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Abstract

We consider the e¤ect that a tax on observed pro�ts has on supplier
strategies in supply-function equilibrium. In some circumstances such a
tax can make supply o¤ers more competitive, decrease prices, and give
greater e¢ ciency.

1 Introduction

The supply function equilibrium (SFE) is a natural concept to use in studying
electricity pool markets. Here generators submit supply schedules in the form of
increasing o¤er curves to an auction that dispatches generation to those suppliers
o¤ering at the lowest prices. The �rst use of SFE in this context was by Green and
Newbery [6] in a study of the England and Wales electricity pool. The paper [6]
was based on the theory of supply function equilibrium laid out by Klemperer and
Meyer [11]. This theory has been extended to inelastic demand and pay-as-bid
auctions by several authors, notably [1],[2],[3],[4],[5],[7],[12],[14]. As well as [6], a
number of authors have applied SFE in a practical setting. For example [10] and
[13] use the SFE model to study generator behaviour in the Texas electricity pool.
The recent survey paper by Holmberg and Newbery [9] gives a good overview of
the state of the art in SFE models.
In this paper we examine a supply-function equilibrium model in circum-

stances where suppliers are taxed on their pro�ts. At �rst sight, paying a (non-
progressive) tax that is a �xed proportion of pro�ts will not alter agent behaviour.
Each supplier will still want to maximize after-tax pro�t, which will be achieved
by maximizing pro�t before tax. The pro�t in any market outcome can be es-
timated by computing the di¤erence between clearing price and marginal cost
at each level of production and integrating over all production levels below the
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cleared level. Taxation can be used as a mechanism to redistribute wealth, or
to extract payment for assets (like transmission lines) that are shared between
market participants. A tax on pro�ts can be seen as an approximation of a model
in which the bene�ciaries of transmission investments contribute to their cost in
proportion to the bene�ts (pro�t) accrued.
In some settings, like electricity markets, suppliers o¤er supply curves to the

market that in equilibrium are marked up over marginal cost. Here the o¤er
curves are revealed to the market auctioneer, but the true marginal costs are
private information. In such circumstances the auctioneer can estimate supplier
pro�ts based on the di¤erence between clearing price and o¤ered price, and tax
this observed pro�t at a �xed proportion. Since the o¤er curve is a choice of
the supplier, it can a¤ect the observed pro�t by its o¤er, without having too
much e¤ect on its actual pro�t. In the simplest case where demand is certain,
a supplier might increase the price on infra-marginal units, i.e. units that have
o¤ered below the clearing price, and make observed pro�t very small without
a¤ecting the actual pro�t.
When demand is uncertain, increasing o¤er prices on inframarginal units must

be done carefully since higher o¤er prices might decrease the probability of be-
ing dispatched. In this setting one can use the theory of market distribution
functions to derive a SFE that illustrates the incentive to increase prices on in-
framarginal o¤ers. This analysis draws heavily on the market distribution theory
of both uniform-price auctions [3] and pay-as-bid auctions [2]. Our model shows
that increasing taxes on suppliers can make them more competitive and reduce
deadweight losses that arise from the exercise of market power.
The paper is laid out as follows. In the next section we review supply function

equilibrium through the lens of market distribution functions. This is used to
derive optimality conditions for suppliers who are taxed a �xed proportion of
their observed pro�t. We show that pure-strategy SFE can be computed as long
as the tax is not too high. In the extreme case where the tax is 100%, it is
easy to see that the payment mechanism becomes a pay-as-bid scheme. It is
well known [2] that pure-strategy SFE occur very rarely in these auctions and
mixed strategies prevail. Section 3 deals with the conditions for supply function
equilibrium in symmetric duopoly when demand is inelastic and additive demand
shocks have a uniform distribution. In section 4 we repeat the analysis for a
symmetric duopoly facing a linear demand curve with a uniform demand shock.
The last section concludes the paper.
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2 Supply function equilibrium

As shown in [3] the optimal o¤er curve p(q) for a generator with cost C(q) facing
a market distribution function  (q; p) will maximize

� =

Z
(qp� C(q))d (q; p):

The market distribution function  (q; p) de�nes the probability that a supplier is
not fully dispatched if they o¤er the quantity q at price p. It can be interpreted
as the measure of residual demand curves that pass below and to the left of the
point (q; p). Suppose we treat p as function of q. Then

� =

Z qm

0

(qp(q)� C(q))

�
@ (q; p)

@p
p0(q) +

@ (q; p)

@q

�
dq

The Euler-Lagrange equation that p(q) must satisfy to minimize a general func-
tional Z qm

0

H(q; p; p0)dq

is

Z(q; p) =
d

dq
Hp0 �Hp = 0:

In the case where the functional is � we obtain

Hp0 = (qp(q)� C(q))
@ (q; p)

@p

Hp = q

�
@ (q; p)

@p
p0(q) +

@ (q; p)

@q

�
+ (qp(q)� C(q))( ppp

0(q) +  qp);

and
d

dq
Hp0 = (p+ qp0(q)� C 0(q))

@ (q; p)

@p
+ (qp(q)� C(q))( ppp

0(q) +  qp).

This gives
d

dq
Hp0 �Hp = (p� C 0(q))

@ (q; p)

@p
� q

@ (q; p)

@q

which can be identi�ed with the standard Z function of [3].
Suppose that some fraction � 2 (0; 1) of the pro�t earned by a generator is

paid as tax. When the market clears at quantity q for a generator at price � then
the generator receives

q� � C(q)� �

Z q

0

(� � p(t))dt

= q� � C(q)� �q� + �

Z q

0

p(t))dt = (1� �)(q� � C(q)) + �(

Z q

0

p(t)dt� C(q)):
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This is a convex combination of uniform and pay-as-bid pricing with multiplier
�. Thus the total payo¤ will be

� = (1� �)

Z
(qp� C(q))d (q; p) + �

Z
(p� C 0 (q)) (1�  (q; p))dq.

We can write down the optimality conditions for the problem faced by a
generator maximizing �. These use the scalar �eld de�ned by Z(q; p) = d

dq
Hp0 �

Hp. Thus

Z(q; p) = (1� �)((p� C 0(q)) p � q q)� �(1�  (q; p)� (p� C 0
�
q)) p

�
= (p� C 0(q)) p � (1� �)q q � �(1�  (q; p))

The �rst-order conditions are given by Z(q; p) = 0 and global optimality is guar-
anteed for a monotonic solution to Z(q; p) = 0 if @

@q
Z(q; p) � 0.

3 Symmetric duopoly for inelastic demand

We use the optimality conditions to look for an equilibrium in symmetric duopoly.
Suppose the other player o¤ers a smooth supply function S(p), and demand has
cumulative probability distribution function F . Then

 (q; p) = Pr[h < q + S(p)]

= F (q + S(p))

and

Z(q; p) = (p� C 0(q)) p � (1� �)q q � �(1�  (q; p))

= (p� C 0(q))S 0(p)f(q + S(p))� (1� �)qf(q + S(p))� �(1� F (q + S(p)))

Thus Z = 0 is equivalent to

(p� C 0(q))S 0(p) = (1� �)q + �
(1� F (q + S(p))

f(q + S(p))
: (1)

The global optimality conditions (see [2]) are

(p� C 0(q))S 0(p)� (1� �)q � � (1�F (q+S(p))
f(q+S(p))

� 0; q < S(p)

(p� C 0(q))S 0(p)� (1� �)q � � (1�F (q+S(p))
f(q+S(p))

= 0; q = S(p)

(p� C 0(q))S 0(p)� (1� �)q � � (1�F (q+S(p))
f(q+S(p))

� 0; q > S(p)

These can be guaranteed by @
@q
Z(q; p) � 0 which amounts to

�C 00(q)S 0(p)� (1� �)� �

�
(1� F (q + S(p))

f(q + S(p))

�
q

� 0:
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3.1 Examples

Suppose F (t) = t is uniform on [0; 1] and � � 1
2
. Assume a symmetric duopoly

where each generator has capacity 1
2
. Then C 00(q)S 0(p) � 2�� 1 guarantees that

�C 00(q)S 0(p)� (1� �)� �

�
(1� F (q + S(p))

f(q + S(p))

�
q

= �C 00(q)S 0(p)� (1� �) + �

� 0

The �rst order condition is then enough to give a supply-function equilibrium.
Replacing q by S(p) in (1) yields

pS 0(p)� (1� �)S(p)� �(1� 2S(p)) = 0
This di¤erential equation can be solved using an integrating factor, whereby

pS 0(p) + (3�� 1)S(p) = �

p3��1S 0(p) + (3�� 1)p3��2S(p) = �p3��2�
p3��1S(p)

�0
= �p3��2

S(p) = ap1�3� + p1�3�
�

3�� 1p
3��1

S(p) =
�

3�� 1 + ap1�3�

A unique equilibrium can be found by imposing a price cap P at which both
generators o¤er their capacity [7].

Example 1: Suppose � = 1
2
and P = 4, and each generator has capacity 1

2
.

Then

S(p) =
�

3�� 1 + ap1�3��
a

q � 1

�2
= p

To pass through (1
2
; 4) we choose a = 1.

Example 2: Suppose � = 1
4
and P = 4, and each generator has capacity 1

2
.

Then the solution through (1
2
; 4) is

q = �1 + 3

2
p
2
p
1
4

p =
64

81
(1 + q)4

These solutions are shown in Figure 1.
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Figure 1: Plot of supply-function equilibrium solutions in a duopoly when in-
elastic demand is uniformly distributed on [0,1] and each player has capacity 0.5.
The red curve is an equilibrium when each supplier must pay 25% of his surplus
(above the red curve) as a tax. The green curve gives the equilibrium o¤er for a
33% tax.
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3.2 Welfare calculations.

We can compute the changes in welfare of each agent from the change in equi-
librium. Consider �rst the case where � = 0, and there is a price cap at 4. In
perfect competition each generator would o¤er at price zero and earn no pro�t.
The welfare of the consumers in demand realization h is 4h, and so the expected
competitive total welfare is

W =

Z 1

0

4hdh = 2

In a supply function equilibrium, both players o¤er linear supply functions q = p
8
.

Thus the total supply is S(p) = p
4
. When demand is h the clearing price is 4h, so

the total generator pro�t assuming zero marginal cost is 4h2. The expected total
generator pro�t is then

G =

Z 1

0

4h2dh

=
4

3

The consumer welfare (assuming a maximum valuation of 4), is

C =

Z 1

0

h(4� 4h)dh

=
2

3

Expected total welfare of 2 is divided 2
3
to the demand and 2

3
to each generator.

The observed pro�t of each generator in demand realization h is de�ned by the
area above their curve, namely the integral of the clearing price at their dispatch
h
2
minus the o¤ered price at quantity q from q = 0 to h

2
.

G(h) =

Z h
2

0

�
8
h

2
� 8q

�
dq

= h2

The expected observed pro�t for both suppliers is then 2
R 1
0
h2dh = 2

3
, or half

their actual pro�t.
Suppose we now impose a tax by choosing � = 1

4
. Then in equilibrium, each

generator o¤ers

q = �1 + 3

2
p
2
p
1
4 (2)
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or
p =

64

81
(1 + q)4: (3)

The (before-tax) observed pro�t in demand realization h of each generator if they
o¤er this curve is de�ned by the area above their curve, namely the integral of
the clearing price at their dispatch h

2
minus the o¤ered price at quantity q from

q = 0 to h
2
. This gives

G(h) =

Z h
2

0

�
64

81
(1 +

h

2
)4 � 64

81
(1 + q)4

�
dq

=
4

405
h2
�
2h3 + 15h2 + 40h+ 40

�
The (before-tax) expected observed pro�t for both suppliers is then

2

Z 1

0

4

405
h2
�
2h3 + 15h2 + 40h+ 40

�
dh =

128

243
= 0:527 <

2

3

which is the total observed pro�t under a linear supply curve o¤er. The new o¤er
is arranged to reduce the tax while maintaining a healthy pro�t. The total tax
paid is then �128

243
= 32

243
< 1

6
, the tax collected when linear curves are o¤ered.

Since their costs are zero, the before-tax actual pro�t in demand realization h
of each generator if they o¤er the optimal curve is h

2
64
81
(1+ h

2
)4. The total expected

before-tax actual pro�t for both suppliers is then

2

Z 1

0

h

2

64

81
(1 +

h

2
)4dh =

1586

1215

The total expected after-tax actual pro�t for both suppliers is

T =
1586

1215
� 32

243
=
1426

1215
: (4)

Recall that

 (q; p) =

8<:
0; q + S(p) � 0
q + S(p); 0 < q + S(p) < 1
1; q + S(p) � 1

so
 (q; p(q)) = 2q

and

d (q; p) =

�
@ (q; p)

@q
+
@ (q; p)

@p

dp(q)

dq

�
dq

= (1 + S 0(p)p0(q)) dq

= 2dq
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and so the after-tax pro�t is

� = (1� �)

Z
(qp� C(q))d (q; p) + �

Z
(p� C 0 (q)) (1�  (q; p))dq

=
3

4

Z
(qp� C(q))d (q; p) +

1

4

Z 1
2

0

p(q)(1�  (q; p))dq

=
3

4

Z
(q
64

81
(1 + q)4)d (q; p) +

1

4

Z 1
2

0

64

81
(1 + q)4(1�  (q; p))dq

=
3

4

Z 1
2

0

(2q
64

81
(1 + q)4)dq +

1

4

Z 1
2

0

�
64

81
(1 + q)4(1� 2q)

�
dq

=
713

1215

which is half the �gure T we computed in (4) as expected.
The welfare of consumers is slightly improved by the tax. Without the tax,

generators o¤er linear supply functions, and the consumer welfare is 2
3
. When a

tax is imposed, the generators change their o¤ers, and the price under demand
realization h is 64

81
(1 + h

2
)4. We can then compute the expected total welfare for

consumers as

C =

Z 1

0

h(4� 64
81
(1 +

h

2
)4)dh

=
844

1215
>
2

3

The total welfare is then the sum of consumer welfare, generator pro�t, and tax
giving

844

1215
+
1426

1215
+
32

243
= 2:

In summary if each generator o¤ers a linear supply curve (as they would in
an untaxed equilibrium) then they each earn 2

3
before tax and 7

12
after tax, after

paying 1
12
in tax on observed pro�t of 1

3
. If they instead o¤er the curve (2) then

each generator will appear to earn a pro�t of 64
243
but in fact will earn 793

1215
. They

will then pay less tax of 16
243
and each retain a pro�t of 793

1215
� 16
243
= 713

1215
> 7

12
. The

total welfare is 2, and so consumers�welfare increases from 2
3
to 2 � (2) = 844

1215
.

The total welfare is consumer welfare plus generator welfare plus tax, giving

844

1215
+ (2)

713

1215
+ (2)

16

243
= 2

So the reaction of the suppliers after the imposition of the tax is to o¤er to
improve their welfare and minimize the tax. The e¤ect of this is to transfer some
wealth to consumers.
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4 Symmetric duopoly for elastic demand

We now consider a model in which demand is elastic and de�ned by a demand
curve D(p). We assume that generators have no capacity constraints. Recall the
optimality conditions for a taxed equilibrium are given by

Z(q; p) = (p� C 0(q)) p � (1� �)q q � �(1�  (q; p)) = 0

Assuming an additive demand shock h with cumulative distribution F , we get

 (q; p) = Pr[h < q + S(p)�D(p)]

= F (q + S(p)�D(p)):

Thus

Z(q; p) = (p� C 0(q)) p � (1� �)q q � �(1�  (q; p))

= (p� C 0(q))(S 0(p)�D0(p)f(q + S(p)�D(p))

�(1� �)qf(q + S(p)�D(p))� �(1� F (q + S(p)�D(p)))

= 0

gives

(p� C 0(q))(S 0(p)�D0(p)) = (1� �)q + �
1� F (q + S(p)�D(p))

f(q + S(p)�D(p))
:

The second order conditions are

(p� C 0(q))(S 0(p)�D0(p))� (1� �)q � �1�F (q+S(p)�D(p))
f(q+S(p)�D(p)) � 0; q < S(p)

(p� C 0(q))(S 0(p)�D0(p))� (1� �)q � �1�F (q+S(p)�D(p))
f(q+S(p)�D(p)) = 0; q = S(p)

(p� C 0(q))(S 0(p)�D0(p))� (1� �)q � �1�F (q+S(p)�D(p))
f(q+S(p)�D(p)) � 0; q > S(p)

These can be guaranteed by @
@q
Z(q; p) � 0 which amounts to

�C 00(q)(S 0(p)�D0(p))� (1� �)� �

�
1� F (q + S(p)�D(p))

f(q + S(p)�D(p))

�
q

� 0

When F is uniform this gives

C 00(q)S 0(p) � 2�� 1

which is guaranteed by � � 1
2
.
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4.1 Monopoly response

Recall
Z(q; p) = (p� C 0(q)) p � (1� �)q q � �(1�  (q; p)):

We use this to investigate the monopoly response of a supplier in an example.
Suppose � = 1

4
and C(q) = 0, D(p) = 1 � p, and the cumulative distribution of

demand shock t is F (t) = h
2
+ 1

2
, h 2 [�1; 1]

p p � (1� �)q q � �(1�  (q; p))

Let

 (q; p) =
1

2
(q + S(p)�D(p) + 1)

=
1

2
(q + p)

Then

Z(q; p) = p p � (1� �)q q � �(1�  (q; p))

=
1

2
p� (1� �)q

1

2
� �(1� q + p

2
) = 0

p =
1

�+ 1
(q + 2�� 2q�)

If � = 0, then we choose p = q.
If � = 1

4
, then we choose p = 2

5
q + 2

5
.Thus C 00(q)(S 0(p) � D0(p)) � 2� � 1

guarantees that

�C 00(q)(S 0(p)�D0(p))� (1� �)� �

�
1� F (q + S(p)�D(p))

f(q + S(p)�D(p))

�
q

= �C 00(q)(S 0(p)�D0(p))� (1� �) + �

� 0

which ensures a global optimium.

4.2 Duopoly

Suppose C(q) = 0, D(p) = 1 � p, with an additive demand shock of h, where
the cumulative distribution of h is F (h) = h

2
+ 1

2
, h 2 [�1; 1]. The equilibrium

condition is

p(S 0(p)�D0(p))� (1� �)q � �
1� q+S(p)�D(p)

2
� 1

2
1
2

= 0
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which setting q = S(p) gives

p(S 0(p)�D0(p))� (1� �)S(p)� �
1� (2S(p)�D(p))

1
= 0

p(S 0(p)�D0(p)) + (3�� 1)S(p)� �(1 +D(p)) = 0

p(S 0(p)�D0(p))� (1� �)S(p)� �
1� (2S(p)�D(p))

1
= 0

p(S 0(p)�D0(p)) + (3�� 1)S(p)� �(1 +D(p)) = 0

pS 0(p) + (3�� 1)S(p) = �(1 +D(p)) + pD0(p)

This has solution given by

p3��1S 0(p) + (3�� 1)p3��2S(p) = �p3��2(1 +D(p)) + p3��1D0(p)

�
p3��1S(p)

�0
= �p3��2(1 +D(p)) + p3��1D0(p)

S(p) = ap1�3� + p1�3�
Z �

�p3��2(1 +D(p)) + p3��1D0(p)
�
dp

Example 1 Suppose � = 0 andD(p) = 1�p. This gives the di¤erntial equation�
p�1S(p)

�0
= +p�1D0(p)

which has solution

p�1S(p) = A� ln p
S(p) = Ap� p ln p

Di¤erent choices of A give rise to di¤erent candidate equilibrium curves, as shown
in Figure 2.
Some of these curves cannot give supply-function equilibria since they become

too steep and bend back. This behaviour is admissible as long as it occurs in
regions of (q; p) space where there is no likelihood of being dispatched. Observe
also that �ironing�curves vertically in this setting will not result in equilibrium
unless the suppliers are at capacity, since we show above that the optimal response
to a vertical curve is a sloping monopoly supply curve, not a vertical curve.
The least competitive equilibrium will consist of the highest curve in Figure

2 that does not bend back. This is the curve that is vertical at the point where
the Cournot line p = q meets the maximum demand curve (shown in Figure 2 as
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Figure 2: SFE candidates for elastic demand. The least competitive equilibrium
passes vertically through the maximum demand where it intersects the Cournot
line.

a green curve). Since D(p) = 2� p, we have p = 2� 2q, where q is the dispatch
of each generator. This occurs where p = q = 2

3
. This de�nes a by

a
2

3
� 2
3
ln
2

3
=
2

3

giving

S(p) = (1 + ln
2

3
)p� p ln p.

Now consider nonzero lambda with D(p) = 1 � p. In the region where the
generators are dispatched we have

p3��1S 0(p) + (3�� 1)p3��2S(p) = �p3��2(1 +D(p)) + p3��1D0(p)

�
p3��1S(p)

�0
= �p3��2(1 +D(p)) + p3��1D0(p)

S(p) = ap1�3� + p1�3�
Z �

�p3��2(1 +D(p)) + p3��1D0(p)
�
dp

S(p) = ap1�3� � 1
3

�
6�2 + p (�+ 1) (1� 3�)

�
� (1� 3�)
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The least competitive supply curve will be vertical when it passes through the
maximum demand at some price P . Thus we require that P satis�es

2S(P ) = 2� P

S 0(P ) = 0

This gives

(1� 3�)aP�3� � 1
3

(�+ 1)

�
= 0

P�3� =
1

3a

(�+ 1)

�(1� 3�)
so

a =
1

3

(�+ 1)

�(1� 3�)P
3�

2S(P ) = 2aP 1�3� � 2
3

�
6�2 + P (�+ 1) (1� 3�)

�
� (1� 3�)

=
2

3

(�+ 1)

�(1� 3�)P �
2

3

�
6�2 + P (�+ 1) (1� 3�)

�
� (1� 3�)

= 2� P

This gives

P =
2(1� �)

3� �

and so

a =
1

3

(�+ 1)

�(1� 3�)(
2(1� �)

3� �
)3�:

The least competitive supply-function equilibrium is then

S(p) =
1

3

(�+ 1)

�(1� 3�)(
2(1� �)

3� �
)3�p1�3� � 1

3

�
6�2 + p (�+ 1) (1� 3�)

�
� (1� 3�) :

Example 2 Suppose � = 1
4
. The least competitive supply-function equilibrium

is
20

33
4
p
33

4
p
72 4
p
p� 5

3
p� 2:

This is shown in Figure 3 as a solid curve. The price at which this curve becomes
vertical is less than the corresponding price if there is no tax.
One can also see from Figure 3 that the tax has increased the competitive-

ness at high demand outcomes. This has the e¤ect of reducing peak prices and
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Figure 3: Supply-function equilibria with elastic demand. The green curve is
the least competitive equilibrium without a 25% tax. The magenta curves are
equilibria with a 25% tax. The solid curve is the least competitive.

increasing o¤peak prices. Without a tax, the clearing price under demand shock
h is p(h), which solves

2S(p) = 1 + h� p

2(1 + ln
2

3
)p� 2p ln p = 1 + h� p

If � = 1
4
then P (h) solves

2

�
20

33
4
p
33

4
p
72 4
p
p� 5

3
p� 2

�
= 1 + h� p,

so the least competitive supply-function equilibrium is:

S(p) =
20

33
4
p
33

4
p
72 4
p
p� 5

3
p� 2

Let us compare this with the least competitive equilibrium when � = 0. This is

S(p) = (1 + ln
2

3
)p� p ln p

It is di¢ cult to compare these analytically. When � = 1
4
we can compare the

distribution of clearing prices under each equilibrium.
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Probability density function of market equilibrium clearing prices with and
without a 25% tax on observed bene�ts.

One can see that the tax decreases the range of price outcomes, and increases
the probability of low prices, except possibly for very low demand outcomes. The
consumer welfare in demand realization h is the area under the demand curve
above the clearing price p(h). This is

W (h) =
(1 + h� p(h))2

2

The expected consumer welfare is

W =

Z 1

�1
W (h)

1

2
dh:

When the demand shock realization is h, the demand met by each supplier is

1 + h� p(h)

2
.

Since the cost of supply is zero, the actual pro�t of each supplier when the demand
shock realization is h is then

�(h) = p(h)
1 + h� p(h)

2

The expected welfare of each supplier is then

� =

Z 1

�1
�(h)

1

2
dh:
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Since the actual cost of generation is zero, the perfectly competitive solution
would meet all demand at zero price 0. Thus the deadweight loss in any demand
shock realization h is the area of the triangle to the right and below the dispatch
point. This has height p(h) and base p(h). The expected deadweight loss is then

L =

Z 1

�1

p(h)2

2

1

2
dh.

Total welfare is

T =

Z 1

�1

(1 + h)2

2
:
1

2
dh =

2

3
:

We can compute expected welfare values numerically in the two cases where
� = 0 and � = 1

4
. Numerical approximations of these values are shown in Figure

4.

Tax level 0 25%
Suppliers gross profit 0.239 0.216
Consumer welfare 0.382 0.427
Deadweight loss 0.040 0.029

Figure 4: Results for SFE with and without a 25% tax. The taxation collected
is not counted in these �gures. Both columns add up to a total welfare and
deadweight loss before tax is deducted of 2

3
.

The expected gross pro�t for both suppliers in this example decreases from
0.239 without the tax to 0.216 with the tax at 25%.

5 Conclusions

The supply-function equilibrium models outlined in this paper show that taxes
imposed on electricity generators do not necessarily lead to less competitive out-
comes. It is interesting to speculate whether these results remain true for increases
in the number of players, asymmetry in suppliers, and contracting. Since they
lead to lower overall welfare for suppliers, one might conjecture that some recov-
ery of these losses will be achieved possibly by some out-of-market mechanism.
However in equilibrium it does not appear to be optimal to markup o¤er curves
to recover lost pro�ts from avoiding tax.
One motivation for this paper is the �bene�ciary-pays� transmission charg-

ing regime, in which the increase in bene�ts from a transmission asset are esti-
mated by measuring the di¤erence in observed pro�ts with and without the asset.
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Bene�cairies are then charged in proportion to this increase in bene�ts. The tax
we investigate in this paper has some similarities with the �bene�ciary-pays�
transmission charging regime, and we conjecture that the incentives on supplier
behaviour are likely to be the same, namely a �attening of optimal supply curves
to decrease the observed bene�ts.
It is possible that a more direct analysis of the �bene�ciary-pays�transmission

charging regime can be carried out. The simplest case of this would involve
the computation of a supply-function equilibrium in a two-node network, with
varying line capacity, and a tax imposed on the increase in welfare that extra
line capacity confers on the suppliers assuming that their o¤er does not change
in the low-capacity case. Transmission constraints substantially complicate the
calculation of supply-function equilibria (see [8], [14]) and so even in this simple
case one can imagine that results are not straightforward to obtain.
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