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Abstract

We describe a mixed integer programming model for scheduling mechanical pulp
production with uncertain electricity prices.

1 Introduction

Norske Skég owns and operates a newsprint mill at Kawerau in New Zealand’s
Bay of Plenty. Energy comprises about one third of variable costs with wholesale
electricity purchases in the mechanical pulp mill comprising the bulk of this. The
mechanical pulp mill (MPM) at Norske Skdg Tasman consists of several pulp
refiner lines and grinders, and can be thought of as distinct pulp production units,
or plants. When running, the pulp plants operate at full capacity. Pulp production
from individual pulp plants is mixed in buffer tanks and delivered to the three paper
machines. Limited storage is provided by the buffer tanks allowing for temporary
cessation of production at one or more pulp plant.

A simplified flow diagram of the MPM is shown in Figure 1. The MPM has two
stone grinders (SGW1 and SGW2), two Refiner Mechanical Pulp Plants (RMPA
and RMPB) and two Thermo-Mechanical Pulp Plants (TMP1 and TMP2). These
plants break down wood into pulp and deliver it to three intermediary storage
tanks: the Holding, Rejects and Blend tanks. Pulp is then pumped to two storage
tanks: the RMP-SGW and TMP tanks. Pulp is pumped from these two tanks into
a single Mixed Tank before being delivered to the paper machines, and converted
into newsprint. Note that it is possible to supply each paper machine directly from
the RMP-SGW tank.

In this paper we describe a mixed integer optimization model called ROME
(Real-time Optimization Model for Electricity), that has been developed to provide
advice regarding production schedules. The model utilises pulp storage tanks so
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Figure 1: Mechanical Pulp Mill Flow Diagram

that production in the mechanical pulp mill can be scheduled to avoid incurring
high wholesale electricity prices, whilst still meeting paper machine demand. Costs
associated with load shedding and rules encapsulating pulp-quality requirements
are important considerations. Uncertainty in electricity prices is considered by
way of price scenarios.

The problem of deciding which plants to use at each trading period in a plan-
ning horizon, is very similar to the electricity generation unit commitment problem
(see for example[1][2]). Lagrangian relaxation techniques have proved to be very
successful in attacking large instances of these problems, particularly when there is
uncertainty in some of the problem data. While Lagrangian relaxation models at
Norske Skog are being considered, ROME provides a useful pilot model to provide
guidance to the mill operators, and enable benchmarking of any more comprehen-
sive models that might be developed.

In the next section, we describe the model formulation in detail. Section 4
outlines the extension of ROME to accommodate uncertain prices and in section 5
we illustrate the results of ROME by considering a simple example.

2 Model Formulation

Denote by P the set of pulp plants indexed by p, K the set of storage tanks indexed
by k, and T the set of planning periods indexed by t. We let C[k] be the set of pulp
types that feed into tank k& and M k] the set of paper machines that are fed from
tank k. Apart from these index definitions, we adopt the convention throughout this
paper of using lower case Roman letters to denote parameters, upper case Roman
letters to denote continuous variables, and lower case Greek letters to denote binary
variables. The central decision variables in this model are the nonnegative variables:

X = the number of tonnes of pulp delivered to tank & in time period ¢



and the binary decision variables

o 1, if pulp plant p is running in period ¢
P71 0, otherwise.

We define the following parameters

s¢ = Spot electricity price in trading period ¢
Spot reserve price in trading period ¢

ﬁ
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d; = Paper machine pulp demand in trading period ¢

a, = Production capacity of plant p

e, = Power load of plant p

ip = Reserve available from plant p

ur = Maximum storage capacity in tank k

l, = Minimum storage capacity in tank k

lAk = Initial storage level of tank k

by = Proportion of pulp from plant p delivered to tank k
n, = Number of permitted plant shut downs

Yyp = Penalty incurred for additional plant shut downs

g = Production short-fall penalty for paper machine j
cjp = Number of periods required for a reversal in plant p
2z, = Penalty if a reversal in plant p is required but not performed
to = First trading period in the model planning horizon
t« = Final trading period in the model planning horizon

and the following variables

By = Power consumed in plant p during trading period ¢

I = Reserve sold from plant p during trading period ¢

Ly = Storage level of tank k£ during trading period ¢

F = Flow of pulp from tank j to tank k£ during trading period ¢

Qjt = Paper production shortfall on machine j in trading period ¢

Ay = Pulp shortfall penalty

JIp = Plant shut down penalty

B, C;, Gy = Plant combination penalties

Vot = Binary variable indicating reversal in plant p has
commenced in trading period ¢

Ch = Reversal indicator

H, = Reversal violation penalty

2.1 Pulp Production

We are primarily interested in the total amount of pulp delivered into each tank
defined by

Xpp= ) bpktpo k€K, teT. (1)
peCK]

Observe that by is a fixed parameter defined by production recipes.



2.2 Paper Machine Pulp Demand

We allow paper machine j to reduce pulp demand by including a paper production
short-fall, ;;. This trade-off of lost paper sales opportunities would make sense
if the costs of pulp production were sufficiently high. The opportunity cost is
represented by a penalty g; incurred for each tonne of pulp that is not supplied to
paper machine j. Therefore

Z Z Fkgt—dt Qgtv tGT,

kEK jeMIk]

ensures that the flow of pulp to the paper machines meets the paper machine
demand less any shortfall. We define

Z Qjq;, teT.

jeEMI[k

to be the pulp-shortfall penalty in each time period, to be deducted from the
objective function.

2.3 Pulp Storage and Flow Balance

Storage tank levels must be kept within upper and lower bounds. This gives
ly < L <ug, teT.

The level in tank £ in time period ¢ is equal to the level in the previous period plus
incoming production and incoming flow from other tanks, minus outgoing flow to
other tanks. Recall C[k] is the set of pulp types that feed into tank k. Let us also
define J[k| to be the set of tanks that receive pulp from tank k. Then

Lyt = L1 + Z Xptbpr + Z ikt — Frje), ke K, teT\ {t}.

peCk] jeJk

and
Ly =l + Z Xpibpk + Z (Fjet — Frje), ke K, t=t.
pEC[K] jeJlkl
Finally we require that pulp inventory can not be run down at the end of the
planning period. This means that at the end of the planning horizon (at t = t,)
the pulp tanks must be at least as full as they were at the beginning, so

thz/l\ka kEK, = lwo-

2.4 Pulp Switching Constraints

Each time a pulp plant is shut down and started up again, costs are incurred due to
impacts on quality and risk of plant damage. We introduce a number of penalties
that have the effect of encouraging ROME to produce production schedules that
do not compromise quality unless it makes economic sense to do so.



2.4.1 Plant Shut Downs

We apply restrictions on the number of plant shut downs permitted in the planning
horizon. We introduce a non-negative variable S, that represents a change in
production state:

1, if pulp plant p shuts down in period ¢
Spt - .
0, otherwise.

Then

Spt Z th—l — th, t - T \ {to}
Spt 0, t=tg

We note that Sy, takes on binary values naturally as it is equal to the difference
between two binary variables. = We allow n, shut downs for plant p to reflect
maintenance schedules. Each additional time a pulp plant is shut down a penalty
Yp is incurred and the total shut down penalty for plant p is given by J,, which

must satisfy
Jp = (20 Spt — 1) Yp,
teT

J, > 0.

2.4.2 Pulp Plant Combinations

In practice there are pulp quality considerations involved with shutting down com-
binations of lines of refiners. Pulp strength and drainage properties are adversely
affected each time the mix of pulps being used is altered. It is important to control
pulp properties between tight limits so that the mixed pulp furnish sent to the
paper machines allows paper production to progress satisfactorily. ROME allows
any combination of pulp lines to be shut down concurrently, but applies signifi-
cant penalties for some combinations. Table 1 shows the combinations that incur
penalties. Penalty variables By, C; and G; are defined and three constraints are in-
cluded in ROME to ensure that penalties are incurred if the combinations of plants
running at any trading period warrant it.

Plant RMPA | RMPB | TMP1 | TMP2 | Penalty
Plant Index | 3 4 5 6

on on off on hy

on on on off hq

on or off | on or off | off off ho

Table 1: Plant Combinations Incurring Penalties

By > (ogt+0y —o06—1)hy, teTl.
Cy > (ost+ou—os—1)hy, teT.
Gy =2 (1 —o05 — 06)ho, tel.



2.4.3 Reversals

TMP and RMP refiner plates must be run in the reverse direction regularly, ap-
proximately every 100 hours in order to reduce burring of the plates. If a reversal is
required during the model planning horizon we set 7, = 1. We restrict the schedul-
ing of reversals to be within a subset of T' that varies by pulp plant. This set is
defined as W{p|, and reflects the availability of tradesmen required to affect the
reversal. We define binary variables

_ | 1, if a reversal is commenced in period ¢
Tpt 0, otherwise.

Recall that c/l; periods are required to perform the reversal in pulp plant p and a

penalty of z, is incurred if a reversal is required, but is not scheduled by ROME.
The penalty variable H), is added to the objective function, where

Hy > (rp — Z Vpt)%p (2)
teW(p|

To relate reversals to production we now impose the constraint

Z Opty S 31,(1 — V), PEP, teTl. (3)

t1EW[p] t1 <t<t+dp

To see how the constraint works, observe that if there are al;, consecutive periods
in which plant p is not operating then it is possible to perform a reversal. This is
reflected in the summation term of (3), which will only equal 0 if a reversal can be
commenced in trading period ¢. In this case the binary variable ~,, will take on
the value 1, as the optimiser will attempt to avoid the reversal penalty incurred in

(2).

2.5 Objective Function

The objective function is simply the cost of purchased power less the cost of reserve
market sales plus any model penalty costs incurred. Formally this is

Z Z(Uptepst - Uptiprt) + Z(Jp + Hp) + Z(At + Bt + Ct + Gt)

peP teT peP teT

3 Uncertainty in Prices

The New Zealand Electricity Market publishes final prices the next day. Leading
up to real time, three different price forecasts are published. Price predictions are
not the subject of this paper, nevertheless it is important to recognise that final
prices are quite uncertain and that it is possible to form views of what those prices
will be.

Appreciating this point we have altered ROME so that it incorporates a set
of price scenarios 2 indexed by w, rather than using merely the expected price.



Now electricity and reserve prices and all variables are indexed over both tranding

period and scenario.

We define 11, the probability of each scenario, and ensure

that > II, = 1. We also introduce indexed subsets of 2 as required to allow us

we

to construct branching scenarios for non-anticipative constraints. For example we
define Q;, i =1,...,7, and T;, i = 1,...,7, (as shown in Table 2) that allow us to

construct branching price scenarios in the fashion depicted in Figure 2.

Scenario . Tra_ding Tra_ding
Sot Name Branch Scenarios Included Period Periods
Set Name Included
O Bundlel | 1 2 3 4 5 6 7 8 |71} 1,2,3,4,5
Qs Bundle2 | 1 2 3 4 Ty 6
Q3 Bundle3| 5 6 7 8 T3 6
QU Bundle4 | 1 2 Ty 7
Qs Bundle5| 3 4 Ts 7
Qg Bundle6 | 5 6 Ts 7
Qr Bundle 7| 7 8 T 7

Table 2: Branching Scenarios

Bundle 5

Bundle 1

Bundle 7

Figure 2: Branching Scenario Tree

With a scenario index, the objective function becomes

D T Y (Guptepst — Tupripre) + Y T > (Jup + Hap)

we peEP teT we peEP

+3 Ty Y (At + But + Cut + Gu),

weN teT
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Figure 3: Price Scenarios

and to ensure that scenarios that share the same price-histories have identical de-
cisions, we add non-anticipative constraints of the form

Owpt = 03, we, pebh tel

where &; and %, are additional binary variables chosen for each scenario bundle.

4 Example

To illustrate the results from ROME we consider an example of planning for a single
day (48 trading periods) in which dispatch prices for the next five trading periods
are available and represent forecasts of final electricity prices. We construct eight
price scenarios as shown in Figure 3. These are based on the distribution of prices
from the previous two weeks.

In the New Zealand Electricity Market two hours notice must be provided before
demand bids can be altered. This means that decisions for the next four trading
periods have previously been made and the only decision that must be made now
is for the fifth trading period. We consider a decision required immediately prior
to the evening demand peak (6 pm), and define trading period 1 to be equivalent
to 3.30 pm. All scenario prices equal the dispatch price for the first five trading
periods and then vary. For simplicity we ignore the effect of reserve prices by
setting r,;, =0, we), tel.

We apply non-anticipative constraints as defined in Table 2 and Figure 2. We
also stipulate that a reversal lasting two trading periods must be performed on
TM P1 at some time in the planning horizon. High penalty costs have been set for
production shortfall, pulp plant combinations and failure to perform the reversal,
and we assume that paper machine demand will be constant throughout the day
at 90% of the combined pulp mill capacity, enabling up to 10% of pulping capacity
to be curtailed.



ScenarioPeriod| 1 | 2| 3|1 4]|15]16[7[8]9]10]11]12[13]32]33]34]|35[36[37[38]39
1 11 frfrj1joejoji1firfrjrjojrpirfrfrpr)prprpifa
2 I A I O A
3 1Tfrjrjpi1frjojofrjrpifrjyofirpr)pifrjprpifrjpurga
4 11 frfrj1jojoj i1ty rpryprprprpr vl rprprpIfd
5 N e 5 A I A I
6 1Tfrjr)pifrjrpifrjtrjpofojifirjprjofirjrjifrjurji
7 N S A O A I
8 IS U U 1 A % O I

Figure 4: Rome Production Schedule for TMP1

We show in Figure 4 the results for the TM P1 plant. A state of 1 indicates
that the plant is running. Reversals occur when the plant is shut down for two
consecutive periods. The optimal decision is to run this plant in trading period
5, and as one would expect the scheduling of the reversal varies depending on the
scenario. Reversals are scheduled in period 6 for Scenarios 1 to 4 whilst they are
delayed until price peaks are observed for scenarios 5 to 8. Scheduling of plant
shut-downs are restricted by the requirement to observe pulp supply feasibility.
Rome avoids reversal and pulp shortfall penalties and coordinates the shut down
of various plants to avoid plant combination penalties.

5 Discussion

ROME has been developed using AMPL and CPLEX 8.0, both available from
ILOG [3]. Although ROME is useful as a planning tool, its solution time grows
very quickly with the number of price scenarios chosen. In a practical setting,
where we would like to use many more scenarios, possibly in the hundreds, ROME
is too slow to to be used as a real-time tool for pulp mill operators. We are
in the process of developing a Lagrangian relaxation model (see for example [4]),
which decouples the problem by relaxing the pulp production constraints (1) and
attacks the switching of plants using dynamic programming. It is hoped that this
alternative formulation will provide good solutions in an acceptable amount of time.
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