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Abstract— We present a model for the design of a
minimum-cost, survivable electricity distribution net-
work, which generalizes to telecommunications, logis-
tics and other network types. We formulate this prob-
lem as a two-stage stochastic mixed-integer program
in which first-stage decisions expand capacity, and
recourse decisions configure and operate the network so
as to be feasible under various scenarios corresponding
to individual link failures. Dantzig-Wolfe decomposi-
tion of this formulation leads to (a) a master problem
comprising binary capacity-expansion and high-level
operating decisions, and (b) mixed-integer, column-
generating subproblems, which represent deterministic
network-design models. A “super-network” represen-
tation of the distribution network significantly reduces
the number of binary variables, and provides tighter
linear-programming relaxations for the subproblems.
Column generation with super-network subproblems
solves real-world model instances an order of magni-
tude faster than CPLEX can solve the corresponding
extensive models.

Index Terms— Power distribution planning, power
distribution reliability, integer programming

I. INTRODUCTION

This paper presents a new class of optimization models
for designing minimum-cost survivable networks, moti-
vated by an application to electricity distribution net-
works. The generic model is a two-stage, stochastic, mixed-
integer program in which the first stage adds capacity in-
crements to existing network components while the second
stage configures and operates the network under various
component-failure scenarios. By “operate” we mean that
one or more commodities are routed through the network
subject to supply, demand, capacity and possibly other
constraints. For simplicity, we assume that the only com-
ponents that can fail or may need additional capacity
are network links. This model can handle the option of
adding completely new links by defining existing links with
no capacity, but we view the model primarily as one of
capacity expansion, as opposed to one of “from-scratch”
network design.

Network-design (capacity-expansion) problems like ours
are NP-Hard [10], but the extensive research in this field
gives evidence of their significance. Most research on sur-
vivable network design problems (SNDPs) has focused on
telecommunications networks; for example, see the review
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in [38]. However, SNDPs have also received some attention
in the area of electric power networks ([28], [31]) and
logistical networks ([40], [37]).

Two main factors influence the formulation of SNDP:
the design strategy and the restoration strategy. The design
strategy can be classified in two ways. A sequential-design
model assumes that the capacity required for routing
commodity flows in the “non-failure state” has already
been determined, and the only optimization required is
that of the spare capacity required for routing flows in
“failure states.” This is also known as “spare-capacity
optimization.” On the other hand, a simultaneous-design
model simultaneously optimizes capacity required for rout-
ing of flows both in the non-failure state and in failure
states. This is also known as “joint optimization.” Our
model essentially falls into the latter category, although
we will describe how it could be be modified to handle
certain sequential-design cases.

The restoration strategy determines how flows are
rerouted in the event of a component failure:

1) link (line) restoration reroutes a disrupted commod-
ity’s flow through an alternate sequence of links (a
path) between the end nodes of the failed link;

2) path restoration reroutes a disrupted commodity’s
flow through one or more alternative path(s) be-
tween that commodity’s origin and destination
points;

3) global restoration allows rerouting of all commodity
flows, disrupted or otherwise.

The SNDP literature does not deal much with global
restoration because (a) most of the literature covers
telecommunications models, (b) global restoration is nor-
mally an impractical paradigm for telecommuncations
because secondary disruptions can arise from the act of
rerouting undisrupted flows [27], and (c) even when appro-
priate, global restoration leads to multicommodity models
that become prohibitively large [26]. For these reasons,
the rare telecommunications models that do incorporate
global restoration are usually applied to small problems
instances as benchmarks for other restoration strategies
[46].

Telecommunications traffic is typically modeled using
a separate commodity for each origin and destination
pair. In contrast, a single commodity suffies to model
electric power flowing through a distribution network.
This simplification allows our SNDP model to incorporate
global restoration without becoming too large.



However, our electric-power problem poses its own com-
putational challenges because of the following unique mod-
eling requirement: the underlying mesh network must be
configured, in every failure scenario, by activating certain
links and deactivitating others, so that the operational
network forms a tree, i.e., power must flow through a
single path from the source to each destination. Analagous
telecommuncations models must reroute traffic under fail-
ure scenarios, but do not require this “reconfiguration.”

The literature on SNDPs for electricity distribution
networks is modest, and mostly describes heuristics: link-
exchange local search [25], [20], evolutionary algorithms
[28], and tabu search [29]. An exception is the work by
Kagan and Adams [17] who solve a mathematical program
with binary first-stage capacity-expansion decisions, and
(continuous) second-stage decisions that operate the net-
work and penalize unmet demand. However, that model
does not admit binary second-stage decisions to enforce
tree-configuration requirements.

In contrast to electric power networks, the literature
on SNDPs in telecommunications networks is extensive.
Heuristic approaches are common, e.g., [3], [5], [15], [22].
Of course, the quality of heuristically obtained solutions
cannot be guaranteed, and perhaps this has motivated
the recent research focusing on exact solution methods.
Iraschko et al. [16] create mixed-integer programs (MIPs)
for combinations of both design strategies, with path and
link restoration; Balakrishnan et al. [4] and Kennington
and Whitler [19] study sequential-design models with link
restoration. The latter two papers develop valid inequali-
ties to strengthen the linear-programming (LP) relaxation
of the model. Kennington and Lewis [18] explore a similar
solution approach with path restoration and present a
specialized branch-and-bound algorithm.

We use column generation to solve our SNDP. This
technique is widely exploited to solve SNDPs in the
telecommunications industry, typically using shortest-path
subproblems to generate columns for a path-based formu-
lation. The main class of models in this area defines a
master problem to determine link capacities and flows for
the paths generated [24], [26], [27]. (See also [39], [6], [43].)

The use of column generation for solving stochastic
integer (or mixed-integer) programs is relatively new: Lulli
and Sen [21] use branch and price (column generation plus
branch and bound) for stochastic batch-sizing problems;
Shiina and Birge [34] use column generation to solve
a unit-commitment problem under demand uncertainty;
Damodaran and Wilhelm [7] model high-technology prod-
uct upgrades under uncertain demand and use branch and
price as a solution technique; and Silva and Wood [35]
present a branch-and-price approach for a class of two-
stage stochastic mixed-integer programs.

The master problem and subproblems we present differ
substantially from those used in the above papers. In
particular, our pure integer master problem involves ca-
pacity expansion and high-level operating decisions, while
the subproblems determine the set of capacity expansions
required to ensure feasible system operation under each

failure scenario.

The rest of the paper is laid out as follows. Section
2 describes some important modeling issues in SNDPs
for electricity distribution networks, and section 3 gives
a mathematical formulation for our specific application.
Difficulty in solving this model motivates Dantzig-Wolfe
decomposition and the column-generation solution pro-
cedure described in section 4. The decomposition sub-
problems in our SNDP are difficult mixed-integer pro-
grams, however, so section 5 shows how to ameliorate this
difficulty with a stronger “super-network formulation.”
Section 6 presents computational results and section 7
presents conclusions.

II. ELECTRIC POWER DISTRIBUTION NETWORKS

In essence, distribution networks for electric power con-
sist of (a) one or more power sources, i.e., drop-off points
where the high-voltage electricity is stepped down through
transformers to a lower voltage for distribution, (b) de-
mand points, (¢) junctions, (d) switches, and (e) intercon-
necting power lines. An urban distribution network may
contain hundreds or even thousands of such components.
Such a network is “survivable” if it can recover from a “line
fault,” i.e., the failure of a cable or associated equipment.

Distribution networks operate in several alternative con-
figurations including mesh, interconnected, link arrange-
ment, open loop, and radial [12]. We consider networks,
with underlying mesh structure, that operate in a radial
configuration. This configuration is obtained by opening
and closing switches at different points of the mesh net-
work, so that the connected network forms a tree with the
power source as its root node. (Multiple drop-off points are
treated as a single power source.) Thus, power must flow
from the power source to each demand point following a
unique path of lines, without exceeding line capacities or
violating voltage-drop standards.

In the event of a fault in an operating, radially con-
figured network, the distribution company will typically
reroute flow to restore supply to customers as rapidly as
possible. (It may be impossible to identify and repair a
fault quickly, so rerouting is often the immediate response;
repair occurs later.) This rerouting is effected by opening
electrical switches that isolate the faulted section, and
by then closing switches to establish alternative paths
for power to flow from the source to affected customers.
This rerouting amounts to switching the operating con-
figuration from one tree topology to another. To enable
this switching, the company builds redundancy into the
network in the form of excess line capacities. This re-
dundancy includes lines that are not used under normal
circumstances, but are on hand to be used for “recourse,”
i.e., for recovering a working, radial configuration. The full
set of lines forms the “underlying mesh structure.”

We say that a (mesh) distribution network is N — 1
survivable if it has enough capacity to reroute supply to
all customers in the case of a fault on any single line. We
wish to design such a network. It is clear that any network
with nodes of degree 1 will not be N — 1 survivable, so we



henceforth restrict attention to networks in which all nodes
have degree 2 or greater.

Industrial customers are willing to pay to ensure that
the distribution network they are connected to is N — 1
survivable, so we must ensure that it is and remains so in
the face of demand that is increasing over time. The ques-
tion we seek to answer is: given peak-demand forecasts for
about one year in the future, where should we add capacity
now to ensure that the distribution network remains N —1
survivable for the current year? (We investigate multi-
stage capacity-planning models, with uncertain demands,
in a separate paper [36].)

Installing capacity in the network requires substantial
capital investments, and gains from optimizing invest-
ments can be significant. We can increase the capacity
of the network by: (a) installing cables along new routes,
and (b) replacing an old cable on an existing route by
a higher-capacity cable (“reinforcement”). Installation of
new cables, and even some reinforcements, can also require
the installation of ancillary equipment such as transform-
ers and switches. We simply incorporate the cost of such
equipment into the relevant cable’s cost. Installation of
small-scale power generators at or near demand points
represents an alternative form of capacity expansion which
may become important in the future. We can model such
a generator as a line that potentially connects the power
source to the generator’s connection point in the network,
with a cost equaling that of installing the new generator.

As an alternative to investment, service providers can
sometimes engage in remunerative contracts with cus-
tomers that allow the provider to shed customer load in
the event of a line failure. These types of contracts can
translate into useful flexibility for the provider, and our
model can be used to adjudicate the value of such contracts
by penalizing load-shedding appropriately.

The problem of designing a minimum-cost, N — 1 sur-
vivable electricity distribution network can be modeled
as a two-stage stochastic MIP, which we denote SNDR
(survivable network design, radial configuration). In order
to minimize total expected costs, SNDR chooses capac-
ity expansions in the first stage, while the second stage
simulates the failure scenarios and optimal system op-
erations under those scenarios. In its simplest form, no
probability distributions are required—we must meet all
customer demand in all failure scenarios—but the general
version of SNDR. can account for failure probabilities and
different unmet-demand penalties that may accrue under
each scenario.

Because of discrete capacity expansions and the dis-
creteness of radial-configuration requirements, SNDR
must incorporate integer variables in both the first and
second stages, along with continuous variables in the
second stage. Stochastic MIPs like this are notoriously
difficult to solve [33], and our column-generation approach
represents a significant advance on the state of the art for
solving such problems. We will present results that show
our methods can solve real-world problem instances that
general-purpose commercial solvers simply cannot solve.

The SNDR model can incorporate multiple “technolo-
gies” for capacity expansion of a single line. From a
modeling perspective, these just represent different line
capacities that might be installed between two network
nodes, each with a different cost. In reality, these can
represent, different cable sizes, the option to replace an
overhead line with an underground line, installation of a
new cable plus a transformer, etc. We also assume that
each link between two nodes will be expanded at most once
in our planning horizon using a single technology (any mix
of technologies can be modeled by an appropriate labeling
of a binary variable).

For simplicity, SNDR ignores one practical considera-
tion that is important for some electricity distribution
networks, viz., voltage drops. We are currently concerned
with urban networks that consist primarily of underground
cables for which voltage drops are, in fact, negligible;
SNDR will require refinement, when this is not the case.
We refer the reader to [20], [25], and [28] for (heuristic)
approaches to solving models that incorporate voltage
drops.

III. FORMULATION OF SNDR

In an operating, radial configuration of a distribution
network, power must flow from a source along unique
paths, to demand points, through power lines, without
exceeding those lines’ capacities. Typically, each line has
two switches, one at each end, which can be closed or
opened to allow or disallow power flow, respectively. We
refer to a power line with both switches closed as active,
and one with both switches open as inactive. A distribu-
tion network is operated in a radial (tree) configuration
by opening and closing switches; only active power lines
form the operating configuration.

We model the underlying mesh structure of the network
as a connected, undirected graph G' = (N, &) consisting of
a set of nodes i € N and a set of edges e € £ such that
e = (i,7), where i,5 € N and i # j. A node represents
a demand point and/or a junction; an edge represents a
power line that connects adjacent nodes.

Power may flow in either direction along a power line,
and to model this we create a directed version of G,
denoted G' = (N,K). The set of nodes in G' is the
same as in G, but K replaces each edge e = (i,7) with
two anti-parallel, directed arcs (i,7) and (j,4). For edge
e = (i,), we define K. = {(4,5), (j,9)}, so we may also
write K = Ueee{K.}. A single node ig € A models the
power source.

Actually, if we were to allow negative flows, the directed-
network model would be unnecessary. However, this model
enables constructs in the tree-forming submodel that
yield tighter linear-programming relaxations than do its
undirected counterparts [23]. This will be important in
ensuring computational tractability.

We are concerned with a set of non-simultaneous fault
scenarios s € S. Each scenario corresponds to the failure
of a single edge e(s). For a network to be classified as
survivable, we must be able to identify a capacity-feasible



Sets and Indices

i€ N nodes in the distribution network.

ecf edges in the network

k € K  anti-parallel arcs corresponding to £

k € K. pair of anti-parallel arcs representing edge e

le L, technologies available for capacity
expansion of edge e

seS single-edge fault scenarios

10 power source node
Fig. 1. Model of small distribution network. Data .. ..
A 1if k= (4,4), —1if k= (¢,7), else O
Ca cost of expanding capacity on edge e using
technology [
D; demand (“load”) at node 4
L; limit on load-shedding at node i
radial configuration for G(s) = (N, E\{e(s)}) for each s e(s) edge that fails in scenario s
€ 8. Note that simulating a fault on an edge is equivalent Ds probability that scenario s occurs
to forcing it to be inactive. qi penalty for shedding a unit of load at node i
Ueo initial capacity of edge e
Observe that our construction of a least-cost survivable Ue additional capacity of edge e if installing
network does not specify a default operating configuration technology [
for the network, i.e., a configuration that would apply U. maximum possible capacity for edge e
given no failures. Indeed, each of the |S| feasible radial
networks we construct (one for each failure scenario) could Variables
serve as a default configuration. In essence, we solve a z!, 1 if technology [ is chosen for expanding
relaxation of the model that would require a default edge e, and 0 otherwise
operating configuration, so our solution cannot cost more Tels 1 if technology [ is “requested” for expand-
than one that does make that requirement. ing edge e in scenario s, and 0 otherwise
Zks 1 if arc k is active in scenario s, and 0
Figure 1 shows a model of a small distribution network. otherwise

The solid and dashed lines represent active and inactive Fis power flow on arc k in scenario s
edges, respectively. The active edges form the operating Vi amount of load shed at node i under
radial configuration in which, for example, the power flow scenario s

from node 1 to node 3 corresponds to flow on arc k = (1, 3)
and edge e;. A fault on e; disconnects supply to node
3, and the radial configuration can be restored and flow
rerouted to this node by activating eg. (This fault would
be isolated by opening switches, not shown, located near
the endpoints of e;.)

Formulation (SNDR-0)

. !

We can formulate the survivable network design f,vI,I)lcl’I,lx,z Z Z Caze + Zp s Z 4iVis (1)
problem as a two-stage stochastic program with a ceeleL , s€s ieN
scenario representation of uncertainty. The first stage st Tes STy V€L, LEL, €S, (2)
determines capacity expansions. For each failure scenario Z z,, <1Ve€ef, (3)
s, the second-stage decisions reconfigure the underlying leL.
mesh network G(s) into an alternative radial (tree) Frs < Uso + Z Uszers Ve €&, keK,,
topology with capacity-feasible flow. The second stage B lec.
admits the possibility of not meeting all demand, i.e., s€S (4)
shedding some customer load, if an appropriate penalty is ’
paid. The problem of full N — 1 survivability is a special Z Airfrs = Di —vis Vi€ N, s€S, (5)
case of this model in which the penalty for shedding kex
load is infinite. We can now present a mathematical vis <L; VieN, s€S, (6)
formulation of SNDR, which we denote SNDR-0. (Note Z s =1 Vie M\{igh, s€S, (7)
that the “split variables” x.;s; in this formulation can be heK A1
eliminated and the model simplified. We postpone for now
a discussion of why these variables are included in the kz;cz’“ =IN|-1VseS, (8)

€

model, and why we refer to them as “capacity requests.”)
frs SUezps Ve€ &, ke, s€S, (9)



zrs =0 Vs €S, kE/Ce(s),
frs >0 VEkeK, se8,

(10)
(11)

vis >0 VieN, seS8, (12)
zrs € {0,1} VEe K, s€S,. (13)
Teis € {0,1} Ve€e &, 1€ L,s €S, (14)
xl, € {0,1} Vee&, l€ L. (15)

This is an extensive formulation (“deterministic equiv-
alent”) for the two-stage stochastic MIP with first-stage
variables x1;, and second-stage variables x5, 2ks, Vis, and
frs- The objective function (1) minimizes the total cost
of first-stage capacity expansions plus expected second-
stage penalties. For each fault scenario s, the second-stage
constraints (4) indicate the amount of additional capacity
required to accommodate flow through an edge in scenario
s, while the first-stage constraints (2) determine whether
new capacity will be made available on edges to satisfy
what may be viewed as capacity-expansion requests. Note
that U,y = 0 for new routes that are under consideration
by network planners.

It is typically uneconomical to increase the capacity of
an edge more than once during the model’s time horizon
of one year, so we impose this condition through explicit
constraints (3). Constraints (5) represent the modified
Kirchhoff current-balance (flow-balance) constraints which
admit load-shedding v;s at node ¢ in scenario s. Con-
straints (6) put an upper limit at node i on the amount
of load-shedding, L;. The value of L; indicates whether
the customer at 4 is willing to shed full load (L; = D;), or
part of the load (L; < D;). A large customer may also have
a backup generator on-site, and can inject power into the
network. In this case, L; could be as large as total demand
plus total generating capacity at node i. Constraints (7)
and (8) enforce the radial operating configuration. Con-
straints (9) ensure that flow is permitted on an arc k
if and only if the arc is part of the radial configuration
in scenario s. Note that the maximum flow possible on
an edge will not exceed the edge’s maximum acquirable
capacity; thus, with respect to constraints (3), it suffices
to set the upper bound U, = U+ max ez, {Ue }. Finally,
for each scenario s, constraints (10) simulate a fault on
edge e(s) by disallowing flow on arcs k € K,(y)-

We note that a more conventional formulation for
SNDR-0 would replace constraints (2) and (4) with: fis <
Ueo + Y ep, Uazly Ve € £,k € Ke, s € S, and would
eliminate variables z.;s. However, our formulation leads
to a stronger decomposition, as we shall see in section 5.

Unfortunately, for real-world problems (e.g., 152 nodes,
182 edges, 5 fault scenarios), the SNDR-0 formulation re-
sults in a large MIP, with a poor LP relaxation, and which
is intractable for at least one advanced solver, CPLEX
version 9.0. The solution difficulties arise, no doubt, from
the variable upper-bound constraints (4) and (9), as well
as the tree-configuration constraints (7) and (8).

Some simple adjustments to SNDR-0 can tighten its
LP relaxation modestly, but experience shows that these
changes do not suffice to yield a solvable model. We re-

quire the more substantial improvements that accrue from
a completely different formulation of SNDR, a column-
oriented one. This is the topic of the next section.

IV. A GENERAL SND MODEL AND DANTZIG-WOLFE
DECOMPOSITION

In this section we generalize SNDR-0 as a prelude to
deriving a Dantzig-Wolfe decomposition of this model. The
general model, SND, follows:

Data

c cost vector for expanding edge capacities

qs cost vector for operating the system under
scenario s

ug vector of initial edge capacities

Vs matrix that converts operating decisions

and/or activities into edge-capacity
utilization under fault scenario s

U non-negative technology matrix that converts
capacity-expansion decisions into available
operating capacity

Variables

x’' vector of binary decisions for capacity
expansion of edges

X vector of binary decisions indicating requests

for capacity expansions that would ensure
feasible system operation under fault

scenario s
Ys vector of continuous and/or discrete
operating decisions under fault scenario s
Vs set, of feasible operating decisions under

fault scenario s

Formulation (SND)

min ¢'x' + Zpsqzys (16)
oy s€S

st. x,<x' Vs, (17)

Veys <up+Uxs Vs €S, (18)

ys €Ys Vse S, (19)

xs € {0,1} Vs € S, (20)

x' € {0,1}. (21)

SND is a two-stage stochastic MIP with first-stage
variables x' and second-stage variables xs and y;. The ob-
jective function (16) minimizes the total cost for expanding
capacity plus expected second-stage costs. The second-
stage costs arise from operating the system optimally given
first-stage capacity-expansion decisions. In the context of
SNDR, operating decisions ys correspond to switching
decisions, arc flows, and load-shedding levels. The cost
vector qg can include penalties for load-shedding, and
other operational costs incurred under fault scenario s
such as reconfiguration (switching) costs.

The operational constraints (19) in SND represent
generic relationships between the operational variables
¥s, independent of capacity expansions x'. Note that



constraints (19) must include the restriction that forces
the failing component under scenario s out of service.
Constraints (18) ensure that adequate capacity-expansion
requests X, are made to satisfy the operational capacity
requirements V;ys under fault scenario s. Although the
variables x; determine whether or not a capacity expan-
sion is required in scenario s, it is the variables x’ that
determine whether the capacity expansions will actually
occur. Thus, one may view variables x; as capacity re-
quests and variables x' as capacity grants. Constraints
(17) represent these relationships. (Notice that constraints
(17), (18) and (19) in SND, correspond to constraints (2),
(4), and (5-14) in SNDR-0.)

Observe that the inequality constraints (17) amount to
nonanticipativity constraints over the first-stage variables
[30]. Typically, nonanticipativity constraints equate first-
stage variables which have have been replicated by sce-
nario. Inequalities, rather than equalities, suffice in our
case, however, because we assume that edge capacities
cannot decrease.

Many SNDPs with sequential design, or with simulta-
neous design and global restoration, will fit SND’s form.
SNDR-0 ignores the non-failure state, so it may be viewed
as sequential or simultaneous design problem with global
restoration. If the need arises for a strictly sequential
model with non-global restoration, we can simply modify
ug in constraints (18) to ugs in order to represent initial
capacity less the capacity consumed by baseline, non-
failure flows that are not disrupted in failure scenario s.
The definition of YV, would also need to account for that
part of the demand that is met by those undisrupted flows.
Thus, the sequential-design models in telecommunications,
with link or path restoration, should fit the SND paradigm
(e.g., [4], [19], [18]). Unfortunately, simultaneous design
and non-global restoration may link subproblems with
continuous first-stage variables, and this would invalidate
the Dantzig-Wolfe decomposition we intend to employ.

We have seen that SND is general enough to accommo-
date many variants of survivable network design. However,
it may be impossible to solve realistically sized instances of
the model directly. To overcome this difficulty, we identify
and exploit the special structure of SND using Dantzig-
Wolfe decomposition.

Constraints (18-20) are specific to fault scenario s.
On the other hand, constraints (17) link the capacity-
expansion decisions across all fault scenarios. These con-
straints complicate the structure of SND: without them
the problem would separate into a set of small subprob-
lems, one for each fault scenario s. This motivates the use
of a decomposition that partitions SND’s constraints into
two sets: linking (“complicating”) constraints (17), and
constraints specific to scenario s. For the latter constraints,
we define

Xs = {Xs | Vsys S g +UX.97 Xs € {071}1 ys € ys}

Letting J; denote the index set for Xy, ie., Xy =
{ﬁg |7 € Js}, we can then express any element of X

through
x, = Y ®wl, Y wl=1 wl€{01}Vje . (22)
jeds Jj€Jds

Each element of X, represents a set of capacity ex-
pansions (requests) that enable feasible rerouting of flows
subject to network operational constraints under fault
scenario s. We refer to each such set of capacity expansions
as a feasible expansion plan (FEP).

Without loss of generality, we assume that at least
one optimal operational plan yJ is associated with
each FEP, ie., Js; simultaneously indexes FEPs and
operational plans for scenario s. (For simplicity, we
assume that MP is always feasible, i.e., Js # 0 for all
s.) Thus, attaching the operational costs q/¥yJ to the
w), and substituting expression (22) into SND yields
its Dantzig-Wolfe reformulation. (See [8] as the seminal
reference on Dantzig-Wolfe decomposition for models
with continuous variables, and see [1] for the extension to
integer variables.) We denote this reformulated problem
as the multi-scenario, column-oriented master problem,
“MP.” A detailed formulation follows. (“Dual variables” in
the formulation correspond to the model’s LP relaxation.)

Sets and Indices
j € Js FEPs for fault scenario s

Data
XJ  binary vector representing capacity-expansion
requests forming FEP j for fault scenario s

Variables

x'  binary decision vector for capacity expansion
of edges

wl  1if FEP j is selected for fault scenario s, 0
otherwise

Formulation (MP)

r}zlin c'x'+ Z Z psd. y2w!  [dual variables]
v SES jET,
(23)
st. Y ®wl <x' VseS, [74] (24)
j€ds
Y wi=1 Vses, [10] (25)
i€

wl €{0,1} Vs€S, je T, (26)
x' € {0,1}. (27)

MP’s objective function (23) minimizes capacity-
expansion costs plus expected operational costs. The con-
vexity constraints (25) select exactly one FEP from the
set of possible FEPs for each scenario s. Constraints (24)
ensure that an FEP is not chosen for any scenario unless
sufficient capacity has been installed.

We can now see why incorporating the split variables x4
and associated constraints in SND, and in SNDR, leads
to a strong Dantzig-Wolfe decomposition. Without these



constructs, constraints (17) and (18) would be substituted
by Vsys < ug+Ux'. The subsequent decomposition would
replace constraints (24) in MP with

Z Viyiwl <ug+Ux' VseS.

JETs
Now, suppose that selecting FEP j € Js in this formu-
lation, i.e., setting w) = 1, requires the installation of
some line e on a completely new route, but that only
a small fraction a, 0 < a < 1, of that lines’s capacity
is needed. Assuming each line has only a single option
for capacity expansion, this yields z, = a. But in MP,
setting w’ = 1 forces , = 1, which is obviously a much
stronger result. The key to the improvement is that the
split-variable constructs allow us to change the division
between the master problem and subproblems.

It is impractical to solve MP by enumerating all pos-
sible columns (FEPs), so we employ dynamic column
generation: we generate columns “on the fly” through
optimization subproblems. To do this, we first create a
restricted master problem (RMP) that contains only a
modest-sized subset of all the possible columns; 7, now
represents a working subset of columns for scenario s.

The column-generation technique solves the LP relax-
ation of the RMP (RMP-LP) and extracts the corre-
sponding optimal dual variables 74 and fi;. The column-
generation subproblem then uses those values in an at-
tempt to construct one or more “favorable” columns with a
negative reduced cost for the RMP; separate subproblems
can be constructed for each scenario. If a favorable column
is found, it is inserted into the RMP, which is then re-
solved. The cycle of solving subproblems and RMP-LP
repeats until no favorable column can be identified. At
that point, we know that we have solved the LP relaxation
of MP, and if that solution happens to be integer, we have
solved MP. If not, we may either resort to a branch-and-
price algorithm, which generates columns within a branch-
and-bound procedure [32], or settle for solving the RMP
as an IP in the hope of obtaining a good integer solution.
(We refer the reader to [2] for a comprehensive discussion
of column generation, and to [13] for a compendium of
column-generation applications.)

A column j for scenario s in MP has the form
[psag ¥2, X2, 1], where q] ¥ is the cost of the associated
operational plan ¥/, and X/ is the corresponding FEP.
Given the optimal duals, 7, and i, from RMP-LP, we
can identify a column j having the most favorable reduced
cost by solving the subproblem

SP(s) min  paly, — @ % — s (28)
s.t. Vsys <ug + Uxg, (29)

vs € Vs, (30)

x5 € {0,1}. (31)

Any solution (X,,¥s) of SP(s) with a negative objective
value lets us create a new column for RMP, i.e., add a new
element to J;. If no such solution exists for any s, then we
have solved the LP relaxation of the MP to optimality.

Each subproblem SP(s) is a deterministic network-
design problem for a network lacking the failed component,
with operational constraints that depend on the appli-
cation. (Of course, these subproblems can accommodate
simultaneous failures of components, which we do not
need in our application.) Thus, a subproblem may be
strengthened and solved using methods that have been
successful for the specific application (e.g., [11]).

We have successfully solved small problem instances
of SNDR-0 using the column-generation technique out-
lined. In almost every instance we obtain integer solutions
from the optimized RMP-LP, so we have not needed to
implement a branch-and-price solution algorithm. But, a
computational stumbling block does arise. For large, real-
world problems, the subproblems SP(s) solve quickly in
early iterations of the solution algorithm, but much too
slowly in later iterations. Other researchers observe this
effect as dual variables converge to their optimal values
[41]. To solve real-world problems, we must improve the
solution times for SP(s), and to do this we will exploit
some of the special features of SNDR. This is the topic of
the next section. Some of the improvements require that
load-shedding not be permitted, so we henceforth assume
that all variables v;, are fixed to zero.

V. A SUPER-NETWORK FORMULATION

This section describes a reformulation of the subprob-
lems in the Dantzig-Wolfe decomposition of SNDR to im-
prove solvability. The constructs used will also strengthen
the extensive formulation, SNDR-0, so we describe them in
this context. The next section then gives numerical results
to demonstrate empirical improvements.

It is logical in SNDR-0 to have variables that correspond
to edges, but we will see here that a more compact repre-
sentation of the network and associated decision variables
leads to a tighter formulation. In particular, we exploit
the sparse nature of the distribution network’s underlying
mesh structure, the requirement that the network operate
as a tree, and the assumption of no load-shedding.

A. The Super-Network

Many nodes in a distribution network will have degree 2;
we call these sub-nodes, and refer to all nodes with degree
3 or greater as super-nodes. (All nodes with degree 1 have
been recursively collapsed into a sub-node or super-node.)
Let M C N denote the set of all super-nodes. We say that
two super-nodes 7 and j are adjacent if they are joined by a
chain in which all nodes except ¢ and j are sub-nodes. We
denote this set of sub-nodes by N;; and let &;; denote the
edges in the chain joining 4 and j. In the super-network,
any chain joining two super-nodes ¢ and j is represented
by two anti-parallel super-arcs k = (i,j) and k' = (j,17).
We say that the nodes in NV;; and edges in &;; are spanned
by the super-arc & (or &').

To illustrate, consider Figure 2(a) which extracts a
small portion of the network in Figure 1 (in which
M ={1,3,5,6,10}). That portion of the network contains



super-nodes 6 and 10 for which & 10 = {es,es,€5,€6}
and Ng 10 = {7,8,9}. Figure 2(b) shows the super-arcs
k = (6,10) and k' = (10,6) that span Ng 10 and g 10.

k'=(10,6)

k=(6,10)

Fig. 2. (a) Super-node pair 6 and 10 associated with edges 6,10 =
{e3, €4, e5,e6} and sub-nodes N 10 = {8,9,10}. The dashed edge es
represents a break-edge. (b) The directed super-arcs k and k' span
edges &,10 and sub-nodes Ng, 10 in the super-network.

In SNDR-0, for a given scenario s, each edge e is
represented by two flow variables, frs, k € K., two
“tree variables” zps, k € K., and one capacity-expansion
variable z.; for each I € L. Thus, if |[£.| = 1 for all e €
&s,10 in Figure 2(a), 20 variables in SNDR-0 would result.
In the super-network model below, SNDR-SN, will have
one flow variable and one tree variable for each super-
arc, one capacity-expansion variable for each spanned edge
and one “break-edge variable,” described below, for each
spanned edge. Thus, the portion of the super-network
shown in Figure 2(b) requires only 12 variables.

To develop this model further, we restrict attention
to the nontrivial case in which |&;;| > 1. Given a pair
of adjacent super-nodes ¢ and j, and a feasible radial
configuration, we know that either:

1) all edges e € &;; are active, or
2) exactly one edge €' € &;; is inactive.

In case 1), power must flow through all the edges in
either one of two directions, and we can model this as
flow on two super-arcs. These flows represent flows on the
corresponding edges e € &;; of the super-network. By an
abuse of terminology, we refer to a super-arc with nonzero
flow as active, and its anti-parallel partner as inactive.

In case 2), the inactive edge ¢ “breaks the super-arc”
in the sense that no flow through either super-arc (i, )
or (j,1) can occur. Now, both super-arcs are said to be
inactive. We refer to the inactive edge as a break-edge. The
dashed edge e5 in Figure 2(a) represents one such edge.

In addition to reducing the number of variables
compared to SNDR-0, we will see that the super-network
representation eliminates the need for flow-balance
constraints at the sub-nodes, resulting in a much
smaller model. Furthermore, opportunities for tightening
the super-network model are easier to identify and
implement. We now present SNDR-SN, the super-network
formulation for SNDR.

Sets and Indices

i €N nodes
m € M CN super-nodes (nodes with degree > 3)
ke A super-arcs (spanning super-nodes)
i € N, CN  sub-nodes spanned by super-arc k
k€ RSm all super-arcs entering super- node m
(reverse star)
ke FSn all super-arcs leaving super-node m
(forward star)
e € & edges spanned by super-arc k
(Ureaéy =€)
ke A'  super-arc k, with (k + 1)% super-arc
in anti-parallel
le technologies for edges requiring
expansion due to flows induced by
adjacent break-edges
e € &  set of edges that require expansion due to flow
induced by an adjacent break-edge, and such
that technology [ suffices for this expansion
e’ € €3 set of edges which, when broken, induce
flow on an edge e that requires it to
expand capacity if using technology /
i0 source node (always a super-node)
m(k) tail super-node of super-arc k

<3|

o~ —~

e, k)

head super-node of super-arc k
end node of edge e closest to m(k),
(e.g., for k= (6,10) and e =4 in
Figure 2, i(e, k) = 7)

Data

C.  cost of expanding capacity on edge e using
technology /

D; demand at node 1

D,lC total demand for all sub-nodes between super-
nodes m(k) and m(k),
(e.g., for k = (6,10) in Figures 2 and 3,
Di = YieNg 10, D)

D?,  total demand for sub-nodes of arc k from
m(k), and up to and including sub-node i(e, k),
(e.g., for k = (6,10) and e = 5 in Figures 2
and 3, i(e,k) = 8 = D?, = D7 + Dg)

Variables

x!,  1if technology ! is chosen for expanding edge
e, and 0 otherwise

Ters 1 if technology [ is requested for expanding
edge e in scenario s, and 0 otherwise

bes 1 if edge e is inactive in scenario s, and 0
otherwise (break-edge variable)

zrs 1 if super-arc k is active in scenario s, and 0
otherwise

frs  flow on super-arc k in scenario s

U, initial capacity of edge e

U,  additional capacity on edge e if installing

technology I



D, D,

Fig. 3. Section of a network to illustrate some of the notation used
in the super-network formulation

Formulation (SNDR-SN)

omin ; lg;ﬁ Cerxl, (32)
s.t Capacity-expansion constraints
Tes < xhy, Ve€ &, 1€ L., s€S, (33)
At most one expansion for each edge:
Zm;lgl Veecl, (34)

leL.

Super-arc flow capacity-expansion constraints:

frs = D2zks < Ueozps + 3 Uaers VEE€ A, e € &

lec.

s€eS,

Flow-balance constraints:
Z (fks - Dizks) - Z fks - Z Z ngbes

kERSm kEFSm kEFSm ecE}
=D, VseS, me M\{io},

Exactly one edge spanned by a super-arc is broken

(35)

(36)

or all edges are active:

Zhs + 2hs1s T D bes =1 VheE A, s€S, (37)
e€&]
Flow in tree (feasible configuration):
frs < Upzps VEE A, s€S, (38)
where Uy, = min {Dﬁk + Ueo + max Uel} .
ec&} leLl.
Tree constraint 1:
> s =[M|—-1Vs€S, (39)
ke A
Tree constraint 2:
> oz =1VYme M\{ig}, s€S, (40)
EERS
Fault-simulation constraints:
be(s)szl Vs €S, (41)

Domain restrictions on variables:
frs >0 Vke A seS, (
bes € {0,1} Vee &, s€ S, (43
ze € {0,1} Ve€ &, l € L, (
zks €4{0,1} Vke A, s € S.
The objective function (32) minimizes the total cost of

capacity expansion. Similar to SNDR-0, constraints (33)
determine whether new capacity will be made available on

an edge, and constraints (34) allow at most one capacity
expansion on any edge.

This formulation does not explicitly model flows on the
edges (or arcs). Instead, we derive them from super-arc
flows frs. To be more precise, the flow on the first edge
that a super-arc spans equals the super-arc flow frs. For
super-arcs that span more than one edge, the flow on each
edge is calculated by subtracting the upstream demand
D?, from the super-arc flow fi; this is shown on the left-
hand-side of the super-arc capacity-expansion constraints
(35). This forces expansion on an edge if the edge flow
exceeds its initial capacity Ugg.

For each fault scenario s, constraint (41) simulates a
fault on edge e(s) by forcing it to be inactive (i.e., by
making it a break-edge). Constraints (37) and (38) ensure
that when a break-edge e breaks a super-arc k (bes = 1),
the corresponding super-arc flow is zero. Furthermore,
constraints (37) ensure that at most one active super-arc
exists between any pair of super-nodes, and that no break-
edge is defined if the super-arc is active.

SNDR-SN enforces flow-balance constraints (36) only at
super-nodes. These constraints have an extra “flow-out”
term ) o ro Zeesg D?b.s, which constitutes the flow
needed to satisfy demand of sub-nodes up to the break-
edge on each inactive (“broken”) super-arc k € FS,,.

Constraints (39) and (40) ensure that the super-network
satisfies the radial-configuration requirement by forcing
the set of active super-arcs (zxs = 1) to form a “super-
tree.” As with flow-balance constraints, constraints (40)
are only defined for super-nodes in SNDR-SN, which
means that fewer of these configuration constraints appear
in SNDR-SN compared to SNDR-0.

B. Strengthening the Super-Network Formulation

Since the super-network formulation aggregates electric-
ity demand into super-nodes, it cannot, in general, be
applied to problems with load-shedding penalties that vary
by node. However, under the realistic setting of no load-
shedding, we can strengthen the super-network formula-
tion by adding extra constraints that take advantage of
lower bounds on the power flows in the arcs.

First observe that if |S;| > 1 and a break-edge e
breaks a super-arc k, then fr, =0, but (implicit) flow on
edges € € £{\{e} is likely to occur. Thus, we can apply
a preprocessing step that adds a “break-edge expansion
constraint” when a break in edge e € &} results in flow on
an edge € € & that exceeds that edge’s initial capacity
Uszo. These constraints force an expansion on edge € when
there is a break on edge e. In some instances when |£}] >
2, breaks in several different edges e € £} may result in the
creation of several break-edge expansion constraints for
the same adjacent edge e € £}. In such cases, it is possible
to combine these to give a constraint of the following form:

> bos <was VIEL, e €&, s€S. (46)

e'e&3,

We may also strengthen the model by bounding the flow



on a super-arc if it is used. For example, if super-arc k is
active, then the minimum flow frs (which leaves m(k)) is
bounded below by Dj. + Dy ), i.e., the total demand for
all sub-nodes in N} plus the demand at the head node
m(k) of super-arc k. We use this information to impose
lower-bounding constraints such as:

frs > (l),lc + Dm(k))zks Vses§, ke A (47)

We also use this information to compute the minimum
required flow through the edge e € &} if super-arc k is
used, and define capacity-expansion constraints that force
expansions on edges e if their flow exceeds their initial
capacities Ugg. Such constraints are defined by:

ks < erl Vs€S, ke A% ec &L, (48)
leL.

where the set A2 represents super-arcs k, which when
active, result in flow that forces expansion on edges e € &},
and where the set & denotes edges e € & requiring
expansion if super-arc k € A? is active.

Additional improvements in the LP relaxation are made
by multiplying the coefficients D?, and U.o by zjs in the
capacity-expansion constraints (35). (Constraints (2) in
SNDR-0 can also be strengthened by multiplying U,y with
Zks, but this does not improve performance significantly.)

VI. COMPUTATIONAL EXPERIMENTS

This section demonstrates the relative computational
performance of the models and solution procedures de-
scribed above. All problem instances derive from data
for a distribution network in New Zealand. The network
supplies power to an urban area that contains mostly large
industrial and commercial customers who pay extra fees
for a high level of reliability, i.e., for an N — 1 survivable
network. Peak-demand data has been forecasted one year
forward.

The network data comprise 152 nodes, most of which
are demand points, and 182 edges. Four demand points
represent, completely new demand, and 14 edges represent,
new cable routes. We model a single capacity-expansion
technology for each edge and consider single-line fault sce-
narios. The super-network representation of this problem
has only 32 super-nodes and 124 super-arcs. For testing, a
set of problem instances is obtained by varying the number
of fault scenarios. We model potential faults on only 179
of the 182 lines because three lines supply large customers
who have dedicated backup lines.

The computational tests are carried out on a desktop
computer with a 2.6 GHz Pentium IV processor and 1
GB of RAM. We generate all models, and implement our
decomposition algorithms within the Mosel algebraic mod-
eling system, version 1.24, from Dash Optimization. RMP-
LP is solved with Xpress-MP, version 14.24, also from
Dash Optimization, but the MIP subproblems and the
extensive-form problems are solved with CPLEX, version
9.0 from ILOG, Inc.

10

With two exceptions, solver parameters are fixed at
default values throughout all tests. The exceptions involve
CPLEX: Gomory cuts are turned off, and a moderate level
of probing is used (CPX_PARAM_PROBE = 2). All MIP
subproblems are solved to optimality, while the extensive-
form problems are solved with a relative optimality toler-
ance of 0.05%.

Observe that any instance of RMP-LP will be infeasible
unless one feasible column (FEP) exists for each fault
scenario. We could use a “Phase I approach” for finding
an initial feasible solution (e.g., [9], pp. 291-292), but it is
simpler to guarantee such a solution by seeding the master
problem with one FEP for each fault scenario. Except
for trivially infeasible problems, an FEP that requires all
possible capacity expansions will surely be feasible for
any scenario, so those define our initial columns. Our
application imposes no operational costs, so these initial
columns, as well as columns generated later, have cost
coefficients of 0.

At each iteration of the decomposition algorithm, we
can readily obtain a lower bound on the optimal objective
value for MP-LP (see [44], p. 189) and thereby bound the
optimality gap for this LP relaxation. In practice, we solve
RMP-LP until this gap drops below 0.05% and then check
to see if the current solution is integral. If it is—and it
usually is—we have obtained an integer solution to SNDR-
0 that is within 0.05% of optimality and can halt. If not,
we enforce the integer restrictions in the RMP and solve
it by branch and bound. We cannot guarantee that a good
integer solution will be obtained this way, but the worst
optimality gap we have observed is 1.3%.

Our master problems suffer from severe dual degeneracy.
Consequently, convergence using a conventional Dantzig-
Wolfe algorithm is slow, ranging from hours to days. To
improve convergence, we apply “duals stabilization” in the
RMP-LP, and compare two different methods: du Merle et
al. [14] describe the first, which we call “du Merle duals
stabilization”; the other method simply generates interior-
point dual solutions by solving RMP-LP using an interior-
point algorithm with the option of “crossing over” to an
extreme point solution disabled. We call this technique
“interior-point duals stabilization.”

The following abbreviations denote the formulations
discussed in earlier sections.

SNDR-0 the original formulation, solved in
extensive form

SNDR-SN  the super-network formulation, solved
in extensive form

SNDR-SNs SNDR-SN with strengthening as
described in section V

CG-0 column generation with du Merle duals
stabilization, using subproblems
derived from SNDR-0

CG-SNg column generation with du Merle duals

stabilization, using subproblems
derived from SNDR-SNg



CG-SNg-I  column generation with interior-point
duals stabilization, using subproblems

derived from SNDR-SNg

Table 1 displays the solution times for 14 problem in-
stances. We attempt to solve each instance with the six so-
lution approaches outlined above. The results summarize
easily: the super-network model for SNDR, SNDR-SN, is
faster than the original model SNDR-0, and the strength-
ened super-network model SNDR-SNg is faster yet. Col-
umn generation with interior-point duals stabilization and
strengthened super-network subproblems (CG-SNg-I) is
vastly more efficient than the other solution methods.

TABLE T
PROBLEM INSTANCES WITH SOLUTION TIMES AS EXTENSIVE MODELS
OR USING COLUMN GENERATION.

Fault Deterministic Equivalent Column Generation

Scenarios SNDR-0  SNDR-SN SNDR-SNj CG-0 CG-SNy CG-SN; -1
(number) (CPUsec.) (CPUsec.) (CPU sec.) (CPU sec.) (CPU sec.) (CPU sec.)
1 5.1 4.5 2.1 11.3 4.1 28.8
2 102.8 7.6 7.5 116.9 354 579
3 458.8 135.1 21.9 224.6 929 89.0
4 2249.3 2114 1122.0 381.5 184.6
5 - 1789.9 2039.0 - 617.4 237.8
6 - - 762.3 441.1 260.6
7 3331.5 683.4 316.2
8 5285.1 2378.5 389.1
9 - 2240.4 413.4
10 - - - 46124 551.3
50 - - - - - *2487.0
100 9075.7
150 17881.8
179 22653.9

A dash indicates the problem cannot be solved in under 7,200
seconds. We attempt to solve the larger problem instances (100, 150
and 179 faults) only using CG-SNg-I. All problems are solved to
within a relative optimality gap of 0.05%, except the problem marked
by an asterisk, which ends with a gap of 1.3%.

The results listed under CG-0 and CG-SNg show that
the strengthened super-network constructs contribute sub-
stantially to efficiency. Just as critical is the use of the
interior-point duals stabilization, which significantly out-
performs the du Merle alternative. For instance, exper-
imentation with the 50-fault instance reveals that CG-
SNg (du Merle) requires 36,000 seconds to reach a relative
optimality gap of 7.6%, while CG-SNg-I which reaches a
gap of 5.3% in only 1,200 seconds.

It is interesting to compare the optimal objective values
for the LP relaxations of the extensive formulations, and
the optimal objective value for MP-LP. For the 4-fault
instance, these values for SNDR-0, SNDR-SN, SNDR-
SNg, and the Dantzig-Wolfe master problems, are 112008,
117429, 222472, and 893686, respectively. These results
clearly show that the super-network formulation substan-
tially improves upon the LP relaxation of the original
model and shows that the improvement achieved from the
decomposition is even greater.

Of course, the fact that the LP solution of the master
problem is usually integral also attests to the strength of
the decomposition. Of all the problems tested, only the 50-
fault instance gives a fractional optimal solution for MP-
LP. The relative optimality gap for this problem instance
is only 1.3%, which we regard as acceptable.
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VII. CONCLUSIONS

This paper describes a model, SNDR, for the design of
survivable electricity distribution networks. This model is
a two-stage stochastic mixed integer program in which
the first-stage determines capacity expansions, and the
second-stage identifies an operating configuration for the
network under each alternative failure scenario. An oper-
ating configuration requires that switches be opened and
closed so that active links form a tree and that power
flows do not exceed link capacities. The general model
admits the possibility of penalized load-shedding (unmet
demand), although our computational tests disallow this.

A Dantzig-Wolfe reformulation exploits the two-stage
structure of SNDR and leads to a column-oriented master
problem. Subproblems represent deterministic network-
design subproblems, one for each failure scenario. A special
split-variable formulation of the original model leads to a
Dantzig-Wolfe master problem whose linear-programming
(LP) relaxation is substantially stronger than that of the
extensive formulation.

The effectiveness of the column-generation procedure for
solving SNDR relies heavily on modeling improvements
that strengthen the formulation of the subproblems. These
improvements involve modeling the network structure
through a condensed construct, a “super-network,” which
leads to smaller subproblems with tighter LP relaxations.
This super-network then reveals further opportunities for
tightening the model.

The use of a good duals-stabilization scheme for the
master problem is essential for the efficiency of the column-
generation solution procedure. Our results show that sim-
ply using interior-point duals (“interior-point duals stabi-
lization”) greatly outperforms the well-known scheme of
du Merle et al. [14].

Looking forward, our modeling and solution approach
can be applied to other design problems for survivable
networks in telecommunications, logistics and electric-
power transmission. It will be interesting to see if similar or
better computational results can be achieved using these
techniques in other industries.
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