z], (12)

where [ and 7 are nonnegative. In practice it makes sense to choose 5 > 0 since CVaR;_,[Z]
on its own will disregard the effect of decisions on expected outcomes, which might result in
expensive policies on average that we would wish to avoid if cheaper ones were possible with
the same level of CVaR.

11



Conditional value at risk is an example of a coherent risk measure. According to [1] a
function p : R" — R is a coherent risk measure if p satisfies the following axioms for Z; and
Zy € R™.

e Convexity: p(aZ; + (1 — a)Z2) < ap(Z1) + (1 — a)p(Zy), for a € [0, 1];
e Monotonicity: If 7; < Z5, then p(Z;) < p(Z3);

e Positive homogeneity: If U € R and U > 0, then p(UZ,) = Up(Z1);
e Translation equivariance: If U € R, then p(IU + Z;) = U + p(Z3).

The risk measure defined in (12) satisfies the first three axioms, and in order to satisfy
the fourth (translation equivariance), we have

U+ p(Z1) =p(U + Z1)
PBE[IU + Zy] + vCVaR,_,[1U + Zi]
g

U + BE[Z1] + U + vCVaR,_,[Z4]

= (B+7)U + BE[Z1] +vCVaR,_,[Z1]
= (B+7)U + p(Z1).

so 8+« = 1. Therefore, we replace 8 and v by (1 — \) and A, respectively to give
p(Z) = (1 NE[Z] + ACVaR, _,[Z] (13)

yielding
p(Z) = (1 - NE[Z] + Ainf{u + o 'E[(Z —u),]}.

The risk measure p(Z) is equivalent to the mean deviation from quantile proposed by
Miller and Ruszczynski [15], bearing in mind that in our setting we are minimizing Z. In
this setting, the mean deviation from quantile measure is

pd(Z):E[Z]%—)\mnianimaX(1;a(zi—n),n—zi) (14)

=1

in which N is the number of realizations of the discrete random variable Z. We have

(e = ) = (= )+ (£ = ) = (- 20,0)
and
=) = (1= 2) = (e~ 1) — e — ) + (s — )] = = (5~ ).
So,
(1 = )= ) = (= 20+ s = 0),0) (15

12



Therefore, by replacing (15) in (14) we obtain

N
1
ps(Z) = E[Z]+ )\mianZ- [(n — z;) + max (—(zl -n), 0)}
N = «
Y 1
= E[Z] — AE[Z] + Amin(n + Zpi max (—(zZ -n), O))
1 — o
= p(2)
The measure p as defined is a single period measure, which is extended in [23] to a
dynamic risk measure p, over t = 1,2,...,T following the general theory of [21]. To help

the reader interpret the computational results it is worthwhile presenting a brief summary
of this general construction. Given a probability space (2, F, P), a dynamic risk measure
applies to a situation in which we have a random sequence of costs (71, Zs, ..., Zr) which
is adapted to some filtration {0,Q} = F; C Fy... C Fr C F of o-fields, where Z; is
assumed to be deterministic. A dynamic risk measure is then defined to be a sequence of
conditional risk measures {p,r }, t = 1,2,...,T. Given a dynamic risk measure, we can
derive a corresponding single-period risk measure using

IOt(ZH‘l) = pt,T(O? Zt-‘rla 07 s 70)

By [21, Theorem 1], any time-consistent dynamic risk measure can then be constructed in
terms of single-period risk measures p, by the formula

Por(Zty Zias - Z1) = Zi + p(Zisr + prd(Zeiz + oo+ pro(Zr1 + pr_1(Z7)) .. )))-

In the next section we describe this construction in the special case in which we choose the
single-period risk measure

p(2) = (1= Me)B[Z | Ai] + A inf{u + o' B[(Z — ), | Fi]}

where \;y; is a parameter chosen to be measurable with respect to ;.

4 Implementing a CVaR risk measure in SDDP

In this section we present the modelling strategy to optimize the coherent risk measure
discussed in Section 3. This can be considered to be one of the main contributions of this
paper, because although our approach is similar to the ones shown in [23] and [15], there
are some important differences related to our solution strategy. In this section we omit a
description of the basic SDDP algorithm, because the algorithm is exactly the same as the
one presented in Section 2 except for the problems to be solved and the cut calculations.
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4.1 A two-stage model

To help understand how the stage problems are affected by our risk measure, we first consider
a two-stage linear problem that aims to minimize the first stage cost plus the risk measure
applied to the second stage costs. Here the first stage is deterministic and the second stage
random variable has finite support €2,. In this paper the stochastic process is going to be
modelled by random variables only in the constraint right-hand side. This problem can be
written as follows:

SP: min ¢z + (1 — A)Eleg 22] + Aug + Aa™'E[(¢; w5 — up) ]

s.t. Al.fl = bl,
Aszo(w) + Eozq = ba(w), for all w € s,
x1 >0, zo(w) >0, for all w € Q.

We then replace (c; 2o — u2) . by va(w) where

va(w) > ey xa(w) — ug, for all w € o,
ve(w) > 0, for all w € Q.
As a consequence, the new 2-stage problem can be written as the following linear program:

SP: min ¢z + (1 — N)E[cg xa] + Aug + Ao Elvy]

s.t. Al.CEl = bl,
Aga(w) 4+ Eaxq = bo(w), for all w € Qy,
va(w) > cg To(w) — ug, for all w € y,
x>0, zo(w) > 0, ve(w) >0, for all w € Q.

Observe in SP that there are two first-stage decisions to be made, x1, and the level uy that
attains infu{u—i—oflE [(CZT:L'Q — u) +] }. Given choices of 1 = T and uy = Uy the second-stage
problem becomes
SP(Zy,1s): min (1 — \)Eleg zo] + Ao Elvy)
s.t. Ayra(w) = by(w) — EoZy, for all w € €y,
Vo (W) — ¢g To(w) > —1iy, for all w € Qo,
Ta(w) > 0, vg(w) > 0, for all w € Q.
This decouples by scenarios to give
Q(Z1, g, w) = min (1 — N)eg 29 + Ao~ vy
.t Awws = by(w) — EpZy, [ma(w)]
Uy — €y Ty > —1ly, [2(w)]

T9 2> 0, vy 2> 0.

The optimal dual multipliers are shown in brackets on the right. By strong duality the
optimal dual solution satisfies

Q(jh Z_LQ,LU) = WQ(W)T(bQ — Eg.fl) — ¢2(cu)ﬁ2.
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SP can now be represented by

SP: min ¢ 71 + Aug + E[Q(z1, ug, w)]
s.t. Alxl = bl,
T Z Oa

and Benders decomposition can be used to compute its solution, by solving

MP: min clTxl + A\ug + 09
S.t. Al.l’l = bl,
ng + ﬁ;rkngL'l + $2ku2 Z ng, k’ = 1, 2, e ,K
x1 2 0,

where k£ counts the cuts that are added to the Benders master problem,

7:T2k = E[mok(w)],
C_bzk = E[¢qg (w)], )
hor = BlQ2(Z1k, ok, )| + TorEaZ1y + ¢op ok,

and Ziyand g are the values of first-stage variables at which cut £ is evaluated.

4.2 A multi-stage model

We can generalize this method to a T-stage problem, which we illustrate using notation for
a three-stage problem. We consider a probability space (2, F, P), and a random sequence of

right-hand sides (b1, by, .

.., br) adapted to some filtration {0,Q} =F, C Fo C...C Fr C F

of o-fields, where b; is assumed to be deterministic. We assume in this section that all random

parameters are stage-wise independent, and that parameters X, ..., Ay are deterministic. In
the case where T' = 3, SP can be written as follows:
ez + (1= M)Ele] 2o + (1 — X3)Blcg x5 | Fa] + Asuz + Az ‘B[ (¢ w3 — u3)+ | Fal]
SP: min 1 C;—J?Q + (1 — )\3>E[C;—$3 | f2] -+ >\3U3
+Aoug + Aoy, E < —1—)\3045115}[ (C3TI'3 _ u3)+ | Fol — s
s.t. A15E1 = b17
AQiUQ(UJQ) + ngl = bz((&)g), for all Wy € Qg,
Aszs(ws) + Esza(ws) = bz(ws), for all wy € Oy and w3 € 3,
x1 >0, xo(wsy) > 0, x3(ws) > 0, for all ws € Q9 and w5 € Q5.
(16)

Since the random parameters bs are assumed to be independent of by, the third-stage problem
can be formulated as

Qs(w2,u3,w3) =min (1 — A3)eg 23 + Az 'vs
S.t. Agl’g = bg(w?,) — E3.CL'2, [7T3<OJ3)]

V3 — C;,rxS > —ug, [¢3(W3)]
x3 > 0, vz > 0.
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Stage-wise independence allows us to denote E[Q3(x2, us, w3) | Fa] by the function Qz(z2, u3),
which is measurable with respect to F» through its dependence on x5 and u3. Thus we can
write SP as follows:

SP: min C;rflfl + (1 - )\Q)E[C;FIQ + )\311,3 + Qg(l’g, U3)] + )\QUQ
+Xa B [(cg 22 + Aguz + Q3(w2, us) — us)+ ]
s.t. All’l = bl,
AQIQ(WQ) + Foxq = bg((,ug), for all wy € QQ,
x1 >0, x2(ws) >0, for all wy € Q.

We then replace (cg 72 + Asus + Qs(2o, u3) — usz), by vo(ws) where

UQ(UJQ) 2 C;—l'z(WQ) + )\3U3(OJ2) + Qg(%g(tdg), ’Ug((JJg)) — U2 fOI‘ all Wy € Qg,
UQ(WQ) Z 0 for all Wwo € QQ.

As a consequence, the new 2-stage problem can be written as

SP: min ¢] 21 + (1 — A\2)E[cg 22 + Azuz + Q3(wa, uz)] + Aaug + Ao 1 E[vg]

s.t. All’l = bl,
AQ.I‘Q(OJQ) + Fox, = bg(tdg), for all wy € QQ,
UQ(UJQ) 2 C;$2(WQ) -+ )\3U3(C¢J2) + Qg(l'g((.dg), Ug(WQ)) — U2, for all Wy € QQ,
T1 Z 0, LCQ((UQ) 2 0, '1)2((,02) Z O, for all Wwo € QQ.

Given choices of x; = Z; and uy = 4y the second stage problem becomes

SP(i‘l, @2)1 min (1 — /\Q)E[C;JIQ + /\3U3 + Qg(fL’Q, Ug)] + AQOf_lE[UQ]

s.t. AQZL’Q(U]Q) = bg(&)g) — ngl, for all wo € QQ,
UQ(WQ) - CQTLEQ(WQ) — )\3U3(W2) — Qg(l‘g(tdg),ﬂg(w?)) Z —ﬂg, for all Wy € Q2,
$2(W2) 2 O, UQ((.UQ) 2 O, for all Wy € QQ.

This decouples by scenario to give

Qa(T1, g, wo) = min (1 — Ag)(cy w2 + Aguz + Qa(wa, u3)) + Ao "0y
S.t. AQ(L’Q = bg(&)g) - E2j17
Uy — Cy Ty — Agug — Qs(Ta, ug) > —1s,
T2 Z 07 U2 Z 0.

Now if Qs(z9,u3) can be approximated by K3 cuts, then we obtain a lower bound ap-
proximation to Q2(71, 2, ws) denoted

Qg(fl, I_Lg, w2) = min (1 — Ag)(C;CL’Q + /\3U3 + ‘93) + )\20&711}2

s.t. Agxy = bz(w2) — By, [71'2((,02)]
Uy — Cy Ty — AUz — O3 > —1ia, [Pa(w2)]
O3 + T3, E3x2 + dgpus > hay, kE=1,2,..., Ks,
x9 > 0, v > 0.
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In general the approximate optimal value of the tth stage of SP can be represented at any
Ti—1, Ut by

Qt<l’t_1, U, (Ut) = min (]_ — /\t)(CtTZL't + )\t+1ut+1 + 0t+1) + )\ta’lvt
s.t. Atl‘t = bt(wt) Etxt 1 [
v — (¢ xt + Aerrtegr + 1) > —uy, [0 (w:)

]
]
041 + 7Tt+1 w B + ¢t+1 Ui+l = ht+1 ke k=12, K,
xy > 0, vy > 0.
(17)
where k counts the cuts that are added to the tth-stage Benders master problem,
Tk = BT (W),
G p = Blop 1 (wer)])
T

1elw
hii1n = [Qt—l—l(

and 7;,and 4,41 are the values of the tth-stage variables at which cut k is evaluated.

Since each stage model is a linear program with uncertainty appearing on the right-hand
side, we can apply the standard form of SDDP to solve the risk-averse model. Moreover the
algorithm satisfies all the conditions in [18], and so it converges almost surely to the optimal
policy, under mild conditions on the sampling process (e.g. independence).

One practical difficulty is obtaining reliable estimates of the upper bound on the cost of
an optimal policy. The multi-stage setting with CVaR requires a conditional sampling process
to estimate the cost of any policy, which would be prohibitively expensive for problems with
many stages.

The absence of a good upper-bound estimate makes it difficult to check the convergence
of the method. One possible approach is to stop the algorithm if the lower bound has not
changed significantly for some iterations, but this does not guarantee that the current policy
is close to optimal, even if one is interested only in the first stage action. Our approach is
to run the algorithm until the risk-neutral version of the code has converged, and then use
the same number of iterations for the risk-averse model.

Observe that the formulation above remains valid if As, ..., Ay are not deterministic but
adapted to the filtration {F;} (with Ay deterministic and \;; F;-measurable). If, in addition,
the parameters Ao, ..., A\p are stage-wise independent, then the SDDP algorithm can still be
applied, but now each stage problem has some randomness appearing in the recourse matrix
(in the coefficient of u;y1) and so the almost sure convergence of the method is an open
question. In the next section we show how SDDP can be modified to handle a specific form
of randomness in \;;; in which it depends on the state of the Markov chain discussed in
Section 2.2.

th Ut 1> We1)] + Ttk Brp1Tor + Gy g p Uik

4.3 Risk aversion with Markov-chain uncertainty

In Section 2.2 we discussed how to integrate a Markov chain model into the SDDP algorithm
to solve a risk-neutral problem in which the uncertain data have some stage-wise dependence.
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In our risk-averse model, the Markov chain can be implemented in exactly the same way,
whereby we calculate one set of cuts for each Markov state, where each cut is an affine
function of v and x.

Using Markov states to represent stage-wise dependence in the uncertain parameters
provides an opportunity to make the risk measure depend on the state of the Markov chain.
This type of model using Markov risk measures is explored in a general setting in [21]. In our
model the analysis in [21] simplifies, since in our Markov chain model, the actions we take
do not have any effect on the (discrete) state of the system, which merely serves to model
some stage-wise dependence in the random right-hand sides. As in the previous subsection,
these are still adapted to a filtration {0,Q} = F, C F... C Fr C F, but this now has a
specific form of dependence.

Recall the risk-neutral problems to be solved in the second and later stages ¢, given
Markov state i, previous decision x;_;, and realization w;; can be written as

Qui(wio1,wy) = min ¢z + 37, P, t)E[QtJrl J(@s W) | Wegn = J]
s.t. At:vt = bt(wm) Etl'tfl, [Wt(wti)]
Tt 2 0.

Let us define
P(t) (w) = PZ(]t) PI'((JJH_L]‘ =w | Wt+1 = j)

v

At stage t the single-period coherent risk measure we use is

pyi(Zie1) = (1— Atv1(1) Z Z PU ) Zi415(w)

=1 w

A1 (1 1nf{u + — Z Z W) (Zig1,5(w) —u)s}.

Observe that although ;. 1(7) is a parameter used to compute the risk of outcomes in stage
t 4+ 1, it is measurable with respect to F;, because the observed Markov state ¢ (which
determines our choice of \) is measurable with respect to F;. In other words at stage t
we choose the parameter A, (i) to weight the expectation and conditional value at risk of
outcomes from ¢ + 1 onwards.

The single-cut version of the algorithm with A\;.; depending on Markov state ¢ is mis-
named as it now requires S cuts for Markov state ¢ at stage ¢, one for each possible value of
the Markov state in the previous stage. To compute cut s € {1,2,...,S5} in Markov state i
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we use parameter \(s) and solve

Qtsi(xtfla U, wy;) =min (1 — )\t(S))(CtTSUt + A1 (0)upgr + i)
+A(8)a
st Ayry = b(wy) — Eyry_y, [Ts(wyi)]
v = (] T A Mepr (Dugr + 0r1) > —uy, (45 (wii)]
01+ 25:1 Pi(;)ﬁ;r—i-l,i,j,kEtJrlxt
+ 25:1 Pi(f)ﬁ_btﬂ,i,j,kutﬂ > 25:1 Pi(;)]_ltJrl,iJ,kv k=12,..., Ky,

xy > 0, vy > 0.
where at the kth iteration
Tirtige = Blmeg (W) | We =14, Wi = Jl,
Gririre = Blby (W) | We =14, Wi = j],
hiv1ijr = E[Qt+1,i,,j(ff7ﬂfﬂ,wtﬂ,j) | Wy =i, Wig1 = j]

_T kT K
1 BTy + oy kUi

Here 7} and u} , are the values of z; and w1 obtained at the kth forward pass of SDDP
(assuming that N = 1). The cuts in Markov state i at stage ¢ that correspond to the previous
state s are only valid for realizations of the Markov chain that visit s at stage t — 1. They
could be computed along with the S —1 cuts for the other states whenever the Markov chain
visits state ¢ in stage t. Alternatively we can add the cut corresponding to s one at a time
to those stored for Markov state ¢ whenever a forward pass of the algorithm visits state s
immediately before i.

As an illustration of the model with A dependence, consider the example presented in
Section 2.2, and let us assume that one would like to be less risk averse when the system
is in Markov state 1. For example, we might choose A\;1; = 0.25, when the realization at
stage t belongs to state 1 and A\;y; = 0.75, when the realization at stage ¢ belongs to state 2.
Figure 4 shows the scenario tree with the Markov Chain and the )\;; value shown for each
Markov state at stage ¢ + 1, assuming that we start in a state 2 realization.

This figure shows that since the system is in Markov state 2 at stage 1, we have Ay = 0.75
in both states at stage 2. We do not consider outcomes for the case where the system is in
Markov state 1 at stage 1. When the system is in Markov state 1 at stage 2, then we have
Ay = 0.25 in all states at stage 3, that have come from state 1 at stage 2. When the system
is in Markov state 2 at stage 2, then we have Ay = 0.75 in all states at stage 3, that have
come from state 2 at stage 2.

The fact that \;;; depends on the state in stage ¢t makes cut sharing more complicated.
As discussed in Section 2.2, when \;,; does not depend on the observed state in stage t,
the set of possible realizations and the formulation are the same for all states. Therefore,
the stage ¢t + 1 solutions in the backward pass are used to generate one cut for each state
in stage t by using the appropriate transition probabilities. On the other hand, when A\
depends on the observed state in stage ¢, the formulation of problem (17) will depend on
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Figure 4: Risk-averse Markov process tree with risk aversion dependent on state in previous
stage.

the observed state in stage t because of ;1. This dependence means that we compute cuts
only for the Markov states that are visited in the sampled scenarios from the forward pass,
which means that the cut calculated in a specific scenario can only be added to the observed
state. As a consequence, assuming that \;,; depends on the observed state in stage ¢ incurs
some additional computational cost when compared to the independent \;. 1, as S times as
many forward simulations will be needed to generate cuts for the same number of states as
before. This effect can be seen in the computational experiments we describe in section 6.

The effectiveness of this model at controlling risk relies on a Markov chain that has a
certain amount of state persistence, so a realization of the expensive state in stage t is likely
to persist into stage ¢t + 1. In the case of the previous example, a persistent model would
have p > 0.5 and ¢ > 0.5. If, on the other hand, the process is stage-wise independent, then
this choice of \;y; would not make sense as there would be no reason to change our risk
attitude for outcomes that occur at stage ¢t + 1, based on the realization of the Markov state
at stage t.

5 Application: long-term hydrothermal scheduling

In this section we describe the application of the risk-averse SDDP algorithm to a hydro-
electric scheduling model developed for the New Zealand electricity system. The model
consists of 33 hydro plants (5400 MW) and 12 thermal plants (2800 MW). We use a simplified
transmission network N comprising three buses: one for the South Island (South), one for
the lower North Island (Hay) and one for the upper North Island (North) as shown in Figure
5. We model storage in eight hydro reservoirs in the South Island, and a single reservoir at
the head of the Waikato chain of eight stations in the North Island. All other hydro stations
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Figure 5: Representation of the New Zealand hydro-thermal scheduling model.

are assumed to be run-of-river. All thermal plants are located in the upper North Island.

The formulation we solve is a stochastic dynamic programming problem in which at each
stage t = 1,2,...,T, the Bellman equation is approximated by a linear program. We first
describe the general model (18) and then describe how the data specializes to the particular
instance we solve!. For simplicity, the description shown in this section is for the risk-neutral
problem with a single Markov state.

The objective of the model is to minimize the cost to meet the demand D;; in stage ¢ at
each bus i € N plus the expected cost E[Qy11(vi, wiy1)] over periods t+1,t+2,...,T. Here
vy is the vector of reservoir storage levels at the end of period ¢, where initial storage vy is
given, and w;;; denotes the random outcome (scenario) in period ¢ + 1. Observe that the
first stage is deterministic and so w; is known. We discriminate between thermal generation
fpt> at thermal plant p € 7 (i) (that has capacity a, and incurs a fuel cost 7,,), and hydro
generation 7,,hmt, at hydro station m € H(i) (that has capacity b,,, and is essentially free).
The parameter v,,, which varies by generating station m, converts the flow of water h,,; into
electric power. We assume that load shedding is modelled as (dummy) thermal generators
with higher marginal costs than the most expensive thermal unit. This gives the following

!Details of the New Zealand hydro-thermal system used in this model can be found at
http://www.epoc.org.nz.
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formulation at stage t:

Q¢(vi—1,w;) = min (Zie]\/’ > per(iy Moot + BlQea (ve, th)])
s.t.
wl(yt) + Zpe’f(i) fpt + EmEH(i) ,Ymhmt Z Ditai € Na

vy = vi_1 — A(hy + 5¢) + & (wy), (18)

Oéfptéapv peT(i)7iEN7
Oghmt Sbma Ogsmtgcma mGH(z),

0< v <rm, meH@l),ieN, yevY.

The components of the vector y measure the flow of power in each transmission line. We
denote the flow in the directed line from 7 to k& by y;x, where by convention we assume ¢ < k.
A negative value of y;; denotes flow in the direction from £ to i. In general we require that
this vector lies in some convex set Y, which may model DC-load flow constraints arising from
Kirchhoff’s laws and thermal flow limits. The function w;(y) defines the amount of power
arriving at node ¢ for a given choice of y. In many models this is chosen to be concave,
allowing one to model increasing marginal line losses. In the New Zealand model with three
buses there are no loops, so Y represents line capacities only. We also assume that there are
no line losses which gives

wz(y) = Zyki - Zyik-

k<i k>1i

The water balance constraints are represented by
vy = ve1 — A(he + 8¢) + & (wi)

where s, denotes spill in period ¢, and &,(w;) is the uncontrolled inflow into the reservoir
in period t. Storage, release and spill variables are subject to capacity constraints. The
node-arc incidence matrix A represents all river-valley networks, and aggregates controlled
flows that leave from each reservoir by spilling or generating or enter a reservoir by spilling or
generating electricity upstream. In other words row i of A(h; + s;) gives the total controlled
flow out of the reservoir (or river junction) represented by row i, this being the sum of
any release and spill of reservoir ¢ minus the release and spill of any immediately upstream
reservoir.

The time horizon of our model is one year with weekly time steps, so T" = 52. Each
weekly stage problem (without cuts) has a total of 476 constraints and 540 variables.We are
using data from the calendar year 2006 and assume that in each stage the set of possible
inflows is given by the historical inflows from 1987 to 2006, inclusive. As a consequence,
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Markov State | North Island | South Island
WWwW Wet Wet
DW Dry Wet
WD Wet Dry
DD Dry Dry

Table 1: Markov states for the New Zealand LTHS problem.

in our problem we have a scenario tree that has 20 random realizations per stage (called
openings) and 52 stages given a total of more than 2.25 x 10% scenarios.

The inflows were modelled by estimating transitions between four states of a Markov
chain as follows. First, historical inflows were aggregated into two groups corresponding to
the South Island and North Island. We classified two possible states (wet and dry?) for each
island, to give a total of four states as shown in Table 1. After grouping the outcomes into
four sets corresponding to each state, the transition probabilities are estimated from the
historical inflow sequence from 1987 to 2006, inclusive.

An inflow sequence is simulated by constructing a random sequence of 52 states, and then
randomly sampling a weekly inflow record from the group of historical outcomes representing
the simulated state in each week. To test the performance of candidate policies on a common
benchmark, we assume throughout this paper that the Markov chain we construct in this
way represents the true stochastic process of inflows. ( It is certainly interesting to test how
different approximations of the real inflow process affect the policies being computed, but
we see this as a different modelling exercise to be explored in a separate study.)

As mentioned above, we assume that nine reservoirs (with a total capacity of 7.5 billion
cubic metres) can store water from week to week, and the remaining reservoirs are treated
as run-of-river plant with limited intra-week flexibility. In some cases we also have minimum
or maximum flow constraints that are imposed by environmental resource consents. When
this is the case total discharge limits are added to the model, and deviations of flows outside
these limits are penalized in the objective function. Weekly demand is aggregated from
historical records, and represented by a load duration curve with three blocks representing
peak, off-peak, and shoulder periods.

6 Computational experiments

In this section we present the results of computational experiments on the New Zealand
hydro-thermal scheduling model to evaluate the performance of the SDDP algorithms dis-
cussed throughout this paper. Our SDDP code, which applies the single-cut version of the
algorithm (as described in section 4), was implemented in Microsoft Visual C++ Version 9.0

2 A historical outcome is considered to be a dry state if the sum of all inflows in the island is smaller than
the historical average of the sum of all inflows. Otherwise, it is considered to be wet.
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using the CPLEX 11.2 callable library. As alluded to above, we always choose N = 1 in our
implementation (i.e. we use only one scenario in each forward pass). For the New Zealand
problem, this gives better policies than the standard choice (N = 200) when the algorithm
is terminated early (see [3]).

In all experiments where ); is independent of the state at stage t — 1, we choose \; to
be a fixed constant L for all stages t. Additionally, we assume A = 0 for all cases in stage 1
and 7'+ 1. We denote by “4 Ls” the model where \; can take different values depending on
which of the four inflow states is realized in the previous stage. We use L =0, 0.5, and 0.9
to represent risk neutrality, mild risk aversion, and strong risk aversion respectively. This
gives seven models as shown in Table 2.

Case At Markov Chain
L=0 0 no
L=0.5 0.5 no
L=09 0.9 no
L=0 (M) 0 yes
L =0.5 (M) 0.5 yes
L =0.9 (M) 0.9 yes
4 Ls 0, 0.5, 0.9 yes

Table 2: Cases.

In the first three models we construct a candidate policy using SDDP under the assump-
tion that inflows are stage-wise independent. In the second set of three models (denoted
“(M)”) the policy is constructed using four Markov states. In the case “4 Ls", \; takes three
values as shown in Table 3. In all cases we use the Markov chain inflow model to simulate

Stateint—1 1] N\
WW 0
DW 0.5
WD 0.5
DD 0.9

Table 3: Lambda for each Markov state in case 4 Ls.

the performance of the policy.

To validate our code, we first applied the seven risk settings to a model with T" = 4
and 4 openings, giving a scenario tree with 64 scenarios. This allowed us to compare the
lower bounds obtained with SDDP and the solution obtained from solving the deterministic
equivalent linear program directly using CPLEX 11.2. The results, shown in Table 4, indicate
that the algorithm performs as expected on small problems.

In our experiments we also choose to run the SDDP algorithm for a fixed number of
iterations, rather than using the standard stopping criterion [17] described in section 2. The
standard test can be misleading (see e.g. [7],[23]) and lead to premature termination of
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Case DLP Optimal Solution(10° $) | Lower Bound (10° $)
L=0 6.5689816843 6.568981684267
L=205 11.950358776 11.950358775737
L=09 16.683566128 16.683566127608
L=0 (M) 6.5604147645 6.560414764476
L=0.5 (M) 11.937104988 11.937104987936
L =09 (M) 16.708486732 16.708486731945
4 Ls 14.768832334 14.768832334269

Table 4: Validation of the implementation.

SDDP. For each experiment we run SDDP for a maximum of 4000 iterations, except for the
case “4 Lis” where it is run for 16000 iterations so that each Markov state has approximately
4000 cuts. As discussed above, in the case “4 Ls”, when A\;;; depends on the Markov state
in stage ¢, in the backward pass we compute cuts only for the Markov states at stage t + 1
that have come from this state. Thus we require more iterations to give a similar number
of cuts in each stage as we obtain in the other cases. All tests were run on a 3.0 GHz Core
2 Extreme computer (model QX9650) with 4 cores, 4GB RAM and a 12MB cache. The
computation times in seconds are shown in Table 5.

Case Time(s)
L=0 30737
L=0.5 30348
L=0.9 33877
L=0 (M) | 28784
L=05 (M) | 52376
L=0.9 (M) | 57355
4 Ls 129105

Table 5: Computation times in seconds for each case.

Figure 6 depicts the lower bound for the first 16000 iterations of the case “4 Ls”, and the
first 4000 iterations of all the other cases. This indicates that assuming convergence after
4000 cuts per Markov state seems to be reasonable.

In order to compare the policies obtained in each case, we sampled 4000 inflow scenarios
using the Markov chain, and tested the policies in each scenario. The results are presented in
Table 6. Here the expected total operating cost measures fuel cost, shortage cost, and penal-
ties for violating river flow constraints, in other words the risk-neutral objective function.
Since the risk-neutral Markov chain model produces the smallest expected total operation
cost, we list the increases in expected total operating cost of the other policies in the third
column.

These numbers show several things. First of all, there is a small increase in expected cost
($1.27M) from assuming stage-wise independent inflows, when they are really Markovian.
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Figure 6: Lower Bound for all cases. The scale on the horizontal axis indicates the average
number of cuts per Markov state per stage, so the curve for the “4L’s” model corresponds

to 16000 iterations.

Case Expected Total Operation Cost(10° $) | Increase in Cost from Case 4 (10° $)
L= 407.071 1.272
L=05 409.991 4.193
L=09 418.557 12.759
L =0 (M) 405.798 -
L =05 (M) 109.538 3.740
L =0.9 (M) 418.833 13.035
4 Ls 418.618 12.820

Table 6: Expected total operation cost.
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The SDDP model that assumes Markovian inflows should perform better in a benchmark
simulation of these inflow sequences than a model that ignores this feature. The numbers
also show the tradeoffs in expected cost that are incurred by an increase in risk aversion. As
a percentage of the total cost, these numbers appear to be quite modest.

To investigate the potential benefits of the risk-averse models, we focus on some of the
extreme scenarios that give large costs for the risk-neutral model. Table 7 gives the total
operation cost in the worst case scenario for each policy. Case L. = 0 (which is risk neutral

Case Total Operation Cost(10° $)
L=0 823.822
L=0.5 643.570
L=09 630.791
L=0(M) 631.020
L =05 (M) 627.750
L =09 (M) 628.265
4 Ls 628.273

Table 7: Most expensive scenario.

and assumes independence) is substantially more expensive. It is interesting to see that a
policy computed using Markov states, performs creditably in this worst case.

We can extend this examination to the 200 worst scenarios in each case represented by
the distributions of total cost shown in Figure 7. These plots represent the cumulative dis-
tribution functions of total cost under each policy, where the scenario counter references
different scenarios for each plot, so they should not be interpreted as one policy uniformly
dominating another over all scenarios. Nevertheless it is easy to see that the risk-neutral
stage-wise independent model is stochastically dominated to first order by the other poli-
cies, at least over the 200 worst outcomes. The other policies seem to produce comparable
distributions of total cost.

It is worth remarking that our multi-period risk measure p is not designed to control for
total cost incurred over the year, and so the plots we show of total cost outcomes might
mislead us. The exact interpretation of p (with A > 0) is less obvious, but at any stage it
controls high values of cost in the future, so the policy focuses on avoiding high future costs
that might be incurred in the next few periods, whether they come from imminent shortages
or the accumulated risk of a future shortage or constraint violation. This is arguably different
from focusing on the distribution of total annual cost, and controlling the extent of its upper
tail.

In addition to the most expensive cases of total cost we can examine the least expensive
cases (corresponding to high inflows). Figure 8 depicts the least expensive total cost scenarios
for each policy, in which one can notice that more risk averse policies incur higher costs when
inflows are plentiful. This is reflected in Figure 9, which shows the expected national reservoir
levels in terms of stored energy. Here one can observe that the risk averse policies save more
water in the first half of the year to protect against low inflows later in the year. As a
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Figure 7: Most expensive scenarios in the simulation.

consequence, the risk averse models tend to use more thermal generation in the first half of
the year when it might not be necessary and finish the year with reservoirs at higher levels
than their risk-neutral counterparts.

Many formulations of the long-term hydro scheduling problem used in practice include
a reservoir danger zone or minzone as part of the model. This is a trajectory of (possibly
aggregate) reservoir storage that represents a minimum level for security of supply. Such a
zone can be computed using simulation over future inflow sequences, and choosing a reservoir
level that avoids shortages in a given high percentage of these sequences, assuming full
commitment of all thermal plant. Once a minzone has been determined, penalty terms
can be added to SDDP to discourage policies from allowing reservoir storage to enter the
minzone.

Since we have chosen to ignore the New Zealand minzone in our model, it is interesting
to see to what extent our model of risk aversion can prevent trajectories from passing into
it. Figure 10 shows the number of scenarios that the national storage level was below the
minzone in each stage. Both risk-neutral models were unable to avoid breaching the minzone
in a large number of outcomes. The risk-averse models were more conservative, with only
the L = 0.5 independent model showing some violation of the minzone.

We finish this section by studying the effect of risk aversion on load shedding (discon-
necting consumers in times of shortage). Table 8 presents the probability of load shedding
for each model, and its expected contribution to the cost. Both of these are very low in
the risk-neutral cases, and zero for all risk averse cases, although these figures are computed
assuming a Markov inflow model, and may be substantially higher if inflows have a higher
degree of stage-wise dependence.
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Figure 8: Least expensive scenarios in the simulation.
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Figure 9: Expected national storage level in terms of energy.
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Figure 10: Number of scenarios where the national storage level was below the minimum
level.

Case Risk of Load Shedding (%) | Expected Cost of Load Shedding (10° §$)
L=0 0.085 0.421
L=05 0 0
L=09 0 0
L=0 0.025 0.0005
L =05 M) 0 0
L =09 (M) 0 0
4 Ls 0 0

Table 8: Risk and Expected cost of Load Shedding.
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7 Conclusions

It appears from our limited experiments that risk aversion can be incorporated into multi-
stage models with surprising ease. Given an appropriate level of risk aversion it is possible
to reduce the probability of bad outcomes with only mild degradation in overall cost. In
our experiments we chose \; to take the same value L throughout the year. Varying )\,
throughout the year to be low at times when inflows and reservoir levels are typically high,
and high otherwise is likely to yield improvements in performance, but we have not attempted
this here, as these choices are problem dependent, and settings obtained for the New Zealand
system would be unlikely to apply generally.

The risk-averse methodology we have described provides a promising alternative to the
use of minzones for controlling risk. In SDDP it is impossible to impose minzones as hard
constraints, because that will violate the assumption of relatively complete recourse. For this
reason soft constraints with violation penalties are preferred. However it is often not obvious
what penalties one should place on minzone violations to give appropriate safeguards. When
a real constraint is actually violated (for example when load must be shed) the costs incurred
are also real, rather than penalties used to control risk, and so they are easier to justify even
though they may be challenging to estimate. Moreover, since each stage problem can be
a relatively large linear program, naive choices of these penalties can give counterintuitive
results. For example, one would not want to shed load in order to meet a minzone constraint,
which might happen with a poor choice of penalties. Our results show that with appropriate
choices of \;, a dynamic risk measure can meet constraints with very high probability with
a modest increase in expected operation cost.

A potential weakness with our approach is the difficulty in estimating the value of a
candidate policy. This value can be interpreted as an equivalent payment we would make in
any state to avoid incurring future costs. However, even without this estimate, we can still
estimate parameters for the distributions of parameters of interest. We see that risk-averse
models are performing as expected, by saving more water in the reservoirs, reducing the
costs in the most expensive scenarios and reducing the risk of load shedding. As expected,
the system has to pay a price for the risk aversion, which is a function of the risk aversion
level.
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