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Abstract

We introduce a new stochastic model for inflow time series that is de-
signed with the requirements of hydropower scheduling problems in mind.
The model is an “iterated function system”: it models inflow as continuous,
but the random innovation at each time step has a discrete distribution. With
this inflow model, hydro-scheduling problems can be solved by the stochastic
dual dynamic programming (SDDP) algorithm exactly as posed, without the
additional sampling error introduced by sample average approximations. The
model is fitted to univariate inflow time series by quantile regression. We
consider various goodness-of-fit metrics for the new model and some alterna-
tives to it, including performance in an actual hydro-scheduling problem. The
numerical data used are for inflows to New Zealand hydropower reservoirs.

Key words and phrases: OR in energy, hydro-thermal scheduling, stochastic dual
dynamic programming, time series, quantile regression.

1 Introduction

In a hydro- (or hydro-thermal) scheduling problem, one aims to optimally manage
the operation of water reservoirs over a period of time. The objective may be to
minimize the shortage that ensues when reservoirs run dry, or (more generally)
the economic cost of meeting a given demand for electricity from hydro and other
sources. Alternatively, it may be to maximize the revenues from selling water or
hydro-electricity in external markets.

In all such problems, the central element is a stochastic model for natural inflows.
This will typically be an autoregressive or Markov process which has been obtained
by fitting to observed data.

The leading technique for the solution of hydro-scheduling problems is stochastic
dual dynamic programming (SDDP). SDDP is a sampling-based version of the nested
decomposition algorithm which dates back to [16]. Originally, it was designed to
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solve risk-neutral multistage stochastic linear programs. Recently, two extensions
of the method to deal with risk-averse multistage stochastic programs have been
proposed in [10, 11, 23] and have been applied to hydropower scheduling problems
in [8, 19, 24]. The convergence of the method is proved in [14] for risk-neutral linear
programs, in [5] for risk-neutral convex programs, and in [9] for risk-averse convex
programs.

In problems amenable to SDDP, the flows and other quantities at each time step
are described by a linear programming problem; thus they are continuous variables.
But the SDDP algorithm also involves the computation of expectations, which (as
a practical matter) requires a discrete probability space. For problems formulated
with continuously-distributed random variables, the usual tactic is to replace each
continuous distribution with a finite sample from it, giving a “sample average ap-
proximation” of the original problem.

Note that when we resort to sampling in this way, we incur both a statistical
sampling error (when the inflow model is fitted to the original data) and a prob-
abilistic, or simulation sampling error (when the fitted continuous inflow model is
replaced by a discrete approximation obtained through sampling).

The motivating idea of the present paper is that errors of the second type should
be avoidable by designing an inflow model in which the inflow variables themselves
are continuous, but the random innovation at each time step is discrete. Such an
inflow model renders the associated hydro-scheduling problem solvable by SDDP
exactly as posed. The process of fitting the inflow model obtains, in one step, a
good representation of the original data by a model of the final form required.

Another advantage of such a model is that it may actually be more general. By
ignoring standard continuous model types (autoregressive, ARMA, etc.) and instead
considering classes of discrete-innovation models that play well with SDDP, it may
be possible to make better use of the limited flexibility that SDDP ultimately allows.

1.1 Hydro-scheduling and SDDP

The present paper will not attempt to give a complete description of the SDDP
method as applied to hydro-scheduling problems. Instead, we refer the reader to
[5,9, 10, 11, 14, 15, 16, 23] for the full details, and focus here on those considerations
relevant to stochastic modelling.

SDDP is an algorithm for solving multi-stage stochastic convex programming
problems. In a practical implementation, the convex functions will be piecewise
linear, which gives the problem the following general form. We wish to compute, or
at least estimate, the functions

gi—1(x) = E muin {c;-u+ gi(u) : Aju = b+ By, u >0} (1)

fort=1,...,T. Here ¢;,b; are random vectors and A;,B; are random matrices. The
vector v may be thought of as representing the decisions taken during the £ time
period, or stage; we aim to make these decisions so as to minimize the sum of their
immediate cost ¢; - u and the expected cost g;(u) of their consequences in stages



t+1,...,T. The possible decisions are constrained by the corresponding decisions
x taken at the previous stage (Au = b, + Byx).

As a simple example, consider the classic hydro-thermal scheduling problem for a
single reservoir, in which we must meet a demand ¢, for energy in stage ¢ with some
combination of thermal generation (which costs v per unit) and hydropower (which
costs nothing, though the water supply is limited). There is a random inflow I; in
stage t. The decision vector is u = (ug, up, ug), with the components representing
thermal generation, hydro generation, and reservoir storage at the end of the stage.
Then the problem is

gi1(x) = E muin {yug + gi(u) : ug + ug = 0, uyg +us = I + g, u >0} (2)

Note that the formulation (1) implies that the random elements at each stage
(ct, by, Ay, By) are independent of those at all previous stages (because g;(u) is non-
random). For problems involving serially dependent processes, this limitation can
be overcome by adding “decision” variables whose purpose is to transmit stochastic
information to future stages. For example, suppose the inflows (I;) above behave as
an AR(1) process:

Iy = al;y + Ei,

where the F; are independent. We can incorporate this behaviour into the problem
by giving v an additional component u; to represent the current stage inflow, and
writing the constraint set in (2) as

Ug +uyg =0 ug+us—ur=xg, ur=oarr+E, u>0.

Now suppose that a problem of the form (1) is to be solved by stochastic dual dy-
namic programming (SDDP). In this method, the most demanding step (the “back-
ward pass”) requires the computation of the expectation in (1). In problems where
the random elements ¢;, b;, A;, B; have a discrete joint distribution, this can be
done by considering all their possible values (and solving the optimization problem
for each one). Otherwise, it is usually necessary to resort to sampling. Replacing
the true probability distribution by a finite sample at each stage gives a “sample
average approximation” of the problem which we can solve.

Note that there is no requirement in SDDP for the problem’s stages to resemble
each other closely; it is enough that they all fit the general form (1). The implication
for modelling is that random processes can be non-stationary — indeed, it is hardly
necessary to think of them as processes at all. An inflow process, for example, could
be modelled not only with different parameter values for winter and summer, but by
entirely different statistical techniques for different times of year — a point exploited
by [20]. The only requirement is that, whatever methods are used, the model must
eventually be expressible in the form (1).

2 Inflow model forms

Consider the problem of developing a stochastic model of a (univariate or multivari-
ate) inflow process, from raw data consisting of a time series of flow observations.



The model should be convenient for use within a hydro-scheduling problem of the
general form (1).

It is well-known that stagewise-independent inflow processes are inadequate for
this purpose. Inflows to real hydrological catchments usually have positive serial
correlation; the effect of this is to increase the risk that reservoirs will run dry or
overflow. To introduce appropriate serial dependence, our model must be expressible
in the general explicit form

Xy = E(Wi_y). (3)

That is, the inflow X; to the catchment at stage t is expressible as some ran-
dom function F; of a state variable W;_;. The latter is a vector whose entries
comprise some of the previous stage subproblem’s variables; it can be thought of
as representing the “climatic state” at the previous stage. In the univariate (sin-
gle catchment) case, a natural choice would be W;_; = X;_; (or possibly W;_; =
(X1, Xi9,...,X;_), for a higher-order model).

The random functions (F;)L_, must be independent, and concave with probability
1; in an actual implementation they will be expressed as piecewise linear functions:

X, < min, F} (W,_,), (4)

where the FY are random affine functions. Although the formulation requires an in-
equality (<), the intent is that equality will prevail at optimality. This will generally
be so in situations where water has positive marginal value (i.e. more is better).
It may fail in situations where water has zero marginal value (e.g. spilling from a
reservoir) or negative marginal value (e.g. a binding maximum flow constraint on a
canal). To maintain the equality in these situations, it may be necessary to place a
“big M” penalty on the amount of any inequality.

The present paper will confine itself to first-order models in which F; itself is
affine with probability 1. This turns out to be a quite adequate model in many
instances, and avoids any restrictions on the sign of the marginal water value. That

is, we have
Xy =Dy + My Xy 1, (5)

where D, is a random vector and M; a random matrix. In the univariate case, D;
and M, are random variables.

2.1 Autoregressive models

A commonly-used model is the autoregressive (AR(1)) process:
Xe =+ B Xe1 + Ey,

where a4, f; are deterministic and the innovation process (FE;) is a sequence of

independent random variables. This gives a special case of (5) in which only the

intercept D; = oy + E}; is random, while the slope M; = f3; is deterministic.
Alternatively, the process may be applied at the logarithmic level:

log(Xt) = O + Bt log(Xt_l) + Et'



(It is common to transform flow data by taking logarithms, because they often have
right-skewed distributions.) This gives

X, = e X[ et

The function o + 27 is concave (provided 0 < 8, < 1, which we may expect), so
we have a model of the required form. A piecewise linear approximation of the sort
in (4) will be required; if this is simply an affine piece we obtain a model

X = (0 + m:Xe—1) Ry, (6)

where 6, 1, are deterministic and R; = exp(F;) is random. See [24] for examples.
This approach gives another special case of (5): both the intercept D, = 6, R, and the
slope M; = n:R; are random, but their randomness derives from the factor R;, which
they have in common. The only difference between “wet” and “dry” realizations of
the random linear function F; is a constant multiplicative factor.

Thus, neither variety of autoregressive model takes full advantage of the flexibility
offered by the form (5).

2.2 Iterated function system models

The approach championed in the present paper will be to give F; in (3) a finite
discrete distribution. That is, there will be a finite collection of (affine) functions
fLo..., fi" giving the possible values of Fy, with associated probabilities. The main
motivation for this idea is the thought that we will eventually need a model of this
form anyway, for (SDDP) computational purposes. Rather than approximating the
data with a continuous model, and then approximating that model with a discrete
one (a sample average approximation) by sampling, it might be more efficient to seek
from the outset the best possible representation of the original data by a discrete
model of the final form required.

Note that (3) with discretely distributed F; implies that each X, is also discretely
distributed (provided the initial X is discretely distributed). However, the number
of possible values of X; may be combinatorially large (as many as [[_, m,). It is
thus useful in practice to continue to think of X; as a continuous variable, even when
it is not.

Stochastic processes of the general form (5) with discretely distributed random
affine mappings have been studied for several decades under the name “iterated
function systems”. See [2, 3] for early papers; also [1, 4, 13, 27]. The main problem
in the field is the inverse problem: given a probability distribution x on R?, find
an iterated function system that reproduces p. That is, we seek a finite collection
i ..., f™ of affine maps on R?, with associated probabilities pi, ..., pm, such that
when the F} are drawn independently from this discrete distribution, the Markov
process defined by X; = F;(X;_1) has limiting distribution (approximately) p. The
principal application to date has been to graphic image compression with d = 2.

In applying the iterated-function-system technique to inflow modelling, we face a
couple of complications. One is that the targeted probability distribution for inflow
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Figure 1: Raw inflow data.

varies seasonally. The Markov process (X;) must therefore be time-inhomogeneous,
with the distribution of F; varying in a periodic (seasonal) fashion. Another is that
we aim to reproduce not only the correct distribution for X;, but also the serial
dependence structure of the inflow process.

In the univariate case, both complications can be addressed by a technique of
fitting the distribution of F; via a quantile regression of X; vs. X; ; and seasonal
regressors. The method will be described in detail in the next section.

3 Inflow model fitting

This section considers the inflow modelling approaches described in Section 2 in
more detail, using a typical example univariate flow data set to illustrate.

The example data are weekly natural inflows to the Waitaki River system in
New Zealand. This system includes eight hydroelectric generation sites, of which
only the three furthest downstream have access to the whole flow. The water flows
between dams are not heavily constrained, meaning that a hydropower scheduling
model could reasonably treat the entire catchment as a single equivalent-energy
reservoir. Accordingly, all inflow values have been converted to their electrical energy
equivalent, giving a univariate time series for total inflow expressed in power units
(megawatts).

The sources of the inflow include both summer melting of snowpack and glaciers
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Figure 2: The fitted seasonal profile g(¢), a third-order trigonometric polynomial.

in high mountain areas and year-round rainfall in lower-lying parts of the catchment.
This combination gives the raw inflow series a fairly strong seasonal dependence, with
average summer peak flow around 3 times the average winter minimum.

As with many other hydrological series, the distribution of weekly inflow is
strongly right-skewed, with prompt runoff from storm events producing observa-
tions exceeding 3 times the seasonal average at the rate of about one per year.
However, there is no obvious concentration of these extremes at any particular time
of year.

There is also a clear serial correlation, with a correlation length on the order of
a few weeks. Closer examination reveals that this correlation structure also varies
seasonally, with the strongest serial correlations in the late winter, and the weakest
in late summer. This presumably reflects the different physical processes dominating
at different times of year.

We begin by applying an initial scaling to the inflow series (X;) :

Qr = Xi/g(t),

where g(t) is a seasonal periodic function. We work thereafter with (Q;). This
scaling is not meant to imply any assumed stationarity of (Q;); it merely simplifies
the problem a little for later modelling efforts, by obviating the need to deal with
large seasonal changes of magnitude.

The function g(t) is constructed by Fourier regression at the logarithmic level:

log(Xy) = f(t) + Zt, (7)

where f(t) is a fitted trigonometric polynomial and (Z;) are mean-zero errors. (The
trigonometric polynomial form is used because the data are weekly, so observations



do not fall on the same dates in each year. For monthly data, it would be simpler
to just estimate a seasonal adjustment factor for each of the 12 months.) We then
take Q; = 7t and g(t) = e/®, making g(t) an estimate of the conditional geometric
mean inflow for the time of year of ¢.

Figure 2 shows the fitted scale function g(¢) for the example data set. The
fitting, and all other statistical analysis in the present paper, were conducted using
the statistical language R (]21]). Code and data are available from the author on
request.

3.1 Autoregressive model

Following the approach outlined in Section 2.1, suppose we now postulate an AR(1)
model for Z; (= log Q):
Zt = ’y(t)Zt_l + €. (8)

Here ~y(t) is a seasonally varying coefficient and (¢;) a white noise process. There is
no need for a constant term because (7) has removed it. This gives

Q= Q) R,

where R, = exp(e). Since @y ~ 1 is a typical value at any time of year, we
approximate the function ¢ — ¢’ by its linearization about ¢ = 1, i.e.

¢~ 1 — () +7(t)g,

giving the model
Qe = (1 —(t) +7(t)Qi—1) Ry (9)

The estimation of y(t) requires some care. Perhaps the most obvious method is to
fit the linear autoregression (8): this will be good as far as (8) goes, but it makes no
allowance for the effect of the subsequent linear approximation step. Alternatively,
one could reason (as in [24]) that (9) with R; = 1 suggests the autoregression

Qi —1=7()(Qr-1 — 1) + error. (10)

This approach is also questionable because it assumes the wrong error structure
(additive, rather than multiplicative). For the purposes of the present paper, we fit
(9) for the multiplicative error structure by maximum likelihood. Assuming normal
errors €, this is equivalent to minimizing the sum of squares

Ei: (log <1 —7(t) i 7@)%‘—1))2’

where the ¢; are the observations of the process (Q;). Differences among the fitting
methods have a noticeable effect on the estimate obtained for ~(t), as illustrated by
Figure 3.

To completely characterize the stochastic process, it is also necessary to describe
the distribution of the errors €, or equivalently of R;. The estimation of () assumed




Seasonal variation of v(¢), by fitting method
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Figure 3: Seasonal autocorrelation structure. The graph shows second-order trigono-
metric polynomial models for () fitted by three different methods.
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Figure 4: Regression residuals in (9), estimating the distribution of ¢, = log R;.



a white noise process for (€;); the observed distribution of the regression residuals
(Figure 4), together with their low serial correlations (—0.04 at lag 1, and no larger
than 0.06 at any lag), reassure us that this is nearly enough true for accuracy in
estimation. Nonetheless, there is appreciable non-normality in Figure 4, which we
may wish to reflect in the stochastic process we construct.

We will take the errors ¢, to be independent random variables, with one of three
distributions:

(i) (AR-N) Normal, with mean zero and standard deviation (0.368) chosen to
match that of the regression residuals.

(ii) (AR-R) Re-sampled regression residuals, with all values depicted in Figure 4
being equally likely to be chosen. This gives better treatment of the non-
normality.

(iii) (AR-S) Regression residuals, re-sampled from those occurring at the same time
of year as t. This allows for any non-normality to have a seasonally varying
structure.

Other parametric families of distributions (e.g. the lognormal or hyperbolic)
might also be considered, with parameters either constant or periodically varying
to reflect seasonality. Also, the re-sampling methods could potentially benefit from
the use of scenario selection to control the number of scenarios. As the goal of the
present paper is to compare different inflow models, we do not attempt to use model
selection procedures to determine which of these possibilities might be considered
the best fit.

With the choice of distribution for ¢;, we have completed the description of a
stochastic process modelling inflows. However, the resulting model is unlikely to be
suitable as-is for use in optimization with SDDP. With distribution (i), we have a
continuous model, which must be made discrete by some form of sampling. With
distribution (ii), the model is already discrete, but the large number of scenarios
(as many as the observations in the original data set: about 4000 for our example
data) mean that some form of scenario selection will be needed to make the problem
tractable. This may also be true with distribution (iii), although here there are
fewer scenarios to begin with (as many as the years in the original data set: 79 for
our example data).

3.2 Iterated function system model

The approach outlined in Section 2.2 suggests fitting models

Qt = Dy + MyQi—1 (11)

directly. The pair (D;, M;) should be drawn from a discrete probability distribution.
That is, we need a collection of scenarios (d}, m}), ..., (d¥, mF), with associated prob-
abilities p, ..., pF, creating a discrete approximation to the conditional distribution
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Figure 5: IFS inflow model, showing the linear dependence of the scenarios on the
previous-stage inflow.

of Q; given Q;_1. The di, mi, and pi are all functions of time, giving a time-varying
(e.g. seasonal) conditional dependence structure.

This can be achieved via quantile regression ([12]). Fitting (11) as a quantile
regression, for a collection of k different quantiles ry,... 7, gives us k different
models (di,m}),...,(df,mF). In these regressions, we take the d¢ and m! to have
trigonometric polynomial form (in ¢), so that they (and thus the IFS model con-
structed from them) will have an annual seasonal variation. The regressors will thus
be the lagged data (Q¢_1), a collection of trigonometric functions (sines and cosines)
of time, and interaction terms (products) between the lagged data and the periodic
functions.

Since scenario i represents outcomes falling near quantile r; of the conditional
distribution, a reasonable choice for the probabilities p! is

pr=Hre0.1]:[r—ri| < r—rl Vi}.

That is, p! = s;—s;_1, where so = 0, sp = 1, and s; = (¢;+¢qi1)/2fori =1,... k—1.

An appealing feature of this approach is that the stochastic model can be de-
signed with as many or as few scenarios as desired, without resorting to any addi-
tional post-selection or sampling steps.

Figures 5 and 6 show twelve scenarios obtained by this approach, corresponding
to the 2nd, 6th, 15th, 30th, 45th, 60th, 70th, 80th, 88th, 94th, 97th, and 99th
percentiles of the conditional distribution of ); given );_;. These quantiles were
chosen to give good coverage of the distribution, with particular emphasis on the
extremes. The upper tail is especially well-represented, as high-inflow events can be
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Figure 6: IFS inflow model, showing the seasonal dependence of the scenarios.

of great importance in reservoir optimization problems. Third-order trigonometric
polynomials are used for the seasonal variation in the first nine scenarios. In the
other three, a first-order model (i.e. a simple sinusoid) seems better attuned to the
relative paucity of data at this upper end of the distribution.

4 Goodness of fit

The primary measure of merit in a stochastic model for inflow is whether it produces
outputs which are statistically similar to the data on which it is based. In this sec-
tion, we evaluate the performance of our models by simulating them and comparing
the results to the original data.

There are many possible measures of statistical similarity, but the ones of most in-
terest to us are those directly relevant to reservoir-management and hydro-scheduling
optimization problems. We will consider two measures: the distribution of the total
inflow over a time comparable to the characteristic time scale of the storage reservoir,
and the distribution of extreme high inflows.

4.1 Monthly and quarterly flows

Consider the distribution of the total (or, equivalently, average) inflow over a time
comparable to the characteristic time scale of the main storage reservoir involved.
For the New Zealand hydrological system of our example data, this time scale is
on the order of 1-3 months. Note that the distribution of inflow over such a period
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Figure 7: Quantile-quantile plot of inflow in the month of December, comparing
original data to 8000-year simulations from each of four stochastic models. Clockwise
from top left: IFS model, AR model with normal errors, AR model with errors re-
sampled from regression residuals, AR model with errors re-sampled from seasonally
appropriate regression residuals.




observed inflow (MW)

observed inflow (MW)

IF'S AR-N

o ° o °
S | o _
o o
AN N
_ = _
=
] > 8
g g 87
£
_ = _
— 2 —
— O —
o o
8 1 8 1
T T T T T T T T
1000 1500 2000 2500 1000 1500 2000 2500
model inflow (MW) model inflow (MW)
AR-S AR-R
o ° o R o
S | o _|
o o
N N
_ = _
=
o ~ o
2 s 8
— L
£
_ = _
— 2 —
— O —
o o
8 8
T T T T T T T T
1000 1500 2000 2500 1000 1500 2000 2500
model inflow (MW) model inflow (MW)

Figure 8: Quantile-quantile plot of inflow in the months of October—December,
comparing original data to 8000-year simulations from each of four stochastic models.
Clockwise from top left: IFS model, AR model with normal errors, AR model with
errors re-sampled from regression residuals, AR model with errors re-sampled from
seasonally appropriate regression residuals.




depends on both the distributions of the stage-wise (weekly) inflows and the degree
of serial dependence in stage-wise inflows.

Consider, in particular, the inflow in a given calendar month or quarter. From
the raw data, we have as many observations of this quantity as there are years in the
data set (79 in the example), giving us a direct empirical estimate of the shape of
its distribution. From a stochastic model for inflow, we can obtain an equivalent set
of observations by Monte Carlo simulation, giving us an empirical estimate of the
analogous distribution for the model. (This distribution would be difficult to derive
in any other way). As the length of the simulation is limited only by our patience,
this synthetic sample can be much larger than is available for the raw data. We
can then compare the two empirical distributions via a quantile-quantile plot, with
the direct observations (sorted into increasing order) plotted vs. the corresponding
quantile in the synthetic sample.

Figures 7 and 8 show these results for our autoregressive and IF'S models over a
I-month period (December) and a 3-month period (the fourth calendar quarter). In
each case, the model inflows are taken from a simulation over 8000 years, or about
100 times as long as the original data series. All the models seem to do a reasonable
job of reproducing the distributions of inflows over these time scales. In particular,
the IFS model is not obviously handicapped by having only 12 scenarios at each
stage, relative to the other models with 79, 4000, and infinitely many scenarios.

The 3-month results are particularly reassuring: having the right inflow distribu-
tion over this longer period suggests that the serial dependence of inflows has been
well modelled.

4.2 Extreme high inflows

The greatest differences between the various models lie in the upper tail, i.e. in the
way they extrapolate from the data to produce extreme high inflows. A common
method for this kind of extrapolation is to fit a log-Pearson III distribution to the
annual maximum flows ([6, 7, 18]). This has long been a standard technique in
statistical hydrology, following its adoption by the US Water Resources Council in
the 1960s ([25, 26]).

Figure 9 compares the annual maximum flows of our example data to the cor-
responding quantiles of a log-Pearson III distribution fitted by the mixed-moment
method of Rao ([22]). The fit is quite good. The same log-Pearson III distribution
is then used for each panel in Figure 10, where its quantiles are compared to the
annual maxima of each of our 8000-year model simulations. As these simulated
series are much longer than the original data, the highest inflows within them are
more extreme than anything observed historically. It is apparent that the IFS model
extrapolates to extreme high inflows in a way similar to the log-Pearson 111 method.
The autoregressive model with normal errors produces an inflow distribution with
a thinner upper tail — as we might have expected from observing the non-normality
in Figure 4. Re-sampling the regression residuals, by contrast, produces relatively
fat tails, suggesting perhaps that the low serial correlation among those residuals
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Figure 9: Annual maximum inflows for original data, plotted vs. quantiles of fitted
log-Pearson III distribution.

belies the dependence at the extreme upper end of the distribution. The effect can
be reduced, but not eliminated, by requiring the re-sampled residuals to come from
the correct time of year.

5 Numerical example: hydro-scheduling

In this section we assess the behaviour of the inflow models in their intended appli-
cation: a hydro-scheduling problem. We use a simple one-reservoir problem similar
to that outlined in Section 1.1. The problem data are given in Table 1. The system
described does not correspond to the real power generation and consumption infras-
tructure in the Waitaki Valley and New Zealand; all elements other than the inflow
process are fictional.

The problem begins in the autumn when inflows are falling, and continues
through the low-inflow winter period. Allowing the reservoir to run dry incurs a
high penalty for the unserved demand, and there is a credit for stored water re-
maining after the last stage. The first-stage inflow is set to 500 MW (which is
below average for that time of year, giving 1 ~ 0.54) and inflows evolve thereafter
according to the chosen inflow model.

As noted in Section 3.1, the three versions of our autoregressive inflow model are
unsuitable for immediate use in this context, as they have a large number (or in the
case of normal errors, a continuous distribution) of scenarios at each stage. To put
them on the same footing as our IFS model, some scenario selection is required. This
was done by replacing the error distribution in each model by a set of 12 quantiles
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Figure 10: Distribution of annual maximum inflow for each of four stochastic models,
plotted vs. quantiles of log-Pearson III distribution fitted to original data. Clockwise
from top left: IFS model, AR model with normal errors, AR model with errors re-
sampled from regression residuals, AR model with errors re-sampled from seasonally
appropriate regression residuals.



Hydro generation capacity: 1500 MW
Hydro reservoir capacity: 800 GWh
Initial reservoir contents: 200 GWh
Initial (first stage) inflow: 500 MW
Thermal generation capacity: 900 MW
Thermal generation cost:  $50/MWh
Demand: 1400 MW, constant
Cost of unserved demand: $1000/MWh
Stage structure: 30x7-day stages, April 1 — October 27
Residual water value after last stage: $150/MWh up to 84 GWh;
then $75/MWh up to 252 GWh;
then $60/MWh up to 420 GWh;
then $45/MWh up to 672 GWh;
then $25/MWh.

Table 1: Example hydro-scheduling problem data.

of that distribution: the same quantiles (and associated probabilities) as used for
the IF'S model in Section 3.2.

With the models in this common form, it is straight-forward to compute ana-
lytically the exact mean inflow delivered by each model over the 30 stages of the
problem. The models can then be adjusted slightly so that this mean is the same
for all of them. This is a small adjustment, but an important one to make when
comparing inflow models of disparate kinds. Typical hydro-scheduling problems are
most sensitive to the overall amount of water received, and we do not want any
differences in the results to be due simply to one model running slightly wetter or
drier than another. In this exercise, the inflows of the autoregressive models with
normal, resampled, and seasonally-resampled errors were reduced by (respectively)
4.9%, 1.5%, and 0.5% (after the first stage) to bring them into line with the IFS
model.

The problem was solved for each inflow model using Doasa 2.0, an SDDP code
developed at the University of Auckland ([14]). In each case, 2500 forward and
backward passes were computed. This is rather more than required to get a good
solution; the primal variables have converged to within 5% after only a few hundred
iterations. Running times were on the order of 10 minutes on a 32-bit x86 CPU.
Each solution was then simulated over 40000 Monte Carlo sample paths to assess
its performance. Common random numbers were used across inflow models, 7.e. the
initial random seed was the same for each model. Since all the models have the
same number of inflow scenarios (twelve) at each stage, and the same probabilities
for those scenarios, this means that corresponding scenarios were sampled.

A “wait-and-see” version of the problem, in which the inflows are visible in
advance, was also solved; this is much less computationally demanding, as it is merely
a linear program. The same common inflow scenarios as in the SDDP problem were



IF'S AR-N AR-R AR-S
Optimization:
Wait-&-see lower bound ($m) 155.12 + 0.34 156.41 £+ 0.40 158.19 + 0.44 158.34 + 0.43
SDDP lower bound ($m) 155.71 156.80 159.23 159.33
Stmulation:
Objective ($m) 155.86 + 0.33 157.13 + 0.39 159.54 4+ 0.43 159.82 £ 0.42
Mean shortage (MW) 0.276 £ 0.025 0.530 £ 0.040 0.705 £ 0.044 0.697 £ 0.043
P(shortage) 0.022 £ 0.001 0.031 £ 0.002 0.041 £ 0.002 0.044 + 0.002
Mean spill (MW) 3.00 £+ 0.21 3.18 + 0.27 8.61 + 0.58 9.00 + 0.50
P(spill) 0.053 + 0.002 0.044 + 0.002 0.089 + 0.003 0.101 + 0.003
Mean energy price ($/MWh) 6542 + 0.45 71.68 £ 0.52 81.55 £ 0.65 82.10 £ 0.70

Table 2: Example hydro-scheduling problem results, for four different inflow models.
Objective values are in millions of dollars. Uncertainties shown are two times the
standard error.

used. The expected optimal objective value for this problem serves as a lower bound
for the objective value of the corresponding SDDP problem.

Table 2 shows the results. It is evident that in certain key respects the hydro-
scheduling problem is very sensitive to small differences among inflow models; this
is not atypical for such problems, and highlights the importance of detailed inflow
modelling. The inflow models with resampling are particularly prone to spilling
(reservoir overflow); this is consistent with the results on high inflow depicted in
Figure 10. The risk of shortage is reflected in the energy prices, and these too vary
substantially among the inflow models, even though there is little apparent difference
among them at the low-inflow end of the distribution.

6 Conclusion

Inflow models of IF'S type, which are highly compatible with the SDDP algorithm,
appear to be capable of representing inflow processes in at least two important re-
spects. Firstly, the distribution of inflow over problem-relevant time periods (several
problem stages, or a time similar to the characteristic time scale of the reservoir)
is reproduced with reasonable accuracy. This is also true over somewhat longer pe-
riods, suggesting that the all-important serial dependence of inflows has been well
modelled. Secondly, extreme high inflows are generated in a way consistent with the
standard log-Pearson III extrapolation technique.

The general form of SDDP-compatible linear inflow model (5) should be workable
in principle for problems with multivariate inflow processes. However, the present
paper has considered only univariate inflows. A suitable method for fitting an IFS-
type model to multivariate inflow series has yet to be devised; this seems a promising
area for future research.
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