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1 Introduction

In power markets there is an increasing need for improving the representation
of high-voltage transmission networks in order to better support market de-
sign alternatives, price-formation mechanisms, and for general operation and
planning decisions. In most cases, this process involves the definition of more
complex mathematical models. Different optimization approaches based on DC
Load-flow formulations are extensively used in this field River et. al (1990),
Wood et al. (1996), Philpott (1999), Stott et al. (2009), Escobar and Jofre
(2010).

In this paper we study the behavior of the economic dispatch formulation
when it is used in operational planning and planning decision process. Our
focus is on instances of these models in which negative prices are observed
at some nodes. A negative price at a node indicates a situation in which the
system cost can be reduced by more consumption of power at the node. When
there is a free disposal of power at this node, a simple economic argument
shows that the nodal price must be non-negative. So negative prices can only
occur when flow balance constraints in the dispatch model are modeled as
equations.

When the economic dispatch model does not include line losses, it is a linear
program, which is easily solved using standard software (Ilog , 2002; Murtagh
and Saunders, 1983). Linear programs are convex optimization problems, and
enjoy all their desirable properties. Although negative prices may occur in
these models, their existence need not be a matter of any concern. On the
other hand, when losses are modeled as quadratic functions of the line flow, it
is well known that (without free disposal at the nodes) the feasible region of
the dispatch model is no longer convex ( Philpott and Pritchard, 2004). This
means that the benefits of convex optimization are no longer guaranteed.

In this paper we investigate the extent to which this loss of convexity is ma-
terial in solving realistic dispatch problems. We demonstrate that non-negative
prices are sufficient to guarantee global optimality, even if the feasible region is
not convex, and so a negative nodal price is an indicator of a possible problem
for optimization software. In particular, we show that linear programming soft-
ware that approximates losses by piecewise linear functions will not represent
losses properly as it becomes more accurate. Quadratic programming software
that assumes positive definite Hessian matrices may also encounter problems
in solving such problems. Finally nonlinear optimization software that yields
at best a local optimum may not give a global optimal solution when prices
are negative.

An appropriate understanding of these phenomena is useful in a plan-
ning process where thousands of economic dispatch instances must be evalu-
ated in order to define an operational policy or to determine generation and
transmission network investment. Besides, identifying and properly handling
non-convex cases (indicated by a negative price) could avoid making wrong
decisions on operational policies or investment.
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The paper is laid out as follows. In the next section, we give some general
mathematical results that can be applied to the dispatch problem. A general
mathematical formulation of the economic dispatch problem is then presented
in Section 3, and we present a three-busbar model to illustrate the formulation,
and to serve as an example of some of the difficulties we describe. We first
show in Section 4 how linear programming software might fail when applied
to this problem. In Section 5 we compute the Hessian matrix of the Lagrangian
with respect to the flow-balance constraints, and show how this might fail to
be positive semi-definite with negative prices. In Section 6 a nonconvex six-
busbar example is described and used to illustrate how a negative price might
be an indicator of a local optimum solution. Finally, Section 7 presents the
conclusions of the work.

2 Preliminaries

Consider the general optimization problem

E(u) : min
∑
i hi(qi)

s.t. gi(f) + qi = ui, i = 1, 2, . . . , n
Af +Bq = b,
f ∈ F, q ∈ Q.

(1)

where each hi is a convex function and each gi is a concave function; A and B
are p×m and p× n real matrices; b lies in Rp; and F and Q are convex sets
in Rm and Rn respectively. We define the following relaxation of E(u):

G(u) : min
∑
i hi(qi)

s.t. gi(f) + qi ≥ ui, i = 1, 2, . . . , n
Af +Bq = b,
f ∈ F, q ∈ Q.

(2)

Assume that every feasible point of E(u) and G(u) satisfies a constraint
qualification, (see e.g. Bazaraa et al. , 2006). Let λi(E), i = 1, 2, . . . , n, be the
Lagrange multipliers from the first set of constraints for E (and let λi(G) be
defined similarly).

Proposition 1 λi(G) ≥ 0, i = 1, 2, . . . , n.

Proof See Bazaraa et al. (2006).

Proposition 2 If λi(E) ≥ 0, i = 1, 2, . . . , n for a locally optimal solution to
E(u), then this is also optimal for G(u).

Proof Suppose that (q∗, f∗) solves E(u), with λi(E) ≥ 0, i = 1, 2, . . . , n. Then
(q∗, f∗, λ(E)) satisfies the Karush-Kuhn-Tucker conditions of G(u). Since G(u)
is a convex programming problem these conditions are sufficient.

Corollary 1 A locally optimal solution to E(u) with λi(E) ≥ 0, i = 1, 2, . . . , n
is also globally optimal.
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Corollary 2 Let φE(u) be the optimal value of E(u). If λi(E(u)) ≥ 0, i =
1, 2, . . . , n for every u then φE(u) is convex.

Proof Follows from the convexity of the optimal value of the convex program-
ming problem G(u). See Bazaraa et al. (2006).

3 The Economic Dispatch Problem

3.1 The General Case

The economic dispatch problem for an electricity generation and transmission
system is typically formulated by expressing link flows and losses in terms of
voltage angles at each busbar ( Wood and Wollenberg, 1996). Both power flow
balances at each busbar (with or without ohmic losses representation) and
transmission limits using the DC load flow approximation, represent all the
transmission constraints.

Z = Min


NN∑
i=1

{
∑
k∈ΩG

i

CGk(PGk) +
∑
k∈ΩC

i

CUk(PUk)}


s.t. (3)∑
k∈ΩG

i

PGk
−
∑
j∈ΩN

i

(
θi − θj
xij

+
rij (θi − θj)2

2x2
ij

)
+

∑
k∈ΩC

i

PUk
=
∑
k∈ΩC

i

PCk
, i = 1, 2, . . . , NN

θi − θj ≤ xijF ij ∀(i, j) ∈ ΩL

θj − θi ≤ xijF ji
xE ≤ xE ≤ xE

where parameters are:

– NN = number of busbars
– ΩNi = set of nodes adjacent to node i
– ΩGi = set of generators at node i
– ΩCi = set of demands at node i
– ΩLi = set of transmission lines
– CGk = convex generation cost function,
– CUk = convex cost function of unserved energy.
– xij = line series reactance expressed in per unit.
– rij = represents the equivalent resistance expressed in per unit.
– F ij = maximum active power flow on transmission line between nodes i

and j expressed in per unit.

and variables are:
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– PGk = generation active power injection in per unit.
– PUk = unserved energy (active power) in per unit.
– θi = voltage phase angle from node i expressed in radians.
– PCj

= active power load expressed in per unit.
– xE =

[
PG PU θ

]
= vector of all optimization variables.

Ohmic losses PLij for each transmission line can be obtained (River et. al
, 1990) from the nonlinear function

PLij = 2
rrij

rr2ij + x2
ij

(1− cos(θi − θj)) (4)

where rrij is line series resistance expressed in per unit and rij = rrijx
2
ij

rr2ij+x
2
ij

.

The resulting economic dispatch problem has convex cost function, quadratic
equality constraints (node balances), linear inequality constraints and bounds
for each variable. It is easy to see by making the substitution fij = θi−θj

xij
,

[PG PU ] = q, that the economic dispatch problem is in an equivalent form to
E(u). Here the function gi(f) takes the form of

∑
j∈ΩN

i
(−fij − rij

2 f
2
ij). It is

important to note that the economic dispatch problem can also be modeled
with nonconvex generator cost curves (Chaturvedi et. al , 2008), a case that
falls outside the setting we discuss here.

3.2 Example 3-busbar system

To motivate our discussion we shall study the realistic 220 kV three-busbar
system shown in Fig. 1. This case study is based on realistic data and can
be interpreted as a sub-network of more extended power system. Here, for
each line we consider reactances xij = 0.4 Ω/km and equivalent resistances
rij = 0.04 Ω/km→ rrij = 0.040408 Ω/km. Using a reference power Sb = 100
MVA, the resulting reactances and resistances in per unit are shown in Fig. 1.

– Line lengths: Line 1-2 = Line 1-3 = 121 km, Line 2-3 = 181.5 km.
– The transmission capacity of Line 2-3 expressed in active power is set to
F 23 = 50 MW .

– Generation costs: Reservoir = Gen 1 → C1 = 1 $/MWh (strategic value
of stored water), Gen 3 → C3 = 50 $/MWh.

– Load 2 = 10 MW and Load 3 = 200 MW .
– Unserved energy costs of 500 $/MWh for each load.

The optimal economic dispatch for this example can be computed using
nonlinear programming software such as MINOS ( Murtagh and Saunders,
1983) and summarized as follows:

– P ∗G1 = 196.84 MW , P ∗G3 = 15.73 MW .
– Total Losses = 2.57 MW → 1.22%.
– System costs = 983.5 $/h.
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Fig. 1 Three busbar system

– f12 = 60.37 MW , f13 = 135.37 MW , f23 = 50 MW .
– λ1 = 1 $/MWh, λ2 = −47.591 $/MWh, λ3 = 50 $/MWh.

The Lagrange multipliers λi relate to the busbar-balance constraints and
give the nodal prices at optimality, one of which λ2 is negative. The software
can be shown to terminate at a locally optimal solution, but since λ2 < 0, we
have no guarantee that this is a globally optimal solution, although this can
be verified in this example by exhaustively checking the Karush-Kuhn-Tucker
conditions. Recall that optimization problems of the form E(u) are not convex
programming problems. In the next section it is shown that further analysis
is needed to define global optimality.

4 Piecewise Linear Approximation of Losses

As shown in Proposition 2, if a locally optimal solution to the economic dis-
patch problem has non-negative Lagrange multipliers at optimality, then this
solution is also a (global) solution to the (convex) inequality constrained prob-
lem, and so it is a global solution to the dispatch problem. The fact that the
solution is also a solution to G(u) means that we may approximate G(u) by
a linear program (say L(u)) and expect that the solution to L(u) is close to
the global optimum of G(u) and hence E(u). Many economic dispatch systems
(see e.g. Alvey et al. , 1998) use linear programming in this way.

The linear programming approximation of losses can fail when the optimal
solution to E(u) has a negative Lagrange multiplier as in our example (this
fact is well known in the optimal power flow modelling community, see e.g.
De la Torre and Galiana (2005). To illustrate this we solved the three-busbar
example using following step piece-wise linear loss functions:

PLij =
C∑
k=A

mk
ij

(
∆θkij

)
; θi − θj =

C∑
k=A

∆θkij . (5)
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Fig. 2 Ohmic losses representation

Considering three step piece-wise linear, that is, k = A,B,C, the loss model
in the three-busbar system can be writen as

PL12 = 100 (θ1 − θ2)2 ≈PAL12 + PBL12 + PCL12

PL13 = 100 (θ1 − θ3)2 ≈PAL13 + PBL13 + PCL13

PL23 = 66.6 (θ2 − θ3)2≈PAL23 + PBL23 + PCL23

Fig. 2 shows the ohmic losses representation by three linear functions.
Solving the resulting optimization problem for three loss function levels in

each transmission line we obtained the following loss values in MW:

PAL12 = 0.0000 PBL12 = 0.2709 PCL12 = 0.9863
PAL13 = 0.1306 PBL13 = 0.745 PCL13 = 0.9679
PAL23 = 0.0862 PBL23 = 0.3065 PCL23 = 0.0000

Fig. 3 shows the optimal result achieved for the ohmic losses in Line 1-2 (be-
tween nodes 1 and 2).

It can be observed that the optimization arrives at an infeasible solution
from the physical point of view. The software tries to maximize losses in Line
1-2 using the second and third level of the loss function PBL12, P

C
L12. The correct

physical losses are 0.3698 MW , while the ohmic losses based on the linear ap-
proximation are 1.2572 MW , i.e. 3.4 time bigger. In this way, more power can
be allocated by the cheaper generation at busbar one. So the piecewise linear
approximation has failed to represent the problem in the way we intended.

We might have expected some problems here since we are approximating
a nonconvex optimization problem with a convex one. Indeed the example
has a negative price so we do not have a guarantee that E(u) has the same
solution as G(u) its convexification. We proceed to show under fairly mild
conditions on the optimal solution that a negative price at any node indicates
that a linear programming model of the form above will give an incorrect flow
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Fig. 3 Ohmic losses in line 1-2 with piecewise linear loss functions. The shaded areas show
where P B

L12 >0 and P C
L12 >0.

representation if there are enough pieces in the piecewise linear representation
of the loss curves.

Our result is stated in the framework of the problem E(u), for a transmis-
sion network of directed lines ij, i < j, where

gi(f) =
∑
j<i

(fji −
rji
2
f2
ji) +

∑
j>i

(−fij −
rij
2
f2
ij),

and for each transmission line ij, −Fij < fij < Fij . We assume that rij > 0
for all lines ij implying that rij

2 f
2
ij is a strictly convex function. In the linear

program, we model lij = rij

2 f
2
ij as piecewise linear convex functions, where

fνij = −Fij + y1
ij + y2

ij + . . .+ yνij , i < j,
0 ≤ ykij ≤ bkij , k = 1, 2, . . . , ν, i < j,
lνij = rij

2 F
2
ij +m1

ijy
1
ij +m2

ijy
2
ij + . . .+mν

ijy
ν
ij , i < j,

where the strict convexity assumption gives increasing slopes, i.e.

mk
ij < mk+1

ij ,

and each slope is in the interval (−1, 1), since the marginal loss can never
exceed the marginal flow.

Our result requires the following definition.

Definition 1 A dispatch is degenerate if there exists a node i, at which every
generator is either not dispatched or fully dispatched, and all lines ij have flow
at an upper bound or a lower bound. (The dispatch computed in the previous
3-node example is not degenerate.)

Proposition 3 Suppose the optimal dispatch is not degenerate. Any node i
with a negative price in the optimal dispatch has qk = 0, k ∈ ΩGi and at least
one incident line with flow between its bounds.
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Proof Consider node i with a negative price λi < 0 for some optimal dis-
patch. Since the dispatch is optimal, and generator costs are non-negative,
the Karush-Kuhn-Tucker conditions imply that every generator at node i is
dispatched zero. Since the dispatch is not degenerate, then there is some line
ij with −Fij < fij < Fij , or some line ji with −Fji < fji < Fji, i.e. i has at
least one incident line with flow between its bounds.

In our example, the line 1-2 connecting buses 1 and 2 has power flowing
into node 2 at a rate less than the line’s capacity, as predicted by the proposi-
tion. Proposition 3 implies that any node i with a negative price and positive
demand in a nondegenerate optimal solution has some positive flow entering
i from some other node j. On the other hand, a must-run generation plant
with fixed output (such as a nuclear plant) could amount to a fixed negative
demand at i, with positive flow leaving i.

The following proposition considers a sequence LP ν of linear programming
problems each of which approximates E(u) using piecewise linear approxima-
tions of the quadratic loss functions for each line as described above. Thus
in LP ν each line flow is modelled by a sum of ν nonnegative flow variables
ykij ≤ bkij with strictly increasing constant marginal losses. We denote an opti-
mal solution of LP ν by (qν , fν) and let λν be the corresponding nodal prices.
We say that the flow fν correctly represents the losses if for each line flow
fνij = −Fij + y1

ij + y2
ij + . . . + yνij and each k > 1 we have ykij > 0 implies

yk−1
ij = bk−1

ij .

Proposition 4 Suppose demand at each node is nonnegative, the optimal dis-
patch (q, f) for E(u) is nondegenerate with prices λ, and some node has a
negative price. Suppose there is some N such that for all ν > N , the optimal
flow fν that solves LP ν correctly represents the losses. Then (qν , fν , λν) does
not converge to (q, f, λ).

Proof Let i be the node with a negative price in the optimal solution. By
proposition 3 there is no generation at i, and at least one line ji with −Fji <
fji < Fji. (If necessary, we can rename the node indices to make j < i.)
Suppose (qν , fν , λν) → (q, f, λ). Then for sufficiently large ν we have λνi < 0
and

−Fji < fνji < Fji.

The flow
fνji = −Fji + y1

ji + y2
ji + . . .+ yνji

is the sum of variables ykji from ν loss sections, and by assumption ykji = bkji
for all sections up to the one corresponding to fνji, and ykji = 0 for the sections
beyond. (We can make ν large enough so the section k corresponding to fνji is
between 2 and ν − 1.)

Let ρk be the reduced cost of each of these variables at optimality of the
problem LP ν . Then it is easy to show that

ρk = (λνi + λνj )mk
ji + (λνj − λ

ν
i )
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where mk is the slope for loss section k. We have

(λνj − λ
ν
i ) > (λνj + λνi )

so if (λνj + λνi ) ≥ 0, then

ρk > (λνi + λνj )(1 +mk
ji) ≥ 0

for all k, and so fνji = −Fji, yielding a contradiction. Thus we have

λνj + λνi < 0.

Now mk
ji < mk+1

ji implies that

ρk = (λνi + λνj )mk
ji + (λνj − λ

ν
i )

> (λνi + λνj )mk+1
ji + (λνj − λ

ν
i )

= ρk+1

Since −Fji < fνji < Fji, the assumption that (qν , fν) solves LP ν gives ρ1 ≤ 0
and ρν ≥ 0, contradicting ρk > ρk+1.

5 Quadratic Optimization of Line Losses

The failure of linear programming in these circumstances points to the use
of optimization software that will compute optimal solutions with quadratic
functions. The quadratic terms from the losses can be placed in a Lagrangian,
where the Lagrange multipliers λi are chosen to be those that pertain at the
global optimal solution (We shall assume regularity conditions that ensure
these exist). The Lagrangian for the economic dispatch problem can then be
expressed as

L(PG, PU , θ) =
NG∑
i=1

CGi(PGi) +
ND∑
i=1

CUi(PUi)

+
NN∑
i=1

λi[
∑
j∈ΩC

i

PCj
−

∑
j∈ΩG

i

PGj
+ ...

∑
j∈ΩN

i

(
θi − θj
xij

+
rij (θi − θj)2

2x2
ij

)
−

∑
j∈ΩC

i

PUi] (6)

It can be observed that for positive multipliers λ, the Lagrangian is convex in
PG, PU , and θ. For linear/quadratic functions CGi(·) and CUi(·), L(PG, PU , θ)
is easily seen then to be a positive semi-definite quadratic form.
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If some Lagrange multiplier λi is negative, then L(PG, PU , θ) may not be
positive semi-definite. To investigate this we will compute its explicit form.
Let A be the adjacency matrix of the network

aij =
{

1 busbar i and j are adjacent
0 otherwise

L(PG, PU , θ) =
NN∑
i=1

λi

NN∑
j=1

aij

(
θi − θj
xij

+
rij (θi − θj)2

2x2
ij

)
..

=
NN∑
i=1

NN∑
j=1

λiaij

(
θi − θj
xij

+
rij (θi − θj)2

2x2
ij

)
..

=
NN∑
i=1

NN∑
j=1

λiaij
θi − θj
xij

+ (7)

+
NN∑
i=1

NN∑
j=1

λiaij
rij (θi − θj)2

2x2
ij

+ ..

The Hessian H of the Lagrangian is defined by

Hii =
NN∑
j=1

λiaij
rij
x2
ij

+
NN∑
j=1

λjaji
rji
x2
ji

(8)

Hij = −λiaij
rij
x2
ij

− λjaji
rji
x2
ji

Let σij = σji = aij
rij

x2
ij

. Then

Hii =
NN∑
j=1

(λi + λj)σij

Hij = −(λi + λj)σij (9)

Observe that ∑
j

Hij =
∑
i

Hij = 0

and so H is singular. Also observe that

∑
i 6=k

∑
j 6=k

Hij =
∑
i 6=k

NN∑
l=1

(λi + λl)σil+∑
i 6=k

∑
j 6=k

−(λi + λj)σij (10)

=
∑
i 6=k

(λi + λk)σik = Hkk
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In the three-busbar example

(σij) =

0 1 1
1 0 2

3
1 2

3 0


so

H = 100

 2λ1+λ2+λ3 −λ1−λ2 −λ1−λ3

−λ1−λ2 λ1+ 5
3λ2

+ 2
3λ3

− 2
3 (λ

2
+λ3)

−λ1−λ3 − 2
3 (λ

2
+λ3) λ1+ 2

3λ2
+ 5

3λ3


Recall that λ1 = 1, λ2 = −47.591, λ3 = 50, so λ1 + 5

3λ2 + 2
3λ3 < 0, which

means that H is indefinite for these choices of λ. This will cause problems for
quadratic programming solvers (e.g. some interior point methods) that require
at least positive semi-definite Hessian matrices. It is interesting to observe,
however, for this example that H restricted to the tangent plane of the active
line capacity constraint

100
(
θ2 − θ3

0.15

)
= 50

gives a reduced Hessian

Hr = 100
[

2λ1+λ2+λ3 −(2λ1+λ2+λ3)
−(2λ1+λ2+λ3) 2λ1+λ2+λ3

]
(11)

that is positive semi-definite as long as 2λ1 + λ2 + λ3 ≥ 0. Thus a reduced
gradient algorithm that identified this active constraint would not have to deal
with an indefinite Lagrangian. The solution computed in section 3 was found
using the reduced gradient nonlinear optimization package MINOS ( Murtagh
and Saunders, 1983).

6 Nonconvex Six-Busbar Example

In Section 4 it was demonstrated that a negative price leads to the failure of
linear programming approximations of the dispatch model, that to some extent
is overcome by nonlinear programming algorithms. Of course the problem E(u)
is not convex, and so we have no guarantee that the nonlinear programming
system will locate the global optimum. To illustrate this, consider two identical
power exchanges linked by a transmission line with ohmic losses in nodes with
negative marginal prices. For this analysis we used twice the previous three
busbar example interconnecting both systems at their respective busbar 2 (see
Fig. 4).

The optimal economic dispatch after they are connected is not symmetric.
In order to allocate more power from the cheap generation at generator G1,
energy is transferred from the upper to the lower system (15.85 MW ). This
is an increase of load at Busbar 2 that reduces the dispatch of the expensive
generator G3 to zero. In the lower system we observe the opposite behavior.
Nevertheless, the final result is cheaper than twice the costs of the operation
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Fig. 4 Two symmetrical systems/markets

of two disconnected networks (2 ∗ 983.5 = 1967.0 > 1965.99 $/h). When given
a starting point equal to the optimal dispatch in each separate system, and no
flow in the connecting line, MINOS terminates at this local optimal solution.
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7 Conclusions

In this paper we have discussed the behavior of economic dispatch models with
ohmic losses when they are used in transmission constrained economic dispatch
and nodal pricing models. We have shown that negative nodal prices at the
optimal dispatch solution could indicate convergence problems for a convex
optimization algorithm. Indeed, a negative nodal price at a non degenerate
solution of the transmission constrained economic dispatch problem could im-
ply losing convexity and then any linear or piecewise linear approximation will
fail to converge as the loss representation becomes more accurate. Moreover in
complicated transmission networks, a negative price could indicate that only
a local optimal solution has been found.
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