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Abstract— This paper provides a technique based on stochastic
programming to optimally solve the electricity procurement
problem faced by a large consumer. Supply sources include
bilateral contracts, a limited amount of self-production and
the pool. Risk aversion is explicitly modeled using the CVaR
methodology. Results from a realistic case study are provided
and analyzed.
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NOTATION

The notation used throughout the paper is stated below for
quick reference.

A. Real Variables:

Ci(w) Production cost in period ¢ and scenario w [€].

PA(w) Self-produced energy consumed during period ¢
and scenario w [MWh].

PL,(w)  Energy purchased from contract b in period ¢ and

' scenario w [MWh].

PP (w) Energy self-produced by the consumer in period
t and scenario w [MWh].

PZC; (w)  Energy self-produced in block ¢ of the piecewise
linear production cost function in period ¢ and
scenario w [MWh].

PF(w) Energy purchased from the pool in period ¢ and
scenario w [MWh].

P3(w) Self-produced energy sold in the pool in period

t and scenario w [MWh].
I3 Auxiliary variable used to calculate CVaR [€].

10 Auxiliary variable used to calculate the Kan-
torovich distance between two probability dis-
tributions.

w(w) Auxiliary variable related to scenario w and used

to calculate CVaR [€].

B. Binary Variables:

hy(w) Binary variable which is equal to 1 if contract b

is selected in scenario w, and O otherwise.
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C. Random Variables:

€t White noise process which represents the error
term in the ARIMA model of the pool price in
period t [In(€/MWh)].

AP Price of energy in the pool in period ¢t [€/MWh].

D. Constants:

A(w,k) 0/1 constant which is equal to 1 if scenarios
w and w + 1 are equal up to stage k, being 0
otherwise.

F; Slope of block ¢ of the piecewise linear produc-
tion cost function [€/MWh].

H(b) Stage in which the decision on the selection of
contract b is made.

PbC A% Upper limit of energy that can be purchased from
contract b in one period [MWh].

PP Expected demand in period ¢ [MWh].

PZ-G Upper limit of the energy produced in block ¢
of the piecewise linear production cost function
[MWh].

PG max Upper limit of energy that can be produced by
the self-production unit in one period [MWh].

P Upper limit of energy that can be purchased from
contract b in subset of periods T3, . [MWh].

Plf‘ei“ Lower limit of energy that can be purchased
from contract b in subset of periods T3, . [MWh].

S(t) Stage in which the decisions of purchases from
contracts are taken in period t.

« Confidence level used in the calculation of
CVaR.

16} Weighting factor [1/€].

0. Parameter related to delay u used in the ARIMA
model.

€ini First error term considered in the ARIMA model
[In(€/MWh)].

er(w) Error term in period ¢ and scenario w
[In(€/MWh)].

A, (w)  Price of energy for contract b in period ¢ and

7 scenario w [€/MWh].
/\g’tﬁxed Prefixed price of energy for contract b in period
’ t [E/MWh].

AP, First pool price considered in the ARIMA model
[€/MWh].

AP (w) Price of energy in the pool in period ¢ and

scenario w [€/MWh].
Probability of scenario w.
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Ou Parameter related to delay u used in the ARIMA
model.
E. Numbers:
nB Number of bilateral contracts.
ng Number of sets of periods used in the modeling
of the contracts.
ni Number of blocks of the piecewise linear ap-
proximation of the production cost function.
nr Number of periods.
nw Number of periods comprising a week.
no Number of scenarios after the scenario genera-
tion process.
neo Number of scenarios after the scenario reduction
process.
FE Sets
B Set of bilateral contracts.
BM Set of monthly bilateral contracts.
B, Set of contracts selected in node n.
N Set of nodes.
T Set of periods.
Ty Set of periods in which contract b is defined.
Th.e Set of periods belonging to subset e in contract
b.
Q Set of scenarios generated in the scenario-
generation process.
Q Set of preserved scenarios after the scenario
reduction process.
QF Set of deleted scenarios in the scenario reduction
process.
G. Others:
¢(w,w’) Distance between scenarios w and w’ of a given
random variable.
Dk (+) Kantorovich distance of two probability distrib-
utions.
Q Probability distribution of a given random vari-
able.

I. INTRODUCTION

This paper considers an electricity market that includes a
pool and in which bilateral contracts among producers and
consumers can be freely arranged. The pool consists of a day-
ahead auction as well as auctions with shorter time horizons,
such as control, reserve and balancing auctions. Bilateral
contracts can be agreed upon on a daily, weekly or monthly
basis, but contracts embracing longer time horizons generally
provide more effective hedging against pool price volatility
than those spanning shorter time periods. An example of such
market arrangement is the electricity market of mainland Spain
[1].

This paper considers the perspective of a large consumer
that owns a limited self-production facility (e.g. a cogeneration
unit), and derives a methodology that allows the consumer to

optimally decide its involvement in bilateral contracts, self-
production and its participation in the pool. Uncertainty is
treated in detail through a stochastic programming framework
[2].

The objective pursued is minimizing the expected value
of the procurement cost while limiting its volatility (risk) by
incorporating risk aversion through the Conditional Value-at-
Risk (CVaR) methodology [3], [4].

A. Motivation, Aim and Solution

A large consumer has the opportunity to procure its electric
energy needs through bilateral contracts, self-production and
the pool. Signing bilateral contracts reduces the risk associated
with the volatility of pool prices usually at the cost of high
average prices for the signed contracts. Self-producing also
reduces the risk related to pool price. On the other hand,
relying mostly on the pool might result in an unacceptable
volatility of procurement cost. Hence, the consumer faces a
tradeoff between its level of involvement in bilateral contracts,
its self-production and its participation in the pool. To resolve
such a tradeoff, this paper describes and develops a model that
is a multistage stochastic integer programming problem with
recourse [2]. This problem is made tractable using scenario-
reduction techniques and solved using a commercially avail-
able branch-and-cut software. The solution to this problem
determines which contracts should be signed among the set of
available ones, and the amounts of energy to be purchased
from each of the selected contracts. These are here-and-
now decisions. The solution to the problem also provides the
optimal strategy (policy) of pool purchases for each realization
of pool prices (constituting the wait-and-see decisions of the
recourse problem.)

B. Literature Review and Contributions

Although the technical literature is rich on papers addressing
the point of view of the producer, i.e., addressing the self-
scheduling and bidding problems of generating companies,
e.g. [5], [6] and [7], few references are found on how large
consumers should procure their electricity consumption. The
pioneering work of Daryanian et al. [8], and the recent work
of Kirschen [9] deserve special attention. Within a centralized
decision framework, in [8] the optimal response of a large con-
sumer to varying electricity spot prices is derived in terms of
consumptions and consumption rescheduling. In [9] a detailed
analysis and characterization of the decision-making tools that
consumers and retailers need to participate in an electricity
market are presented. Additionally, in [10], a relevant method
for purchase allocation and demand bidding is provided.

The electrical energy procurement problem by a large
consumer is treated in [11] without considering risk accruing
from uncertainty in the pool prices.

The related problem faced by an industrial consumer man-
aging both electricity and heat (emphasizing heat issues) is
addressed by [12] and [13].

The contributions of this paper are:

1) The electricity procurement decision problem faced by

a large consumer is formulated as a stochastic program-
ming problem with recourse.
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2) Risk aversion is explicitly considered through the CVaR
methodology.

3) The stochastic programming problem is made tractable
through scenario reduction techniques and solved using
a commercial branch-and-cut code.

C. Paper Organization

The rest of this paper is organized as follows. Section II
characterizes the uncertainty associated with the considered
decision-making problem. It provides a description of the
multistage decision framework under uncertainty, specifying
both here-and-now and wait-and-see decisions. Additionally,
it characterizes the stochastic variables involved through
ARIMA models, builds a scenario tree and reduces the size
of this tree to make the associated problem tractable.

Section III formulates mathematically the stochastic
decision-making problem as a stochastic programming prob-
lem with recourse. The solution technique to tackle this
problem is also discussed.

Section IV provides and analyzes results from a realistic
case study based on the electricity market of mainland Spain.

Section V provides several relevant conclusions obtained
from the study reported in this paper.

Finally, the scenario reduction algorithm used to make the
resulting problem tractable is derived in the Appendix.

II. UNCERTAINTY CHARACTERIZATION
A. Decision Framework

A time span of four weeks is considered. At the beginning of
the first week, monthly contracts must be selected. Moreover,
at the beginning of each week the consumer decides

1) the energy schedule from monthly contracts on the next
week,

2) which weekly contracts to sign for that week, and

3) the energy purchased from each weekly contract.

These decisions are named here-and-now decisions because
they are taken before knowing the realizations of the stochastic
variables.

In contrast with the here-and-now decisions, the decisions
about purchases and sales in the pool and those related to the
self-production facility are closer in time to the instant when
the values of the stochastic variables are known. Thus, the
uncertainty related to these decisions is lower than that related
to the decisions taken about bilateral contracts. Therefore, we
assume that the values of the stochastic variables are known
when decisions about the energy transacted in the pool and
self-production have to be made. These decisions, referred to
as wait-and-see decisions, are different for each realization of
the stochastic variables, and thus they are supposed to be made
at the end of each week.

Therefore, the decisions are made at the beginning and the
end of each week, so that the end and the beginning of two
consecutive weeks constitute a unique stage. In this way, the
planning horizon of 4 weeks comprises 5 stages, as shown in
Fig. 1.

Selection of contracts )

Selection of contracts
used during the whole —used during the fourth
time span and the first week
week Here-and-now
decisions
Energy purchased Energy purchased
from contracts during [—from contracts during
the first week the fourth week Wy,
\i
e [ weekd ]
Energy transacted in Energy transacted in
the pool and self- the pool and self- Wait-and-see
production schedule production schedule decisions
during the first week during the fourth week

i

Fig. 1. Decision framework.

Each week has been divided into seven days, and each day
into three periods, thus yielding a time span of 84 periods.
Each daily period comprises eight hours defined as follows:

Period | = {1,2,3,4,5,6,7,8}
Day d: Period2 = {9,10,15,16,17,18,23,24}
Period 3 = {11,12,13,14,19,20,21,22}.

The hours in each period have been selected depending on
their pool price level. Thus, periods 1, 2 and 3 previously
defined include the hours with low, medium and high pool
prices, respectively.

B. Random Variables

As stated above, the pool price is treated as a stochastic
variable, which is characterized by an ARIMA model [14],
[15]. Using a time series model, it is possible to represent
adequately the probability distribution of a stochastic variable
through the generation of multiple realizations of it. The
set of different realizations of the stochastic variable can be
structured to build a scenario tree. A scenario tree constitutes a
discrete and finite approximation of the probability distribution
of the stochastic variable. The ARIMA model below is used to
generate a scenario tree to represent the market-clearing prices
of December 2004 of the electricity market of mainland Spain

[1]:
(1—¢1B" — ¢2B?) (1 — ¢3B* — $24B>" — ¢27B°7)
(1 - 6mB™ — 6B") (1 - BY) (1 - B) In () =
(1-03B%) (1—01B*") e, VT (1)

where B is the backshift operator, which if applied to A
renders:
BUAY = \P )

t—u>

and ¢; is the error term, which is assumed to be a series
obtained randomly from a normal distribution with zero mean
and constant variance, o2; that is, a white noise process.
The standard deviation of ¢;, o, is obtained at the end of
the estimation phase of the ARIMA model. For model (1),
o = 0.1186. The parameters contained in (1) are listed in
Table 1. The above ARIMA model shows that A\’ depends on
{)\f:ﬂ, ce )\f_l} and {é€n;, ..., €}, where )\if:li and €j,; are,

respectively, the first pool price and error term considered in
the estimation phase of the construction of the ARIMA model.
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C. Scenario Tree

A scenario tree is a set of nodes and branches used in models
of decision-making under uncertainty. The nodes represent
states of the “world” at a particular instant, being the points
where decisions are taken. Each node has only one predecessor
and can have several successors. The first node is called the
root node and, in this work, it corresponds to the beginning
of the first week of the planning horizon. In the root node,
the first-stage decisions are taken. In the same way, the nodes
placed in the next stage represent the points where the second-
stage decisions are taken, and so on. The number of nodes in
the last stage equals the number of scenarios. These nodes are
denominated leaves. In a stochastic scenario tree, the branches
are different realizations of the stochastic variables. Consider-
ing only uncertainty in the pool prices, the branches leaving
the root node are different realizations of the pool price during
the first week. Analogously, the branches connecting nodes
placed in the second and third stages represent realizations of
the pool prices during the second week, and so on. Therefore,
according to the time discretization presented in II-A, each
one of these branches represents a set of 21 pool prices. Fig.
2 shows an example of scenario tree.

Fig. 2. Scenario tree example.

The multiple realizations of A" required to build a scenario
tree are obtained by assigning different values to the error term
€;. For every period ¢ € T and every scenario w € {2 a random
value of ¢;(w) with a N(0,0) distribution is generated and,
through the ARIMA model (1), AF'(w) is obtained. It should
be noted that if two scenarios w and w’ are coincident in the
same branch in period ¢, the relation A} (w) = A} (w’) must

TABLE I
PARAMETERS OF THE ARIMA MODEL (1)
¢1 = 0.7257 ¢21 = —0.1134  ¢42 = —0.0976
¢2 = —0.1603 @24 = 0.0661 63 = 0.7491
¢3 = 0.1206 ¢o7 = —0.0852 21 = 0.8304

be enforced. The algorithm used to generate the scenario tree
is depicted in Fig. 3.

Input data:
(i) the tree structure, (ii) ©, (iii) parameters of
the ARIMA model and (iv) pool prices and
error terms in periods prior to t=1I.

)4 from ®=1
to N

from t=1
to n;

no }J: (®) and AS(w-1) yes

belong to the same
N(@) =2 (0-1)

\ 4

i) Random generation
of & () ~ N(0,0)
ii) Compute 7»‘:((1))

using the ARIMA
model (1)

!

\
v

Pool prices
tree data

Fig. 3. Scenario generation process.

D. Scenario Tree Reduction

The size of the scenario tree obtained by running the
scenario generation process is typically very large, resulting in
an optimization model that is intractable. To regain tractability,
we endeavor to reduce the number of scenarios while still
retaining the essential features of the scenario tree. We seek
a tractable scenario tree that yields an optimal solution that is
close in value to the solution of the original problem.

There has been much attention paid to this problem in the
academic literature, and it is still an area of active research
[16]. In two-stage stochastic programming problems it is
possible to reduce a large scenario tree to a simpler tree that
is close to the original tree when measured by a so-called
probability distance. Under mild conditions on the problem
data, it can be shown that the optimal value of the simpler
problem will be close to the value of the solution to the original
problem if the scenario trees are close in the probability
metric. Such stability results are no longer valid for multistage
stochastic programming problems, and require the introduction
of a filtration distance [16] that essentially measures how close
the branching structures of the two trees are.

The most common probability distance used in stochastic
optimization is the Kantorovich distance, D (-), defined be-
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tween two probability distributions (Q and Q' by

k(Q,Q") = inf{ c(w,w)n(dw,dw’) :

n QxQ

/Q 0 do!) = Q, /Q o) =QY, )

where c is a nonnegative, continuous, symmetric, cost function
and the infimum is taken over all joint probability distributions
defined on 2 x Q. If

c(w, W) = flw =" “)

this gives the Wasserstein metric of order r, that can be
shown to have some appealing properties when approximating
stochastic optimization problems [17].

In the current context, where () and Q' are finite distrib-
utions corresponding to an initial set {2 of scenarios and a
reduced set Q' C 2, we define

W)= (@) = AT (W) ©)
t=1

This can be shown [18] to give the Kantorovich distance

> 7(w) min <Z IAF (w ’)I)

weQ\QY
(6

which is attained by assigning the probabilities 7(w) of all
scenarios w € Q \ ' to the “closest” scenario w’ in the
remaining set {2’

As outlined in [19], this formula can be used to derive
several heuristics for generating scenario trees that are close to
an original tree in the Kantorovich metric. We have chosen to
implement the fast-forward algorithm as described in [19] and
implemented as SCENRED in GAMS [20]. This algorithm
is an iterative greedy process starting with an empty tree.
In each iteration, from the set of non-selected scenarios, the
scenario which minimizes the Kantorovich distance between
the reduced and original trees is selected. The algorithm
stops if either a specified number of scenarios or a certain
Kantorovich distance is reached. Finally, the probabilities of
the selected scenarios are updated. In the Appendix, the steps
of this algorithm are described in detail.

We conclude this section by recalling that the scenario
reduction technique we have used is only a heuristic, with
no known performance guarantees. The reduced scenario tree
generated by the fast-forward algorithm is not guaranteed to be
the closest in the Kantorovich metric to the original tree (over
all reduced trees of the same cardinality). Moreover, without a
bound on the filtration distance we have no guarantee that the
reduced tree will give a good approximation to the optimal
value of the original problem. Nevertheless the empirical
results reported in the literature (e.g. in [19]) indicate that the
reduced trees defined by the fast-forward algorithm perform
well in practice.

DK(Q) Q/) =

III. OPTIMIZATION FRAMEWORK
A. Problem Formulation

The mathematical formulation of the deterministic equiva-
lent of the stochastic problem with recourse faced by the large

consumer is stated below:

Minimize:

IREIOM BAEEAR

wey beB teT

+ Z A (w) (Ptp (w) — PP w)) + Z Ct(w)>

teT teT
1

+0 (s + 1 w%; w(w)u(w)) ™

Subject to:

1) CVaR constraints:

DY MW Pw)
beEB teT,
+D A (w ( ) > Ci(w
teT teT
£ —pw) <0; Ywe ®)
p(w) >0; VweQ 9)

2) Contract constraints:

0< PS(w) < PO™ Wbe BVteTp,Ywe Q' (10)
Po(w)=0; VYbeBVteT\T,YweQ (1)
Pty (w) < Y PE(w) < Phy(w);
tETb e
e=1,...,ng;Vb € B,Vw € & (12)
3) Self-production constraints:
0 < P8 (w) < PO™a vt e T \Vw e (13)
ni
=Y Phw); VteT,Vwe (14)
1=1
0< Pl(w) < PP VteT,Vwe (15)
0< Pi(,}t(w) < Pf - PEy;
i=2,...,m—LVteT,VweQ (16)
0< PG (w) < PO™™ P 0 VteT,Ywe (17)
ni
= ZEPf‘t(w); Vit € T,Yw € & (18)
1=1
PE(w) = PA(w)+ PP(w); VteT,VweQ  (19)
4) Demand constraints:
PMw)+ PP (w)+ Y PS(w) = PP;
beB
YVt e T,Yw € & (20)
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5) Nonanticipativity constraints:

hb(w) = hb(w + 1);

Vbe Byw=1,...,no — 1;ifA(w, H(b)) =1 2D
Pb(,jt(w) = Pbc,t(w +1);
Voe Biw=1,...,no — L;ifA(w,S(t)) =1 (22)
6) Constraints on variables:
hy(w) € {0,1}; Vb e B,Vw e (23)
PA(w), PP (W), PS(w) >0; VteT,VweQ. (24
Note that in the formulation above
ACfixed | AP,

)\l()}:t (w) — b,t 2 t ( )’

Vb € B,Vt € Ty, Vw € €Y. (25)

Problem (7)-(24) is explained below.

1) Objective function and CVaR constraints: The objective
function (7) comprises the expected cost of the electrical
procurement of the consumer and a penalized risk measure.
The expected cost includes (i) the expected cost of buying
from bilateral contracts, (ii) the expected net cost of buying
from the pool (purchase cost minus revenue from selling), and
(iii) the expected cost incurred by the self-production facility.
The expected cost is calculated as the sum over all scenarios
of the cost in each scenario multiplied by its probability.

The risk measure included in this work is the conditional
value-at-risk at « confidence level («-CVaR) [3]. For a
discrete cost distribution, a-CVaR is approximately the
expected cost of the (1 — «)100% scenarios with greater
cost. In [4] a linear formulation of a-CVaR is provided. Let
DCF(w),w € €, be a discrete cost distribution, a-CVaR is
the result of the following optimization problem:

S 1
Minimizeg (., £+ T & Z 7(w)p(w) (26)
we
Subject to:
DCF(w) — & — p(w) <0; Vw e (27)
plw) >0; Vwe (28)

The optimal value of &, &*, represents the smallest value
such that the probability that the cost exceeds or equals &*
is less than or equal to 1 — «. Also, £* is known as the
value-at-risk (VaR). On the other hand, u(w) is the difference
between the cost of scenario w and VaR. Constraints (27) and
(28) are equivalent to (8) and (9). The objective function (26)
corresponds to the last term of (7).

The weighting factor 8 in (7), 8 € [0,00), models the
tradeoff between expected procurement cost and risk, and so
depends on the preferences of the consumer. A conservative
consumer prefers minimizing risk while its demand is satisfied,
so it chooses a large value of 3 to increase the weight of
the risk measure in (7). On the other hand, another consumer

might be willing to assume higher risk in the hope of obtaining
a lower cost, so its selected value for § would be close to 0.
A detailed discussion on how to obtain appropriate values for
the weighting factor (3 is beyond the scope of this paper.

2) Contract constraints: In this work, volume contracts
have been considered. The total energy consumed from a
volume contract must satisfy pre-specified upper and lower
limits. The planning horizon of each contract is usually divided
into several subsets of periods depending on the pool prices.
For example, if the planning horizon of contract b is divided
into ng, subsets of periods, then

U Te=7, WweB (29)

where T .,e = 1,...,ng, are subsets of periods for contract
b. In this work, four subsets of periods, i.e., ng = 4, have
been defined for each contract, namely valley (V), shoulder
(S), peak (P) and weekend (W). Fig. 4 shows the distribution
of subsets of periods in each week. Taking into account
these definitions, constraints (10) set the limits of the energy
consumed from every contract in every period. Constraints
(11) state that it is not possible to purchase energy outside of
the planning horizon of each contract. Constraints (12) set the
upper and lower limits for the energy consumed from contracts
in each subset of periods.

Periods
Monday Tuesday | Wednesday | Thursday Frida Saturday Sunday
1 2 314 5 617 8 9110 11 12]13 14 15|16 17 18|19 20 21
vV Ix X X X X
S X X X X X
P X X X X X
W X XXX XX

V: Valley; S: Shoulder; P: Peak; W: Weekend

Fig. 4. Weekly distribution of subsets of periods.

The above contracting format is motivated by industry
practice in Spain. However, note that a different format can
be considered and simpler purchaser settings are possible, e.g.,
buying a quantity of energy at constant power and price during
a given time period.

3) Self-production constraints: Constraints (13) bound the
production of the self-production unit by the upper limit of
energy that can be produced during one period, which is
equal to the capacity of the unit multiplied by the duration
of the period. Constraints (14)-(18) are required to model the
piecewise linear production cost of the self-production unit [5].
Constraints (19) state that the energy generated by the self-
production facility can be used either to satisfy the demand of
the consumer or to be sold in the pool.

4) Demand constraints: Constraints (20) enforce that the
demand must be satisfied in each period of the planning
horizon.

5) Nonanticipativity constraints: Constraints (21) and (22)
model the nonanticipativity constraints for h,(w) and PS,(w),
respectively. Nonanticipativity constraints enforce that if the
realizations of the stochastic variables are equal in two scenar-
ios w and w’ up to stage k, then the value of the here-and-now
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decisions in stage & must be the same. For computational im-
plementation, these variables are made scenario independent.

6) Constraints on variables and others: Constraints (23)
and (24) constitute variable declarations. Finally, the expres-
sions (25) define the final price of energy purchased from
bilateral contracts as the average of the pool prices and a
prefixed price (contracts for differences).

B. Solution Procedure

Problem (7)-(24) is a mixed-integer linear optimization
problem that can be solved by commercially available branch-
and-cut software [21]-[23].

Table II provides the size of problem (7)-(24) expressed as
the number of binary variables, real variables and constraints.

TABLE II
COMPUTATIONAL SIZE OF PROBLEM (7)-(25)

# of binary variables
# of real variables
# of constraints

ngngo/

neo/ (nT(nB —+ n1 + 5) + 1) +1
ng/(nt(ng + n1 +5) + 2ngng + 1+
ZREN (ZbEBn (nQ’,n - 1)"1'
Ybe(n, pMy W (ngrn — 1))

IV. CASE STUDY

The performance of the proposed decision-making approach
is illustrated through a case study based on the electricity
market of mainland Spain [1]. A time series of 11 months
has been used to estimate pool prices for December 2004.
Fig. 5 shows the pool prices in all of the scenarios for the
84 periods considered. The bold line in Fig. 5 corresponds
to the expected pool prices. We assume that the consumer
has an accurate forecast of its demand, which is considered
deterministic and is plotted in Fig. 6.

140

100 - 5

80 5

60 - 5

Pool Price (euro/MWh)

40 1

20 B

. . . . .
0 10 20 30 40 50 60 70 80
Periods

Fig. 5. Pool prices.

The consumer has the possibility of signing two monthly
bilateral contracts as well as four weekly contracts, one per

2400

2300

2200

2100 B

2000 N

Demand (MWh)
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1800 B

1700 |- B

1600 . . . . . . . .
0 10 20 30 40 50 60 70 80
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Fig. 6. Consumer demand.

week. The energy consumption limits of each contract are
reported in Table III. For the sake of conciseness, both monthly
contracts are identical in terms of energy limits. Analogously,
the four weekly contracts share the same consumption limits.
Price data of the monthly and weekly contracts are provided
in Tables IV and V, respectively.

TABLE III
ENERGY CONSUMPTION LIMITS OF THE BILATERAL CONTRACTS
(MWh)
Monthly contracts | Weekly contracts
Py P | PR PR
\Y 3540 7870 550 1250
S 6125 12360 1000 2310
P 7525 16850 1425 3365
W 2125 4880 150 550
TABLE IV
PRICES OF THE MONTHLY CONTRACTS
(€E/MWh)
Week # (monthly contract 1) | Week # (monthly contract 2)
1 2 3 4 1 2 3 4
V | 420 43.0 440 450 | 42.0 43.0 440 450
S 52.8 538 5438 55.8 552 562 572 582
P 624 634 644 654 | 648 658 668 67.8
W | 444 454 464 474 | 432 442 452 462

The consumer owns a 100-MW self-production unit. Since
each time period comprises 8 hours, the maximum energy
that can be produced in each period, P& ™2%  is equal to 800
MWh. Table VI lists the data of the 3-piece linear cost function
considered.

In order to build the scenario tree, 7 branches leave each
node, thus yielding a decision tree with 74 = 2401 scenarios.
After applying the scenario reduction technique mentioned in
II-D and described the Appendix, the resulting tree contains
just 200 scenarios. The relative distance between the original
tree and reduced trees with fewer scenarios is depicted in Fig.
7. The relative distance is defined as the Kantorovich distance
between the original and reduced probability distributions
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TABLE V
PRICES OF THE WEEKLY CONTRACTS
(€E/MWh)
Week 1 Week 2 Week 3 Week 4
\Y 44.0 46.2 48.0 49.2
S 57.4 59.7 60.0 61.2
P 66.5 67.2 69.0 69.8
W 45.0 48.6 50.4 51.6
TABLE VI
PRODUCTION COST DATA OF THE COGENERATION UNIT
PE PG F Fy F3
MWh) (MWh) (€/MWh) (£/MWh) (€/MWh)
160 480 33 36 39

divided by the Kantorovich distance between a 1-scenario tree
and the original distribution, where the distance between two
trees is calculated with (6). As can be observed, a tree with 200
scenarios is an appropriate choice. This result is corroborated
by Fig. 8, which shows the evolution of the optimal expected
cost with the number of scenarios for 5 = 0 and § = 5.
Similar curves have been obtained for other values of the risk
parameter (. For all the simulations, a confidence level of
a = 0.95 has been used in the calculation of CVaR.
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Fig. 7. Relative distance between the original tree and reduced trees.

The resulting problem, characterized by 326288 constraints,
236602 real variables, and 1200 binary variables, has been
solved for different values of the weighting factor 3 using
CPLEX 9.0 under GAMS [20]. Fig. 9 provides the efficient
frontier, i.e., the plot of expected cost versus CVaR for
different values of (3. The expected cost ranges from 6.55
million € if risk is ignored (8 = 0), to 6.68 million € if
risk is accounted for (8 = 5). The CPU time required to
solve problem (7)-(24) for different values of § with a Dell
PowerEdge 6600 with 2 processors at 1.60 GHz and 2 GB of
RAM memory was less than 130 seconds.

Fig. 10 illustrates the energy procurement of the consumer
and the use of bilateral contracts for different values of (.
The energy represented in each sector of the pie charts is the
weighted average over all of the scenarios. As expected, the
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Fig. 8. Expected cost as a function of the number of scenarios considered.
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share of bilateral contracts considerably increases with 5 in
order to hedge against risk exposure to pool prices volatility.
With 6 = 0 only weekly contracts for weeks 3 and 4 are
signed representing a 1.1% of the total energy consumed. For
8 = 0.25, 14.5% of the energy consumed is procured through
bilateral contracts, mostly from monthly contract 1. Finally, for
[ = 5 the volume of energy purchased from contracts rises up
to 28.2%, making it necessary to sign monthly contract 2 and
weekly contract 2. Note that weekly contract 1 is not signed
due to its high price. It is also remarkable that the volume
of energy self-produced by the consumer keeps at a stable
share around 20% and experiences a slight drop with § due
to the relatively high minimum consumption limits of bilateral
contracts.

V. CONCLUSIONS

This paper provides a methodology for energy procurement
of a large consumer based on stochastic programming. Risk
aversion is modeled through the CVaR technique. Scenarios
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Fig. 10. Electricity procurement and use of contracts.

are reduced through an appropriate algorithm to make tractable
the resulting mixed-integer linear programming problem that is
solved using a commercial branch-and-cut solver. The validity
of this methodology is assessed through a realistic case study.
Its usefulness is particularly clear to resolve the tradeoff of
minimum expected cost versus maximum risk.

APPENDIX

The objective of the scenario reduction algorithm is to find
a new discrete probability distribution, Q’, that minimizes the
Kantorovich distance to the original probability distribution @,
as formulated in (6). The resulting )’ is supported comprising
a subset of scenarios from the original set. This subset (of
“labeled” scenarios) is constructed recursively by starting with
the single scenario that is the closest in total Kantorovich
distance to all the others, labeling it, and then labeling the next
single scenario that minimizes the total Kantorovich distance
from unlabeled scenarios to it and other labeled scenarios.

The algorithm proceeds as follows [19]:

Step 0)

Set

05 =90

Step 1)

Compute

di[j}w, = c(w,w’), Yw,w € Q
DW= 3" xwhdll,, vweqy
w'ep

W Fw

Set
wlth: Wl € arg min,cq. D
P =05 - (W'}
Step v)
Compute

} Vw,w' € Qf_4

w,w’ Py wlv—1]

at, = min{dl o, v L

DY — Z ﬁ(w')di[:]w,, Vwe Q)
w'eQr
w! #w
Set
W W € arg minweQLlDL[d”]
Q=0 —{w)
Step nq/+1)

Compute the probabilities for the preserved scenarios:

Tw)=nw) + Y 7)), we\Q

w'€Q(w)
where
Qw) = {u/ €N w :j(u/)}, Yw =0\ QF

j(W') € arg min 4. c(w,w’), V' €Q

In iteration v, the algorithm selects the scenario w! which
minimizes the distance DLV | between the two probability
distributions @ and @Q’. The reduced probability distribution Q'
is formed by nq/ scenarios, whose probabilities are computed
in step ng/+1. The probability of each preserved scenario
T(w),Vw € Q\ Q% is equal to the sum of its probability
in @ and the probabilities of deleted scenarios that are closest
to 1t.
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