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Abstract�The behaviour of DC Load-�ow formulations when
they are used in economic dispatch and nodal pricing models is
discussed. It is demonstrated that non-negative prices in these
models are suf�cient to guarantee global optimality of any local
optimum, even if the feasible region is not convex, and so a
negative nodal price is an indicator of a possible loss in optimality.
It is also discuss the possible effect that negative prices might
have on algorithms that assume this convexity.

Index Terms�Convex Optimization, Economic Dispatch,
Quadratic Programming, Linear Programming.

I. INTRODUCTION
In power markets there is an increasing need for improv-

ing the representation of high-voltage transmission networks
in order to better support market design alternatives, price-
formation mechanisms, and for general operation and planning
decisions. In most cases, this process involves the de�nition
of more complex mathematical models. Different optimization
approaches based on DC Load-�ow formulations are exten-
sively used in this �eld [1]�[4].
In this paper we study the behaviour of DC Load-�ow

formulations when used in economic dispatch and nodal
pricing models. Our focus is on instances of these models in
which negative prices are observed at some nodes. A negative
price at a node indicates a situation in which the system cost
can be reduced by more consumption of power at the node.
When there is a free disposal of power at this node, a simple
economic argument shows that the nodal price must be non-
negative. So negative prices can only occur when �ow balance
constraints in the dispatch model are modeled as equations.
When the DC-load �ow model does not include line losses,

it is a linear program, which is easily solved using standard
software [5], [6]. Linear programs are convex optimization
problems, and enjoy all their desirable properties. Although
negative prices may occur in these models, their existence need
not be a matter of any concern. On the other hand, when losses
are modeled as quadratic functions of the line �ow, it is well
known that (without free disposal at the nodes) the feasible
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region of the dispatch model is no longer convex [7]. This
means that the bene�ts of convex optimization are no longer
guaranteed.
In this paper we investigate the extent to which this loss of

convexity is material in solving realistic dispatch problems.
We demonstrate that non-negative prices are suf�cient to
guarantee global optimality, even if the feasible region is
not convex, and so a negative nodal price is an indicator of
a possible problem for optimization software. In particular,
we show that linear programming software that approximates
losses by piecewise linear functions will not represent losses
properly as it becomes more accurate. Quadratic programming
software that assumes positive de�nite Hessian matrices may
also encounter problems in solving such problems. Finally
nonlinear optimization software that yields at best a local
optimum may not give a global optimal solution when prices
are negative.
The paper is laid out as follows. In the next section, we

give some general mathematical results that can be applied to
the dispatch problem. A general mathematical formulation of
the economic dispatch problem is then presented in Section
III, and we present a three-busbar model to illustrate the
formulation, and to serve as an example of some of the
dif�culties we describe. We �rst show in Section IV how
linear programming software might fail when applied to this
problem. In Section V we compute the Hessian matrix of the
Lagrangian with respect to the �ow-balance constraints, and
show how this might fail to be positive semi-de�nite with
negative prices. In Section VI a nonconvex six-busbar example
is described and used to illustrate how a negative price might
be an indicator of a local optimum solution. Finally, Section
VII presents the conclusions of the work.

II. PRELIMINARIES

Consider the general optimization problem

E(u) : min
P

i hi(qi)
s.t. gi(f) + qi = ui; i = 1; 2; : : : ; n

Af +Bq = b;
f 2 F; q 2 Q:

(1)
where each hi is a convex function and each gi is a concave
function; A and B are p�m and p�n real matrices; b lies in
Rp; and F and Q are convex sets in Rm and Rn respectively.



2

We de�ne the following relaxation of E(u):

G(u) : min
P

i hi(qi)
s.t. gi(f) + qi � ui; i = 1; 2; : : : ; n

Af +Bq = b;
f 2 F; q 2 Q:

(2)
Assume that every feasible point of E(u) and G(u) satisies

a constraint quali�cation (see e.g. [8]). Let �i(E); i =
1; 2; : : : ; n; be the Lagrange multipliers from the �rst set of
constraints for E (and let �i(G) be de�ned similarly).
Proposition 1: �i(G) � 0; i = 1; 2; : : : ; n:
Proof: See [8].

Proposition 2: If �i(E) � 0; i = 1; 2; : : : ; n for a locally
optimal solution to E(u), then this is also optimal for G(u).

Proof: Suppose that (q�; f�) solves E(u); with �i(E) �
0; i = 1; 2; : : : ; n. Then (q�; f�; �(E)) satis�es the Karush-
Kuhn-Tucker conditions of G(u). Since G(u) is a convex
programming problem these conditions are suf�cient.
Corollary 3: A locally optimal solution to E(u) with

�i(E) � 0; i = 1; 2; : : : ; n is also globally optimal.
Corollary 4: Let �E(u) be the optimal value of E(u). If

�i(E(u)) � 0; i = 1; 2; : : : ; n for every u then �E(u) is
convex.

Proof: Follows from the convexity of the optimal value
of the convex programming problem G(u) (see [8]).

III. THE ECONOMIC DISPATCH PROBLEM
A. The General Case
The economic dispatch problem for an electricity generation

and transmission system is typically formulated by expressing
link �ows and losses in terms of voltage angles at each bus
[2].

Z = Min

(
NGX
i=1

CGi(PGi) +
NDX
i=1

CUi(PUi)

)
s:t: (3)X
k2
Gi

PGk
�
X
j2
Ni

 
�i � �j
xij

+
rij (�i � �j)2

2x2ij

!
+

X
k2
Ci

PUk =
X
k2
Ci

PCk 8i 2 NN

�i � �j � xijF ij 8(i; j) 2 
NN

�j � �i � xijF ji
xE � xE � xE

where:
� NG = number of generators
� ND = number of demands
� NN = number of busbars
� 
Ni = set of nodes adjacent to node i
� 
Gi = set of generators at node i
� 
Ci = set of demands at node i
� CGi = convex generation cost function,
� CUi = convex cost function of unserved energy.
� PGi = generation active power injection in per unit.
� PUi = unserved energy (active power) in per unit.

� �i = voltage phase angle from node i expressed in
radians.

� xij = line series reactance expressed in per unit.
� rij = represents the equivalent resistance expressed in
per unit where rrij is line series resistance expressed in
per unit.

� PCj = active power load expressed in per unit.
� Pij = active power �ow between nodes i and j expressed
in per unit.

� F ij = maximum active power �ow on transmission line
between nodes i and j expressed in per unit.

� xE =
�
PG PU �

�
= vector of all optimization vari-

ables.
Ohmic losses PLij for each transmission line can be

represented [1] by the nonlinear function

PLij = 2
rrij

rr2ij + x
2
ij

(1� cos(�i � �j)) (4)

that has a second-order approximation given by the quadratic
function

PLij �
rrij

rr2ij + x
2
ij

(�i � �j)2 ;

which on substitution of equivalent resistance rij =
rrijx

2
ij

rr2ij+x
2
ij

gives

PLij �
rij (�i � �j)2

x2ij
:

This can be further simpli�ed using the fact that rrij � xij
(rrij = 0:25 xij or less) to give

PLij � rrijP 2ij =
rrij
x2ij

(�i � �j)2 : (5)

The resulting economic dispatch problem has convex cost
function, quadratic equality constraints (node balances), linear
inequality constraints and bounds for each variable. It is easy
to see by making the substitution fij =

�i��j
xij

, i < j, that
the economic dispatch problem is in an equivalent form to
E(u). Here the function gi(f) takes the form of

P
j<i(fji �

rij
2 f

2
ji) +

P
i<j(�fij �

rij
2 f

2
ij). It is important to note that

the economic dispatch problem can also be modeled with
nonconvex generator cost curves [9], a case that falls outside
the setting we discuss here.

B. Example 3-node system
To motivate our discussion we shall study the realistic 220

kV three-busbar system shown in Fig. 1. This case study
is based on realistic data and can be interpreted as a sub-
network of more extended power system. Here, for each line
we consider reactances xij = 0:4 
=km and equivalent resis-
tances rij = 0:04 
=km! rrij = 0:040408 
=km. Using a
reference power Sb = 100 MVA, the resulting reactances and
resistances in per unit are shown in Fig. 1.
� Line lengths: Line A = Line B = 121 km, Line C = 181.5
km.

� The transmission capacity of Line C expressed in active
power is set to F23 = 50 MW .
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Fig. 1. Three busbar system

� Generation costs: Reservoir = Gen 1! C1 = 1 $=MWh
(strategic value of stored water), Gen 3 ! C3 = 50
$=MWh.

� Load 2 = 10 MW and Load 3 = 200 MW .
� Unserved energy costs of 500 $=MWh for each load.

The optimal economic dispatch for this example can be
computed using nonlinear programming software (e.g.
MINOS [6]) and summarized as follows:

� P �G1 = 196:84 MW , P �G3 = 15:73 MW .
� Total Losses = 2:57 MW ! 1:22%.
� System costs = 983:5 $=h:
� �1 = 1 $=MWh, �2 = �47:591 $=MWh, �3 = 50
$=MWh.

The Lagrange multipliers �i relate to the node-balance
constraints and give the nodal prices at optimality, one of
which �2 is negative. The software can be shown to terminate
at a locally optimal solution, but since �2 < 0, we have no
guarantee that this is a globally optimal solution, although
this can be veri�ed in this example by exhaustively checking
the Karush-Kuhn-Tucker conditions. Recall that optimization
problems of the form E(u) are not convex programming
problems. In the next section it is shown that further analysis
is needed to de�ne global optimality.

IV. PIECEWISE LINEAR APPROXIMATION OF LOSSES

As shown in Proposition 2, if a locally optimal solution
to the economic dispatch problem has non-negative Lagrange
multipliers at optimality, then this solution is also a (global)
solution to the (convex) inequality constrained problem, and
so it is a global solution to the dispatch problem. The fact
that the solution is also a solution to G(u) means that we
may approximate G(u) by a linear program (say L(u)) and
expect that the solution to L(u) is close to the global optimum
of G(u) and hence E(u). Many economic dispatch systems
(see e.g. [10]) use linear programming in this way.
The linear programming approximation of losses can fail

when the optimal solution to E(u) has a negative Lagrange
multiplier as in our example (this fact is well known in the
load-�ow modelling community, see e.g. [11]). To illustrate
this we solved the three-busbar example using following step

Fig. 2. Ohmic losses representation

piece-wise linear loss functions:

PLij =
CX
k=A

mk
ij

�
��kij

�
; �i � �j =

CX
k=A

��kij : (6)

Considering three step piece-wise linear, that is, k = A;B;C,
the loss model in the three-busbar system can be writen as

PL12 = 100 (�1 � �2)2 �PAL12 + PBL12 + PCL12
PL13 = 100 (�1 � �3)2 �PAL13 + PBL13 + PCL13
PL23 = 66:6 (�2 � �3)2�PAL23 + PBL23 + PCL23

Fig. 2 shows the ohmic losses representation by three linear
functions.
Solving the resulting optimization problem for three loss

function levels in each transmission line we obtained the
following loss values in MW:

PAL12 = 0:0000 PBL12 = 0:2709 PCL12 = 0:9863
PAL13 = 0:1306 PBL13 = 0:745 PCL13 = 0:9679
PAL23 = 0:0862 PBL23 = 0:3065 PCL23 = 0:0000

Fig. 3 shows the optimal result achieved for the ohmic losses
in Line A (between nodes 1 and 2).

Fig. 3. Ohmic losses in line A with linear functions

It can be observed that the optimization arrives at an infeasi-
ble solution from the physical point of view. The software tries
to maximize losses in Line A using the second and third level
of the loss function PBL12; PCL12. The correct physical losses
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are 0:3698 MW , while the ohmic losses based on the linear
approximation are 1:2572 MW . In this way, more power
can be allocated by the cheaper generation at busbar one. So
the piecewise linear approximation has failed to represent the
problem in the way we intended.
We might have expected some problems here since we

are approximating a nonconvex optimization problem with a
convex one. Indeed the example has a negative price so we
do not have a guarantee that E(u) has the same solution as
G(u) its convexi�cation. We proceed to show under fairly mild
conditions on the optimal solution that a negative price at any
node indicates that a linear programming model of the form
above will give an incorrect �ow representation if there are
enough pieces in the piecewise linear representation of the
loss curves.
Our result is stated in the framework of the problem E(u),

for a transmission network of directed lines ij, i < j, where

gi(f) =
X
j<i

(fji �
rji
2
f2ji) +

X
j>i

(�fij �
rij
2
f2ij);

and for each transmission line ij, �Fij < fij < Fij . We
assume that rij > 0 for all lines ij implying that rij2 f

2
ij is

a strictly convex function. In the linear program, we model
lij =

rij
2 f

2
ij as piecewise linear convex functions, where

f�ij = �Fij + y1ij + y2ij + : : :+ y�ij ; i < j;
0 � ykij � bkij , k = 1; 2; : : : ; �; i < j;
l�ij =

rij
2 F

2
ij +m

1
ijy

1
ij +m

2
ijy

2
ij + : : :+m

�
ijy

�
ij ; i < j;

where the strict convexity assumption gives increasing slopes,
i.e.

mk
ij < m

k+1
ij ,

and each slope is in the interval (�1; 1), since the marginal
loss can never exceed the marginal �ow.
Our result requires the following de�nition.
De�nition 5: A dispatch is degenerate if there exists a node

i, at which every generator is either not dispatched or fully
dispatched, and all lines ij have �ow either at zero or an
upper bound or a lower bound. (The dispatch computed in the
previous 3-node example is not degenerate.)
Proposition 6: Suppose the optimal dispatch is not degen-

erate. Any node i with a negative price in the optimal dispatch
has qk = 0; k 2 
Gi and at least one incident line with nonzero
�ow between its bounds.

Proof: Consider node i with a negative price �i < 0
for some optimal dispatch. Since the dispatch is optimal,
and generator costs are non-negative, the Karush-Kuhn-Tucker
conditions imply that every generator at node i is dispatched
zero. Since the dispatch is not degenerate, then there is some
line ij with �Fij < fij < Fij and fij 6= 0, or some line ji
with �Fji < fji < Fji and fji 6= 0, i.e. i has at least one
incident line with nonzero �ow between its bounds.
In our example, the line A connecting buses 1 and 2 has

power �owing into node 2 at a rate less than the line's capacity,
as predicted by the proposition. If demand at each node is
nonnegative, then Proposition 6 implies that any node i with
a negative price in a nondegenerate optimal solution has some
positive �ow entering i from some other node j. (Otherwise

all line �ows would be directed away from i which would be
feasible only of demand was negative.) Given such a solution,
we can rename the node indices so that 0 < fji < Fji. This
allows us to show the following result.
Proposition 7: Suppose demand at each node is nonnega-

tive, the optimal dispatch (q; f) for E(u) is nondegenerate,
and some node has a negative price. Suppose LP � is a
sequence of linear programming problems with a piecewise
linear loss function for each line converging uniformly to the
corresponding quadratic loss function. Suppose for all � the
optimal solution (q� ; f� ; ��) to LP � correctly represents the
losses. Then (q� ; f� ; ��) does not converge to (q; f; �).

Proof: Let i be the node with a negative price in the
optimal solution. By proposition 6 and the discussion above
there is no generation at i, and at least one line ji with
0 < fji < Fji. Suppose (q� ; f� ; ��) ! (q; f; �). Then for
suf�ciently large � we have ��i < 0 and

0 < f�ji < Fji.

The �ow

f�ij = �Fij + y1ij + y2ij + : : :+ y�ij
is the sum of variables ykji from � loss sections, and by as-
sumption ykji = bkji for all sections up to the one corresponding
to f�ji, and ykji = 0 for the sections beyond. (We can make �
large enough so the section k corresponding to f�ji is between
2 and � � 1.)
Let �k be the reduced cost of each of these variables at

optimality of the problem LP � . Then it is easy to show that

�k = (��i + �
�
j )m

k
ji + (�

�
j � ��i )

where mk is the slope for section k. We have

(��j � ��i ) > (��j + ��i )

so if (��j +�
�
i ) � 0, then �k > 0 for all k, and so f�ji = �Fji,

yielding a contradiction. Thus we have

��j + �
�
i < 0.

Since 0 < f�ji < Fji, we have 0 < mk < mk+1 which implies
that

�k = (��i + �
�
j )m

k
ji + (�

�
j � ��i )

> (��i + �
�
j )m

k
ji + (�

�
j � ��i )

= �k+1

This inequality contradicts the assumption that (q� ; f� ; ��)
solves LP � , as it entails that either y1ji = b1ji and �1 > 0, or
y�ji = b

�
ji and �� < 0.

V. QUADRATIC OPTIMIZATION OF LINE LOSSES
The failure of linear programming in these circumstances

points to the use of optimization software that will compute
optimal solutions with quadratic functions. The quadratic
terms from the losses can be placed in a Lagrangian, where
the Lagrange multipliers �i are chosen to be those that pertain
at the global optimal solution (We shall assume regularity
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conditions that ensure these exist). The Lagrangian for the
economic dispatch problem can then be expressed as

L(PG; PU ; �) =
NGX
i=1

CGi(PGi) +
NDX
i=1

CUi(PUi)

+
NNX
i=1

�i[
X
j2
Ci

PCj�
X
j2
Gi

PGj + :::

X
j2
Ni

 
�i � �j
xij

+
rij (�i � �j)2

2x2ij

!
�

X
j2
Ci

PUi] (7)

It can be observed that for positive multipliers �, the La-
grangian is convex in PG, PU , and �. For linear/quadratic
functions CGi(�) and CUi(�), L(PG; PU ; �) is easily seen then
to be a positive semi-de�nite quadratic form.
If some Lagrange multiplier �i is negative, then

L(PG; PU ; �) may not be positive semi-de�nite. To investigate
this we will compute its explicit form. Let A be the adjacency
matrix of the network

aij =

�
1 bus i and j are adjacent
0 otherwise

L(PG; PU ; �) =

NNX
i=1

�i

NNX
j=1

aij

 
�i � �j
xij

+
rij (�i � �j)2

2x2ij

!
::

=
NNX
i=1

NNX
j=1

�iaij

 
�i � �j
xij

+
rij (�i � �j)2

2x2ij

!
::

=
NNX
i=1

NNX
j=1

�iaij
�i � �j
xij

+ (8)

+

NNX
i=1

NNX
j=1

�iaij
rij (�i � �j)2

2x2ij
+ ::

The Hessian H of the Lagrangian is de�ned by

Hii =
NNX
j=1

�iaij
rij
x2ij

+
NNX
j=1

�jaji
rji
x2ji

(9)

Hij = ��iaij
rij
x2ij

� �jaji
rji
x2ji

Let �ij = �ji = aij
rij
x2ij
. Then

Hii =
NNX
j=1

(�i + �j)�ij

Hij = �(�i + �j)�ij (10)

Observe that X
j

Hij =
X
i

Hij = 0

and so H is singular. Also observe thatX
i 6=k

X
j 6=k

Hij =
X
i 6=k

NNX
l=1

(�i + �l)�il+X
i 6=k

X
j 6=k

�(�i + �j)�ij (11)

=
X
i 6=k

(�i + �k)�ik = Hkk

In the three-bus example

(�ij) =

24 0 1 1
1 0 2

3
1 2

3 0

35
so

H = 100

24 2�1+�2+�3 ��1��2 ��1��3
��1��2 �1+

5
3�2+

2
3�3 � 2

3 (�2+�3)
��1��3 � 2

3 (�2+�3) �1+
2
3�2+

5
3�3

35
Recall that �1 = 1, �2 = �47:591, �3 = 50, so �1+ 5

3�2+
2
3�3 < 0, which means that H is inde�nite for these choices of
�. This will cause problems for quadratic programming solvers
(e.g. some interior point methods) that require at least positive
semi-de�nite Hessian matrices. It is interesting to observe,
however, for this example thatH restricted to the tangent plane
of the active line capacity constraint

100

�
�2 � �3
0:15

�
= 50

gives a reduced Hessian

Hr = 100

�
2�1+�2+�3 �(2�1+�2+�3)

�(2�1+�2+�3) 2�1+�2+�3

�
(12)

that is positive semi-de�nite as long as 2�1+�2+�3 � 0. Thus
a reduced gradient algorithm that identi�ed this active con-
straint would not have to deal with an inde�nite Lagrangian.
(The solution computed in section III was found using the
reduced gradient nonlinear optimization package MINOS [6]).

VI. NONCONVEX SIX-BUSBAR EXAMPLE
In Section IV it was demonstrated that a negative price

leads to the failure of linear programming approximations
of the dispatch model, that to some extent is overcome by
nonlinear programming algorithms. Of course the problem
E(u) is not convex, and so we have no guarantee that the
nonlinear programming system will locate the global optimum.
To illustrate this, consider two identical power exchanges
linked by a transmission line with ohmic losses in nodes with
negative marginal prices. For this analysis we used twice the
previous three busbar example interconnecting both systems
at their respective busbar 2 (see Fig. 4).
The optimal economic dispatch after they are connected

is not symmetric. In order to allocate more power from the
cheap generation at generator G1, energy is transferred from
the upper to the lower system (15:85 MW ). This yields
an increase of load at Busbar 2 that reduces the dispatch
of the expensive generator G3 to zero. In the lower system
we observe the opposite behaviour. Nevertheless, the �nal
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Fig. 4. Two symetrical systems/markets

result is cheaper than twice the costs of the operation of two
disconnected networks (2 � 983:5 = 1967:0 > 1965:99 $=h).
When given a starting point equal to the optimal �ow in each
separate system, and no �ow in the connecting line, MINOS
terminates at this local optimal solution.

VII. CONCLUSIONS

In this paper we have discussed the behaviour of DC
Load-�ow models with ohmic losses when they are used in
transmission constrained economic dispatch and nodal pricing
models. We have shown that negative nodal prices at the opti-
mal dispatch solution can indicate problems for optimization
software. A negative nodal price at a non degenerate solution
means that linear programming with piecewise linear losses
will fail to converge as the loss representation becomes more
accurate. Moreover in complicated transmission networks, a
negative price can indicate that only a local optimal solution
has been found. In many cases however negative nodal prices
present no problems for commercial nonlinear programming
codes.
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