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We consider a model of risk-averse electricity capacity investment that includes electricity generators, retailers, industrial

consumers, and an independent system operator as individual agents in a perfectly competitive game. These agents each

simultaneously make their operational and contract decisions to maximise their individual risk-adjusted profit across the

potential scenarios, given the other agents’ decisions. We prove the existence of equilibrium for our model under some

relatively nonrestrictive assumptions. The model is applied to investigate the value of increased transmission capacity.

Even when the new transmission capacity is free, we show that increasing its capacity can lead to lower risk-adjusted

system welfare when there are insufficient contract instruments for trading risk. In contrast, when a liquid market for

contracts is included in the model, increases in transmission capacity is welfare enhancing and lead to better capacity

investment decisions made by the generation agents.
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1. Introduction

Investment and divestment in generation capacity is a topical issue in electricity systems worldwide. There

are many types of model that attempt to predict generation capacity investment, each using specific assump-

tions about how these decisions are made. The simplest models assume a social planning paradigm and treat

capacity investment as an optimisation problem. The earliest examples of this are Booth (1972) and Mass
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and Gibrat (1957). More recent studies incorporate real-world constraints. For example, Sen et al. (1994)

develop a two-stage model that integrates demand, capacity investment, and budget constraints. Economies

of scale and fixed costs are modelled by adding integer variables to the first stage of a two-stage model (see

Barahona et al. (2005), Eppen et al. (1989), Riis and Lodahl (2002), Riis and Andersen (2002)).

Another approach to capacity investment is to use agent-based models Bunn and Oliveira (2001), in which

agents react independently to market signals. Thus a generator will expand generation plants if the revenue it

is predicted to earn exceeds the long run cost of the plant. Agents within the model typically assume that no

other generation plant will be constructed and that their generation plant will not impact spot market prices.

These models can display “boom and bust” cycles of too much generation and insufficient generation, when

agents simultaneously decide to build generation plants, significantly dropping spot market price, leading

to an extended period without much investment at all.

More sophisticated approaches treat capacity investment as a non-cooperative game. The simplest of

these assume agents are perfectly competitive (as in Murphy and Smeers (2005), Zttl (2010)), making both

capacity and generation decisions simultaneously within a spot market. A second type of model assumes

agents compete with their capacity decisions in an oligopolistic manner Murphy and Smeers (2005), simul-

taneously deciding to build capacity and selling long-term contracts for this generation. The most compli-

cated models treat capacity investment as a bi-level problem (for example Chuang et al. (2001), Murphy

and Smeers (2005), Zttl (2010)). Agents compete in a Cournot manner when choosing capacity investment

decisions in the first stage, and in the second stage, agents act perfectly competitively given the capacity

decisions.

In Wang et al. (2009) agents with incomplete information make decisions in a bi-level game. In the top

level, the Independent System Operator (ISO) chooses prices that clear the market competitively. In the

bottom level, agents select capacity investment decisions and submit capacity, generation, and reserve bids.

One of the first capacity investment equilibrium models using coherent risk measures is described in

Ehrenmann and Smeers (2011). They consider each potential generation plant individually and compute the

risk-adjusted profit that the plant individually earns using conditional value at risk (as defined by Rockafellar
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and Uryasev (2000)). Using a model with an energy-only market, and a capacity market, it is shown that

modelling plant owners as risk neutral misses some critical structural differences between energy-only and

capacity markets.

Uncertainty in spot market prices makes financial contracts a vital tool for market participants. They

help balance extremes in profit for all involved agents and can help incentivise capacity decisions that are

closer to socially optimal. Limited contract liquidity (by constraining contract trades within the model) is

compared to unconstrained contract trading in de Maere dAertrycke and Smeers (2013). Different types of

contracts are compared in de Maere dAertrycke et al. (2017) where it is shown that models without contracts

give less efficient capacity decisions than those having them. This outcome is mirrored in our analysis.

We model a game where agents represent generation companies that may have a fleet of generation and

make decisions of capacity investment and generation. There are also retailers that must meet all demand

at a fixed price, or miss out on revenue and pay a penalty. We assume all agents have access to complete

information about potential future outcomes and their probability distributions. These agents are also risk-

averse and choose capacity investment to maximise their risk-adjusted profit.

The contributions of the paper are as follows. As in de Maere dAertrycke et al. (2017), we demonstrate

the beneficial effect of contracts on the efficiency of competitive equilibrium for investment. Our comple-

mentarity models provide a computational tool for quantifying this effect. Using these we show by example

how extra transmission capacity (even if is free) might decrease risk-adjusted welfare in the absence of

contracts. These models illustrate the importance of modeling risk and competition in planning investments

in electricity systems.

The paper is laid out as follows. In section 2 we describe the models in more detail and list the sets,

parameters, and variables that we use in our models. We also formulate a risk-averse social plan. In section

3 we present the formulation of our equilibrium model and give a theorem that guarantees existence of an

equilibrium. In section 4 we present results from an example where due to the generation agents being risk-

averse, a free and lossless transmission line can lead to lower system welfare through inefficient capacity

investment decisions caused by risk aversion. In section 5, we present results that show that allowing agents

to trade financial contracts can be a useful tool to improve agent and system welfare, and can be sufficient

to help ensure a transmission line is useful for the system as a whole. In section 6 we make conclusions.



Kok, Philpott and Zakeri.: Value of transmission under risk
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

2. Minimising risk-adjusted social cost

We consider an electricity transmission network with varying levels of demand at each node. We make deci-

sions around capacity investment, generation, transmission, and demand curtailment to meet this demand at

minimum social cost. To model increases in capacity, we use a combination of existing and potential new

generation plants. Each generator (existing and potential) has a given location in the network at which they

inject electricity. We assume that generation plants are built without delay. We aggregate electricity demand

into types. Each demand type has a representative node, giving the location in the network at which this

demand must be satisfied. Each demand type is either an industrial plant that purchases generation directly

from the spot market or has their demand met by a retailer that promises to meet demand at an agreed-upon

fixed rate. In both cases, demand is satisfied by purchasing directly from the spot market.

Transmission lines allow us to send power from where there is surplus cheap electricity to nodes of

insufficient supply. Each transmission line has a nominal maximum capacity, beyond which the line begins

to overheat. We approximate losses as increasing quadratically with the flow through the line. Loops may

exist within the transmission network, so we must ensure that electricity dispatch satisfies Kirchhoff’s laws

for a DC-Load Flow approximation. We model the central planner (and later the generators, retailers, and

transmission) as risk-averse. We compare a risk-averse social plan in this setting, which determines all of

the agent’s actions for them, to an equilibrium model. We assume that each agent (and the central planner)

uses a risk measure ρ, that transforms random variables to real numbers. We assume that ρ is coherent as

defined in Artzner et al. (1999). This means it has a dual representation (M) (see Theorem 4.16 of Föllmer

and Schied (2011)), whereby

ρ(Z) = max
Q∈M

(EQ[Z]). (1)

M is called the risk set of the coherent risk measure. We use this dual representation when proving the

existence of equilibrium in Appendix A.

To conclude, we summarise the relevant sets, parameters, and variables that we use in formulation of

the social plan as well as the equilibrium problem. We use the convention that calligraphic letters are sets,
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Roman type text denotes parameters, math-type text denotes variables and indices, and bold is used denote

parameters and variables that are not fully indexed.

2.1. Set definitions

A := Set of agents that participate in generation, retail, or industrial demand or a combination of these three

(a∈A).

I := Set of nodes at which electricity can be injected or consumed (i∈ I).

K := Set of existing generation plants (that may be expanded) and possible new generation plants (k ∈K).

H := Set of demand types (e.g. industrial, retail) (h∈H)

L := Set of directed lines connecting the nodes ((i, j)∈L).

E := Set that indexes loops that exist in transmission network (e∈ E).

Le := Set of arcs that exist in loop e ((i, j)∈Le)

Ω := Set of (discrete) scenarios that may occur (ω ∈Ω)

B := Set of load blocks to occur within each scenario (b∈B)

2.2. Agent variable definition

Za(ω) := The disbenefit each agent observes within each potential scenario.

zai,k := The capacity of each plant k (MW ).

xai,k := The level of construction (or expansion if it already exists) that each plant k undergoes (MW ).

yai,k(ω, b) := The level of generation output by plant k at node i in scenario ω and load block b (MW ).

qai,h(ω, b) := The level of load curtailment that consumer h experiences at node i in scenario ω and load

block b (MW ).

2.3. Transmission agent variable definition

Li(ω, b) := The transmission losses accumulated at node i.

fi,j(ω, b) := The level of generation in MW sent from node i to node j.
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2.4. Parameter definition

xCk := Per Megawatt cost of constructing or expanding each generation plant.

oCk := Per Megawatt cost of keeping each generation plant operational.

gCk(ω, b) := Marginal cost of electricity generation.

kai,k := The existing capacity for each plant.

uai,k := The upper bound of capacity investment for each plant.

dai,h(ω, b) := The quantity of demand of each type and owner observed in each scenario/load block.

mk(ω, b) := Multiplicative factor which modifies the available capacity from a generation plant depending

on the scenario and load block.

nk(ω) := Multiplicative factor which determines the average generation that could be maintained over the

load blocks without putting too much pressure on the power source or the plant itself.

rh := The per unit revenue earned from retail consumers of each type.

vh := The per unit cost of curtailing demand of each type.

f+
i,j := The maximum transmission (in MW) from node i to node j.

f−i,j := The negative of the maximum transmission (in MW) from node j to node i.

ci,j := Multiplier that is used to calculate the loss across a transmission line connecting nodes i and j.

si,j,e := The reactance of line (i, j) ∈ L with respect to loop e. This value is negative if (i, j) ∈ L but

(j, i)∈Le.

T(ω, b) := Time (in hours) spent in each load block given the scenario (known by all agents)

2.5. Problem formulation

We formulate a social plan that describes the problem of capacity investment, generation, and electricity

curtailment to minimise the risk-adjusted social disbenefit, calculated using the social risk measure ρ.

The objective for the system is to minimise the risk-adjusted social cost ρ(
∑

a∈AZ
a). The net disbenefit

Za(ω) observed by each agent, a, in each scenario, ω, is defined by equation (2). This equation excludes

any payments between agents on the spot market. As we calculate social welfare by first calculating the sum

of each agent’s welfare, these payments between agents cancel when calculating the risk-adjusted social
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PROBLEM 1. Social disbenefit minimisation objectives and constraints

S : min
z≥0,
x≥0,
y≥0,
q≥0,
f .

ρ

(∑
a∈A

Za

)

Za(ω) =
∑

i∈I,k∈K

xCk ·xai,k +
∑

i∈I,k∈K

oCk · zai,k

+
∑
b∈B

T(ω, b) ·
∑

i∈I,k∈K

gCk(ω, b) · yai,k(ω, b)

−
∑
b∈B

T(ω, b) ·
∑

i∈I,h∈H

rh · (dai,h(ω, b)− qai,h(ω, b))

+
∑
b∈B

T(ω, b) ·
∑

i∈I,h∈H

vh · qai,h(ω, b) ∀ω ∈Ω, (2)

s.t.

xai,k ≤ uai,k ∀a∈A, i∈ I, k ∈K, (3)

zai,k ≤ xai,k + kai,k ∀a∈A, i∈ I, k ∈K, (4)

yai,k(ω, b) ≤ mk(ω, b) · zai,k ∀i∈ I, k ∈K, ω ∈Ω, b∈B, (5)∑
b∈BT(ω, b) · yai,k(ω, b) ≤ nk(ω) · zai,k ∀a∈A, i∈ I, k ∈K, ω ∈Ω, (6)∑
(i,j)∈Le

si,j,e · fi,j(ω, b) = 0 ∀e∈ E , ω ∈Ω, b∈B, (7)

qai,h(ω, b) ≤ dai,h(ω, b) ∀a∈A, i∈ I, h∈H, ω ∈Ω, b∈B, (8)

Li(ω, b) =
∑
j:

((i,j)∪(j,i))∈L

ci,j
2
· (fi,j(ω, b))2 ∀i∈ I, ω ∈Ω, b∈B, (9)

fi,j(ω, b) ≤ f+
i,j ∀(i, j)∈L, (10)

fi,j(ω, b) ≥ f−i,j ∀(i, j)∈L, (11)∑
a∈A,h∈H dai,h(ω, b) ≤

∑
a∈A,k∈K y

a
i,k(ω, b)

+
∑

a∈A,h∈H q
a
i,h(ω, b)

+
∑

j∈I:
(j,i)∈L

fj,i(ω, b)

−
∑

j∈I:
(i,j)∈L

fi,j(ω, b)

− Li(ω, b) ∀i∈ I, ω ∈Ω, b∈B. (12)
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disbenefit. Excluding the spot market payments, this equation includes all sources of costs and revenue asso-

ciated with participating on the electricity market as either a generator, retailer, or an industrial consumer

(or some combination of the three).

In the first line of equation (2) we have physical capacity investment cost xC ·x, and the operation and

maintenance cost oC ·z. Recall that xmeasures capacity expansion and z measures capacity after possible

expansion of construction.

In the second term, we define the cost of generation gC · y, with gC giving the marginal cost of each

generation plant, and y the output of each generation plant. We then multiply this by the time T (ω, b) spent

in each load block b, and sum across all load blocks to get the total cost of generation in each scenario.

In the third line, we subtract the revenue earned from meeting demand. The revenue earned per unit of

met consumer demand is r. Here r can also represent the per unit short-run profit from running an industrial

plant like an aluminium smelter. The demand met is given by d − q. The exogenous demand of each

consumer is given by d, and q defines how much demand of each type is curtailed. The overall revenue

earned is given by r(d− q). We then multiply the retail revenue (or industrial short-run profit) earned in

each load block by the time T (ω, b) spent in each load block b to calculate the overall revenue earned from

demand in scenario ω.

In the fourth term of (2), we define the total cost of curtailing demand q. This penalty is added to the lost

revenue r · q earned from not meeting demand. The total amount of curtailed demand is given by q. Thus,

the overall penalty is v · q. Again, we multiply this by the time T (ω, b) spent within load block, b and sum.

The different values of vh and rh yield a non increasing demand curve at each node i, which defines the

total consumption at i as the price of energy increases. The minimum consumption zero will occur first at

some price that does not exceed P̄ = maxh(rh + vh).

In constraints (3) through (12) we define the physical generation constraints. Equation (3) limits the

capacity investment, x of each generation plant to be at most u. Equation (4) limits the capacity, z of each

generation plant to the sum of expanded and existing capacity x+ k, allowing for divestment (at no cost).

Equation (5) limits the power output, y, depending on the capacity, z, and a multiplicative adjustment,
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m, that depends on both the scenario and load block. This models long-term uncertainty (e.g. the long-

term average wind speed) and fluctuations (e.g. day-to-day changes in wind speed) that cause a generation

plant to not be run at 100% capacity. In equation (6), we limit the total energy output across load blocks,

depending on the capacity, z, and a multiplicative adjustment, n, that depends only on the scenario. For

example, a hydroelectric plant depends on the inflows, which does not limit the power output, but does limit

how long they will be able to maintain this level of generation.

In equations (9) through (11) we define the constraints on the transmission lines. We use a DC-Load Flow

approximation of the active power flows in the transmission lines Downward (2011). This assumes the volt-

age magnitudes at all nodes are approximately equal, and their phase angle differences are small. Assuming

that the resistance is much smaller than the reactance, the flow in a transmission line is proportional to the

difference between the voltage angles at its endpoints.

fi,j =
θi− θj
si,j

. (13)

We can then rearrange (13) to give

∑
(i,j)∈Le

si,j,e · fi,j = 0. ∀e∈ E , (14)

where the parameter si,j,e is negative if the orientation of an arc (i, j)∈L is in the opposite direction to the

modelled loop direction, giving constraint (7).

In (9) we define the losses from transmission and assign them to nodes. Losses are assumed to be propor-

tional to the square of the flow giving ci,j(fi,j)
2. For simplicity, we measure flow at the midway point of the

line and assume that half of the losses are accumulated at the origin node, and half at the destination node.

The total losses accumulated at a node i is then half of the losses that occur on connecting transmission

lines, giving

∑
j:

((i,j)∪(j,i))∈L

ci,j
2
· (fi,j)2.
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Recalling that fi,j measures the flow at the midpoint of the transmission line, the constraint (10) imposes

thermal limits on transmission. As the set L is directed, the constraint (11) gives the negative of the maxi-

mum transmission from node j to node i (with (i, j)∈L) due to the thermal limits.

Finally, in equation (12), we define the constraint that ensures that for each scenario and load-block, that

demand is met at all nodes. First, on the left-hand side of equation (12), we define the demand, d. Allowing

for free disposal of power, net supply of power to a node (generation plus curtailment of demand plus net

transmission to a node minus losses) must be equal to or exceed demand.

3. Perfectly competitive risk-averse equilibrium

In this section, we formulate the equilibrium problem describing the interactions between the agents. Each

gentailer chooses their capacity investment, generation, curtailment, and contract decisions to maximise

their risk-adjusted profit. Simultaneously, the system operator chooses how to transmit power between

nodes, and the spot market and contract markets are cleared.

3.1. Competitive equilibrium

We model agents competitively making decisions to minimise their individual risk-adjusted disbenefit.

These agents participate as price takers within a perfectly competitive market, where prices are set by an

auctioneer to ensure supply is equal to demand. We represent this auctioneer through complementarity

conditions Facchinei and Pang (2007).

3.2. Contracts

An electricity derivative contract compensates for extremes in payoffs (both positive and negative) from

an underlying position that generates value. For example, an electricity retailer may be concerned with

potentially high wholesale market prices and wishes to be insured against this outcome.

We model the trading of derivative contracts by first introducing a set of financial instruments, c ∈ C.

These instruments are provided by a contract auctioneer who chooses the prices pc of the instruments to

clear the contract market. Each instrument c has a random return, Wc. If an agent chooses to buy wc units

of each contract c then the risk-adjusted disbenefit for this agent is defined by

ρ(Z +
∑
c∈C

wc · (pc−Wc)). (15)
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Thus, depending on Z, p, and W , an agent will typically be able to reduce ρ(Z) by acquiring a portfolio

of contracts w.

Specific examples of contracts are Arrow-Debreu securities and contracts for differences. Arrow-Debreu

securities Arrow and Debreu (1954) have C ⊆Ω, and have Wc(ω,π(ω)) = 1 if c= ω and Wc(ω,π(ω)) = 0

otherwise. If C = Ω, then we have a complete market. A contract for differences (CFD) is a financial deriva-

tive that uses the observed prices to determine its value. In this case, a contract at node i has Wc(ω,π(ω)) =∑
b∈BT(ω, b)πi(ω, b)/(

∑
b∈BT(ω, b)). Continuing with the conventions used for our social cost minimisa-

tion model, we now define additional sets, variables and parameters to allow these agents to trade financial

contracts with one another.

3.3. Additional notation

C := Set of financial contracts that are available for agents to buy or sell market (c∈ C).

Ψa(ω) := The disbenefit each agent observes within each potential scenario including net payoff from each

contract.

wac := The number (possibly negative) of contracts of type c∈ C purchased by agent a.

πi(ω, b) := The spot price for electricity per MWh at node i in each scenario ω and load block b.

pc := Spot market price for contract c.

Wc(ω,π(ω)) := The revenue earned per unit of contract c purchased, in scenario ω. This may depend

partially or completely on the observed spot market prices during a scenario.

In defining equilibrium, we adopt the mixed-complementarity notation of Ferris and Munson (2000).

Given lower bounds ` ∈ {R∪{−∞}}n, upper bounds u ∈ {R∪{∞}}n, and a function F : Rn→ Rn, a

mixed complementarity problem (MCP) seeks x ∈ Rn such that precisely one of the following holds for

each i∈ {1, . . . , n} :

xi = `i,Fi(x)≥ 0, (16)

`i <xi <ui,Fi(x) = 0, (17)

xi = ui,Fi(x)≤ 0. (18)
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We write these conditions compactly using the ⊥ (said: “perpendicular”) notation:

F (x)⊥ `≤x≤u.

Each of the four different combinations of finite/infinite lower/upper bounds on x,

0 = F (x)⊥x,

0≤ F (x)⊥x≥ `,

0≥ F (x)⊥x≤u,

F (x)⊥ `≤x≤u.

gives rise to a different MCP.

3.4. Problem formulation

We can now formulate each agent’s minimisation problem, which together form the risk-averse competi-

tive equilibrium. We also formulate the market clearing conditions. This follows a similar structure to the

definition of the social plan above.

In Appendix A, we reformulate this equilibrium problem as a game, representing the market clearing

conditions by agents that choose prices. We use the KKT conditions in Appendix B to show that both sets of

problems are equivalent, and prove that the game has a Nash equilibrium which must also be a competitive

equilibrium.
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PROBLEM 2. Agent objectives and constraints (∀a∈A)

AP a : min
xa≥0,
za≥0,
ya≥0,
qa≥0,
wa.

ρa(Ψa)

Ψa(ω) = Za(ω) +
∑
c∈C

(pc−Wc(ω,π(ω))) ·wac ∀ω ∈Ω, (19)

Za(ω) =
∑

i∈I,k∈K

xCk ·xai,k +
∑

i∈I,k∈K

oCk · zai,k

+
∑
b∈B

T(ω, b) ·
∑

i∈I,k∈K

(gCk(ω, b)−πi(ω, b)) · yai,k(ω, b)

+
∑
b∈B

T(ω, b) ·
∑

i∈I,h∈H

(πi(ω, b)− rh) · (dai,h(ω, b)− qai,h(ω, b))

+
∑
b∈B

T(ω, b) ·
∑

i∈I,h∈H

vh · qai,h(ω, b) ∀ω ∈Ω, (20)

s.t.

xai,k ≤ uai,k ∀i∈ I, k ∈K, (21)

zai,k ≤ xai,k + kai,k ∀i∈ I, k ∈K, (22)

yai,k(ω, b) ≤ mk(ω, b) · zai,k ∀i∈ I, k ∈K, ω ∈Ω, b∈B, (23)∑
b∈BT(ω, b) · yai,k(ω, b) ≤ nk(ω) · zai,k ∀i∈ I, k ∈K, ω ∈Ω, (24)

qai,h(ω, b) ≤ dai,h(ω, b) ∀i∈ I, h∈H, ω ∈Ω, b∈B. (25)

The objective for each agent, a, is to minimise their own risk-adjusted disbenefit ρa(Ψa). The net disben-

efit Ψa(ω) observed by each agent a in each scenario ω is defined by equation (19). This equation has two

components. Za(ω) is the net cost from investing and operating their fleet of generation in scenario ω. The

second term is the net payoff from each contract based on the purchase price p, and the scenario dependent

payoff W. The net effect of each contract depends on the difference between the price and return per unit

purchased (p−W) multiplied by the amount w of this contract that is purchased or sold.

The net cost from investing and operating their fleet of generation, Za(ω), observed by each agent, a, in

each scenario, ω, is defined by equation (20). This equation includes the costs and revenue streams of all
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three types of agents (generation, retail, and industrial consumer). In the first line of equation (20), we have

the physical capacity investment cost, xC ·xa, and the operation and maintenance cost oC ·za.

In the second line of equation (20), we have the component of the disbenefit from generation, (gC−π)y,

with gC giving the marginal cost of generation, π the spot market price, and y the output of generation.

For each scenario, ω, we then multiply this by the time, T(ω, b) spent in each load block, b, to get the total

short run disbenefit from each plant (giving T (gC−π)y).

In the third term, we define the disbenefit from meeting demand. The per unit cost of meeting demand

is given by π − r with the agent having to purchase the electricity directly from the spot market at π and

given r by the consumer. The demand met by the retail component of the agent is given by d − q. The

exogenous demand of each consumer is given by d, and q is how much the retail company decides to

curtail. The overall profit is given by (π− r)(d−q). Again, we multiply this by the time spent within each

load block giving the total short-run profit, excluding the curtailment penalty given in the next term (giving

T(π− r)(d− q)).

In the final term, we define the penalty the retail agent must pay for unmet demand, q. The penalty is

the value of lost load, v, which is much higher than typically observed spot market prices. This penalty is

added to the lost revenue from not meeting all of the consumer demand for electricity generation.

In equations (21) through (25), we define the physical constraints on capacity investment, generation,

and curtailment. Equation (21) limits the capacity investment x of each plant to a predetermined level u.

Equation (22) limits the capacity, z of each generation plant to the sum of expanded and existing capacity

x+ k, allowing for divestment. Equation (23) limits the power output y of each plant, depending on the

capacity investment x and some multiplicative adjustment, m, that depends on the scenario and load block.

Equation (24) limits the energy output of a generation plant. Finally, equation (25) limits consumption to

be at most the level of demand.

In equation (26) we define the objective function for the system operator. It is a price-taking agent that

attempts to maximise the revenue (minimise the disbenefit) they receive from transmission of electricity.

The cost to the system operator depends on both the difference between the node prices, πi −πj and the
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PROBLEM 3. Independent System Operator objectives and constraints (∀ω ∈Ω, b∈B)

IP (ω, b) : min
f(ω,b)

∑
(i,j)∈L

(πi(ω, b)−πj(ω, b)) · fi,j(ω, b) +
∑
i∈I

πi(ω, b) ·Li(ω, b) (26)

s.t. ∑
(i,j)∈Le

si,j,e · fi,j(ω, b) = 0 ∀e∈ E , (27)

Li(ω, b) =
∑
j:

((i,j)∪(j,i))∈L

ci,j
2
· (fi,j(ω, b))2 ∀i∈ I, (28)

fi,j(ω, b) ≤ f+
i,j ∀(i, j)∈L, (29)

fi,j(ω, b) ≥ f−i,j ∀(i, j)∈L. (30)

transmission between the nodes, fi,j , giving (πi−πj)fi,j . Significant losses occur when we transmit elec-

tricity over long distances, thus we add the value of the losses to the objective. The per unit cost accumulated

at a node is the spot market price, πi. Thus, the total cost from losses at a node is πiLi.

In (27) through (30) we define the transmission constraints. These are the same as the constraints (7)

through (11) in the social plan. With free disposal, this problem remains convex as shown in Palma-Benhke

et al. (2013).
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PROBLEM 4. SM : Spot market equilibrium conditions.

∑
a∈A,k∈K

yai,k(ω, b) (31)

+
∑

a∈A,h∈H

[
qai,h(ω, b)−dai,h(ω, b)

]
(32)

+
∑
j∈I:

(j,i)∈L

fj,i(ω, b) (33)

−
∑
j∈I:

(i,j)∈L

fi,j(ω, b) (34)

−Li(ω, b) ⊥ P̄≥ πi(ω, b)≥ 0 ∀i∈ I, ω ∈Ω, b∈B. (35)

PROBLEM 5. CM : Contract market equilibrium conditions.

0≤−
∑
a∈A

wac ⊥ pc ≥ 0 ∀c∈ C. (36)

The expressions (31) through (35) is an equilibrium condition that ensures, at each node, supply meets

demand at a competitive price. We have free disposal of power within our model, allowing supply to exceed

demand at each node. However, when this occurs, the spot market price for electricity at this node will be

0. We also impose an upper bound on the spot market price P̄ = maxh(rh + vh).

The complementarity condition (36) is an equilibrium requirement that ensures that the price of each

contract is set to a competitive price with the number of contracts of each type sold equal to the number

purchased.

The following theorems state that solutions exist for the stated equilibrium problems when agents trade

Arrow-Debreu securities or contracts for differences respectively. For both theorems we need the following

assumptions.

ASSUMPTION 1. Each agent is endowed with a coherent risk measure with a polyhedral risk set.

ASSUMPTION 2. The intersection of the relative interior of each producer’s risk set is non-empty.

ASSUMPTION 3. The set Ω of scenarios is finite.
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ASSUMPTION 4. The set C of contracts is linearly independent.

THEOREM 5. Under assumptions 1, 2, 3, and 4, the equilibrium for the overall problem that combines

problems (AP , IP , SM , CM ) exists when agents can trade Arrow-Debreu securities.

Proof. In Appendix A subsection 7.1 we reformulate the equilibrium problem (AP , IP , SM , CM ) to

a Nash game (G,C,M,S,P). Since all optimisation problems are convex, we can show these problems

are equivalent by showing that the joint KKT conditions of (AP ,IP , SM ,CM ) are exactly the same as

(G,C,M,S,P). We then show that the game (G,S,M) is guaranteed to have an equilibrium, bounding

Z. Finally in subsection 7.3, we then prove that as long as Z is bounded, we can guarantee existence of

equilibrium in the Nash game (C,P) with Arrow-Debreu contracts. With existence of equilibrium in the

problems (G,S,M) and (C,P), we have existence in the overall problem (G,C,M,S,P).

THEOREM 6. Under assumptions 2, 3, and 4, the equilibrium for the overall problem that combines prob-

lems (AP , IP , SM , CM ) exists when agents have coherent risk measures and can trade contracts for

differences.

Proof. Again, we use the reformulated Nash game (G,C,M,S,P) from Appendix A subsection 7.1. Again,

the problems (G,S,M) are guaranteed to have an equilibrium, bounding Z. Finally in subsection 7.4, with

agents able to purchase and sell contracts for differences we prove existence of equilibrium to the Nash

game (C,P) whenZ is bounded. The multidimensional case is derived by de Maere dAertrycke and Smeers

(2013) who give a proof of bounded contract quantities that generalises the argument presented here. With

existence of equilibrium in the problems (G,S,M) and (C,P), we have existence in the overall problem

(G,C,M,S,P).

4. Case study: Expansion of a transmission line

In our case study we assume two nodes S and N, and four agents comprising one retailer, two generators,

and the system operator defined as follows.
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• The uncertain demand retailer in node N purchases generation on the spot market to sell to consumers

whose demand varies over load blocks and is uncertain in terms of the overall amount of demand;

• The peaker plant generator in node N has the opportunity of constructing a plant with known capacity

but relatively high running costs;

• The baseload plant generator in node S has the opportunity of constructing a plant with uncertain

capacity but lower running costs than the peaker plant.

N

S

Uncertain Demand,

Peaker Plant

Baseload Plant

Line capacity= x

Figure 1 Diagram showing location of generators and consumers of electricity. Throughout this case study, the transmission

line is considered lossless with capacity L.

There are two potential sources of uncertainty in our model, as illustrated by scenarios in Figure 2, and

summarised in Table 1.
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Low 
Demand

High
Demand

Low 
In�ows

High
In�ows

P(u1) = 0.125

P(u2) = 0.125

P(u3) = 0.125

P(u4) = 0.125

P(u5) = 0.125

P(u6) = 0.125

P(u7) = 0.125

P(u8) = 0.125
}
}

Figure 2 Diagram showing the potential events that can occur within the case study as well as their probability. The sources of

randomness in this model are inflows and demand.

Table 1 Summary of parameters across scenarios

Scenario Probability m - Baseload plant mult. factor Demand

b1 b2

1 0.125 0.5 0.3333 1

2 0.125 1 0.3333 1

3 0.125 1.5 0.3333 1

4 0.125 2 0.3333 1

5 0.125 0.5 0.5 1.5

6 0.125 1 0.5 1.5

7 0.125 1.5 0.5 1.5

8 0.125 2 0.5 1.5

There are 8 scenarios in total, with scenarios 1 to 4, highlighted in green, corresponding to the low

demand, and scenarios 5 to 8, highlighted in blue corresponding to high demand. The uncertainty in capacity
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in the baseload plant is captured through a multiplication factor which changes the actual upper bound on

y (generation) for a given z (generation capacity).

The risk measure we will be using in the case study is a convex combination of the Conditional Value

at Risk (CVaR), and the expected cost. CVaR is a coherent risk measure, that can be represented by the

formula of Rockafellar and Uryasev (2000):

CVaR1−α(Z) = inf
ξ

[
ξ+

1

α
E(Z − ξ)+

]
. (37)

Specifically, our case studies will use a convex combination of this risk measure and the expected disbenefit,

so

ρ(Z) = λ ·CVaR1−α(Z) + (1−λ) ·E(Z). (38)

We choose the parameters λ and α to be 0.5 and 0.25 respectively. This essentially triples the weight that

agents (as well as the social welfare optimising agent) places on the 2 scenarios where they earn the lowest

welfare while halving the weighting on the other 6 scenarios.

In node N we have uncertain demand and the peaker plant, and the baseload plant in node S. Thus, there

is some source of uncertainty at each node. We connect these two nodes with a transmission line of capacity

L that we will change to see how it impacts the equilibrium.

We are modelling agents as price takers with constant marginal costs. Accordingly, if spot market prices

are too low, meaning any revenue would not cover the cost of investment, then they will not construct the

plant. If prices are set high enough, then agents will construct up to the plant’s maximum capacity. There

is a point in the middle where agents earn 0 risk-adjusted profit from a plant and construct anywhere from

zero up to the plant’s maximum capacity depending on the equilibrium of the overall model. In this case

study, we set the maximum capacity to infinity. Thus generation agents will not make a risk-adjusted profit

from their capacity investment.

In Figure 3, we see that when we initially increase the capacity of the transmission line from zero, in

equilibrium there is a trend of increasing baseload capacity and decreasing peaker capacity. This occurs

as the baseload plant, previously isolated from the demand, begins to gain access to this demand via the
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transmission line. As they choose to construct the baseload plant, the baseload plant agent will compete

with the peaker plant agent, to make a zero risk-adjusted profit on the spot market.

However, there is some risk faced by each agent, and without a complete market for risk, we cannot

guarantee that agents choose socially optimal capacity investment decisions. In fact, as we increase the

capacity of the transmission line, we see that social welfare decreases, as shown in the topmost curve in

Figure 4.

The total welfare of the competitive solution (the sum of each agent’s risk-adjusted welfare as shown

near the bottom of Figure 4 is much lower than the social welfare (calculated by applying the risk function

to the sum of each agent’s welfare) across all transmission capacity levels. This shows a disparity between

the scenarios that each agent weighs more heavily due to risk aversion. Observe that these values would be

equal if all agents had the same low-profit scenarios.
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Figure 3 Generation Expansion decisions as a function of line capacity in the no contract model.
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Figure 4 Risk-adjusted welfare of each agent as a function of line capacity in the no contract model.

5. Contracts make transmission beneficial

In the previous example, we see that, when agents are risk-averse, a larger transmission line can exacerbate

the problem of under-investment, leading to a reduction in social welfare. Now we introduce contracts and

show how they can improve social welfare.

In Figure 5 we can see how a CFD based on the system average spot market price has enabled an improve-

ment in social welfare when there is a larger transmission line. With the ‘Avg Node CFD’ we get close to

the socially optimal capacity decisions. We get even closer when we have a CFD at each node, and closer

still in the model where agents trade Arrow-Debreu securities. Including the ISO as an agent that can trade

Arrow-Debreu securities (‘ADB all’) gives the risk-adjusted system optimal capacity investment decisions

for each given transmission capacity, and so total welfare is equal to the optimal social welfare.

In Figure 6 we look at the equilibrium risk-adjusted welfare outcomes for each agent, as well as the risk-

adjusted system welfare. Again, introducing contracts substantially improves social welfare and reduces the

severity of decreasing total welfare with increased transmission capacity. However, we do see a few cases
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where total welfare does decrease as we incrementally increase the capacity of the transmission line. This

happens in the ‘2 Node CFD’ model where total welfare is decreased, as there is still some difference in

what the worst scenarios are for the generators compared with the system. Across all line capacities the

contracts have improved the risk-adjusted welfare of the retail agents substantially.
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Figure 5 Generation Expansion decisions as a function of line capacity in each model. NC - Default model without contracts

available for agents to trade amongst one another, AN CFD - A contract for difference (CFD) which uses the time

averaged spot market price to determine the payoff is available to trade amongst agents, 2N CFD - 2 contracts for

difference each with their own independent price, with payoff based on the time averaged spot market price, ADB

- Agents can trade Arrow-Debreu securities, ADB all participate (equivalent to the social plan) - The ISO is also

included as an agent and can trade Arrow-Debreu securities.

In Figures 7,8,9 we highlight the capacity investment decisions and welfare results of a few select trans-

mission capacities. In Figure 7, as we increase the capacity of the transmission line, we see the growing

difference between the ‘No Contract’ model and the models with contracts.
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Figure 6 Risk-adjusted welfare of each agent as a function of line capacity in each model.

In Figure 8 we see that, as we include a larger transmission line in our example, there is a nearly consistent

trend across all models with contracts that welfare is also improved, in contrast to our non-contract model,

where we see a dip in system welfare caused by inefficient capacity investment decisions.

We can explain this discrepancy by looking at Figure 9. Looking at the payoffs in the ‘No Contract’

model for the generators when we increase the transmission line from 0 MW to 0.5 MW, we see that the

increased capacity by gen. base has caused the revenue earned by gen. peak to decrease during shortages

of supply (scenarios where the price taker may earn higher profits) and causes them to reduce investment

to get back to a zero risk-adjusted profit. The larger transmission line has also caused gen. peak’s revenue

earned across scenarios to decrease, as the cheaper baseload plant is used to meet much of the demand in

scenarios where there is a surplus in supply. Now both generation agents earn higher profits in scenarios

where there are shortages (scenarios 1 and 5) which are the worst scenarios for the system as a whole.

In summary, we observe that as we add more contracts to the model, and allow more agents to trade these

contracts, we get closer to completing the market. The contracts for differences are sufficient in getting

capacity investment decisions that maximise risk-adjusted social welfare for this case study, but the dem.
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uncertain retail agent did not completely align with the system in terms of worst case scenarios. Thus,

contracts for differences are insufficient in completing the risk market in this model.
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Figure 7 Capacity capacity investment of each plant under specific transmission capacities in each model: 0MW and 200MW.
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Figure 8 Expected and risk-adjusted welfare for each agent under each model for each of the previously specified transmission

capacities.
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Figure 9 Welfare in each model for each agent under each scenario under the specified transmission capacities.
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6. Conclusions

We have created a model with perfectly competitive agents simultaneously making their capacity invest-

ment, generation, curtailment, and contract decisions. Under some mild assumptions, we have shown the

existence of a competitive equilibrium for models in incomplete markets with Arrow-Debreu securities and

contracts-for-differences.

We have solved a case study with uncertainty in supply availability and retail demand. Results show

that in some circumstances, as a result of the agents being risk-averse, underinvestment exacerbated by the

transmission line can more than cancel out any benefits the transmission line provides within the electricity

market. In this setting, introducing contracts for differences improves both individual agent welfare, and

system welfare. By aligning the worst-case scenarios for generation agents more towards that of the system

as whole, contracts help ensure that having a transmission line (or increasing its capacity) is much more

likely to be beneficial to the system as a whole, even when there is uncertainty in how this additional

transmission capacity is going to influence spot market prices.
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7. Appendices

7.1. Appendix A: Equilibrium in a simultaneously perfectly competitive spot market and

contract market

As previously outlined, we study perfectly competitive players that make simultaneous investment and gen-

eration decisions as well as decisions on their hedging positions. Walrasian market clearing conditions for

both the energy spot and contract markets complete the description. To prove existence of equilibrium, we

can reformulate the equilibrium problem as a non-cooperative game to which we can apply Rosen’s theo-

rem Rosen (1965). This theorem requires convexity of the agent problems and compactness of their feasible

regions. This requires some care in dealing with contract decisions, which are not explicitly bounded in our

formulations.

The steps in the proof are as follows. First, we reformulate the problem in the start of section 3 to split

each gentailer agent into two departments, one in charge of contracting and the other in charge of capacity

investment and spot sales. The former (i.e. the contract trading department) optimises contracts assum-

ing fixed generation and capacity investment actions, while the latter minimises risk-adjusted disbenefit

assuming a fixed quantity of contracts. The KKT conditions derived from each of these formulations when

combined are equivalent to the KKT conditions of the original problem. Since each agent problem is con-

vex, and hence equivalent to its KKT conditions, we can show that any equilibrium of the disaggregated

formulation is an equilibrium of the original formulation and vice versa.

Next, we apply Rosen’s theorem Rosen (1965) to show that an equilibrium exists. This requires convexity,

continuity and compactness. It is straightforward to establish the required continuity and convexity results.

Compactness, however, requires more effort. The set of capacity investment and production decisions are

naturally bounded, but the contract volume and prices are not. We therefore need to establish that the

problem of optimising the sum of risk-adjusted welfare, through arranging contract trades, when disbenefits

Z ∈Z are given, is bounded. The analysis required to do this depends on the exact form of the contract. We

distinguish two forms, Arrow-Debreu securities and contracts for differences, and prove the boundedness

of contract trades for these two cases separately.
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There are a few assumptions we require to ensure the existence of an equilibrium (we make no claim that

this is unique or isolated).

ASSUMPTION 7. Each agent is endowed with a coherent risk measure with a polyhedral risk set.

ASSUMPTION 8. The intersection of the relative interior of each gentailer’s risk set is non-empty.

Maere d’Aertrycke, et. al. provide an in-depth analysis of the need for this assumption in

de Maere dAertrycke and Smeers (2013) to guarantee the existence of an equilibrium.

ASSUMPTION 9. The set Ω of scenarios is finite.

ASSUMPTION 10. The set C of contracts is linearly independent.

A set of contracts, C is linearly dependent if there exists wa 6= 0 such that∑
c∈CWc(ω,π(ω)) ·wac = 0. This means we can express one contract as a linear combination of the remain-

ing contracts.

7.2. Problem reformulation

The reformulation of our problem is laid out as follows. We have split each agent into effectively two parts,

that can be thought of as the agent’s departments. In one part, given the contracts, the agent optimises its

generation and retail decisions; this we have labelled Ga. The other part, Ca, may be thought of as the con-

tracts department and is responsible for the volume of contracts purchased. This department takes prices,

generation, and retail decisions as given. Splitting the agent this way allows us to address the contract aspect

of the model separately from payoffs from their generation and sales actions, which then yields bounds

on the contract quantities. We have also restated the Walrasian market-clearing conditions as optimization

problems (M(i,ω, b) and P(ω, b)), rather than complementarity conditions. This gives a collection of opti-

mization problems which when solved simultaneously constitute a non-cooperative game which we denote

(G, C,M, S, P). The optimization problems are as follows.
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For any (w,π,p) each gentailer a∈A chooses optimal (xa,za,ya,qa) to solve

Ga : min
xa≥0,
za≥0,
ya≥0,
qa≥0

ρa(Ψa) (39)

Ψa(ω) =Za(ω) +
∑
c∈C

(pc−Wc(ω,π(ω))) ·wac ∀ω ∈Ω, (40)

Za(ω) =
∑

i∈I,k∈K

xCk ·xai,k +
∑

i∈I,k∈K

oCk · zai,k (41)

+
∑
b∈B

T(ω, b)

( ∑
i∈I,k∈K

(gCk(ω, b)−πi(ω, b)) · yai,k(ω, b)

)
(42)

+
∑
b∈B

T(ω, b)

( ∑
i∈I,h∈H

(rh + vh−πi(ω, b)) · qai,h(ω, b)

)
(43)

+
∑
b∈B

T(ω, b) ·

( ∑
i∈I,h∈H

(πi(ω, b)− rh) ·dai,h(ω, b)

)
∀ω ∈Ω, (44)

s.t. xai,k ≤ uai,k ∀i∈ I, k ∈K, (45)

zai,k ≤ xai,k + kai,k ∀i∈ I, k ∈K, (46)

yai,k(ω, b)≤mk(ω, b) · zai,k ∀i∈ I, k ∈K, ω ∈Ω, b∈B, (47)∑
b∈B

T(ω, b) · yai,k(ω, b)≤ nk(ω) · zai,k ∀i∈ I, k ∈K, ω ∈Ω, (48)

qai,h(ω, b)≤ dai,h(ω, b) ∀i∈ I, h∈H. (49)

Given π(ω, b) the transmission operator chooses f(ω, b) to solve

S(ω, b) : min
f−≤f(ω,b)≤f+

∑
(i,j)∈L

(πi(ω, b)−πj(ω, b)) · fi,j(ω, b) +
∑
i∈I

πi(ω, b) ·Li(ω, b)

s.t. Li(ω, b) =
∑
j:

((i,j)∪(j,i))∈L

ci,j
2
· (fi,j(ω, b))2 ∀i∈ I,

∑
(i,j)∈Le

si,j,e · fi,j(ω, b) = 0 ∀e∈ E .

Given (yi(ω, b), qi(ω, b), fi,∗(ω, b), f∗,i(ω, b),Li(ω, b)), i ∈ I, ω ∈ Ω, b ∈ B, the spot market agent

chooses πi(ω, b) to solve
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Mi(ω, b) : min
0≤πi(ω,b)≤P̄

πi(ω, b) ·



∑
a∈A,k∈K

yai,k(ω, b)

+
∑

a∈A,k∈K

qai,h(ω, b)

+
∑
j∈I:

(j,i)∈L

fj,i(ω, b)

−
∑
j∈I:

(i,j)∈L

fi,j(ω, b)

−
∑

a∈A,k∈K

dai,h(ω, b)

−Li(ω, b)



.

For any (xa,za,ya,qa,π,p), each contract agent a∈A chooses wa to solve

Ca :min
wa

ρa(Ψa)

Ψa(ω) =Za(ω) +
∑
c∈C

(pc−Wc(ω,π(ω))) ·wac ∀ω ∈Ω,

Za(ω) =
∑

i∈I,k∈K

xCk ·xai,k +
∑

i∈I,k∈K

oCk · zai,k

+
∑
b∈B

T(ω, b) ·

( ∑
i∈I,k∈K

(gCk(ω, b)−πi(ω, b)) · yai,k(ω, b)

)

+
∑
b∈B

T(ω, b) ·

( ∑
i∈I,h∈H

(rh + vh−πi(ω, b)) · qai,h(ω, b)

)

+
∑
b∈B

T(ω, b) ·

( ∑
i∈I,h∈H

(πi(ω, b)− rh) ·dai,h(ω, b)

)
∀ω ∈Ω.

Given (w) the contract market agent chooses p to solve

P : min
p≥0
−
∑
c∈C

pc ·

(∑
a∈A

wac

)

LEMMA 1. Any Nash equilibrium for (AP ,IP ,SM ,CM ) is a Nash equilibrium for (G,S,M,C,P) and

vice versa.
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Proof. In Appendix B we restate the games (AP , IP , SM , CM ) and (G,S,M,C,P) as respective com-

plementarity problems by listing the KKT conditions of each agent problem. Since each agent problem is

convex, any solution to the complementarity problem is a Nash equilibrium for the game. The KKT condi-

tions for (AP , IP , SM , CM ) and (G,S,M,C,P) are then shown to be equivalent. This yields the result.

We now turn our attention to demonstrating the existence of equilibrium for (G,S,M,C,P). Our results

here depend on the form of the contracts that are traded. In general an agent a will buy wac contracts of

type c at a price pc, in order to receive a payoff Wc(ω,π(ω)) in scenario ω. In an Arrow-Debreu contract,

the payoff Wc(ω) depends only on the exogenous outcome ω, and does not depend on π(ω). In a contract

for differences, the payoff Wc(π(ω)) =
∑

b∈BT(ω, b)πi(ω, b)/(
∑

b∈BT(ω, b)), the time-weighted average

price in the node i at which the contract c is settled.

In both cases we can show that if we fix contract levels and treat them as parameters then (G, C, M,

S, P) becomes a simpler non-cooperative game (G,M, S), where we ignore all terms containing contract

decisions.

LEMMA 2. The game (G,S,M) has a Nash equilibrium.

Proof. The problems G, S, and M have convex continuous objective functions, with linear constraints.

Thus, to invoke Rosen (1965), it is sufficient to show that each decision variable is bounded.

This follows from the (continuous) function defining Za(ω), since x satisfies 0≤x≤ u (equations (39)

and (45)); z satisfies 0 ≤ z ≤ x + k ≤ u + k (equations (39) and (46)); y satisfies 0 ≤ y ≤ m · z ≤

m · (u + k) (equations (39) and (47)); q satisfies 0≤ q ≤ d (equations (39) and (49); π is regulated to be

between 0≤π≤ P̄; and f satisfies f− ≤ f ≤ f+.

Now we show the existence of equilibrium in the game (C,P) where we fix (x,z,y, q,π,f). We do this

first for Arrow-Debreu contracts in subsection 7.3, and then for contracts for differences in subsection 7.4.
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7.3. Existence of equilibrium with Arrow-Debreu contracts

Throughout this subsection we will assume Arrow-Debreu contracts, with payoffs Wc(ω) in scenario ω.

Repeating equation (1), every coherent risk measure has a dual representation (see theorem 4.16 of Föllmer

and Schied (2011))

ρa(Z) = max
Q∈Ma

(EQ[Z]),

whereMa is a convex set of probability measures. Throughout this section we make assumptions 7, 8, 9,

and 10. Thus Ω is finite andMa is a polyhedron. Let Ea denote the extreme points ofMa, so

Ea = {µk : k= 1,2, . . . , |Ea|}.

Now consider the non-cooperative game (C,P) that assumes the variables (x,z,y,q, π,f) are fixed.

The decision variables in this game are wac (for each agent a∈A) and pc for the contract market agent, and

variables Za(ω) are treated as exogeneous parameters. It is easy to see that any Nash equilibrium for (C,P)

is a solution to

W : min
w∈RAC

∑
a∈A

ρa(Za(ω)−
∑
c∈C

Wc(ω)wac ) subject to
∑
a∈A

wac ≤ 0 [pc] c∈ C,

since the Lagrangian forW decouples it into agent problems

Wa : min
wa∈RΩ

ρa

(
Za(ω)−

∑
c∈C

Wc(ω)wac

)
+
∑
c∈C

pcw
a
c

and complementarity conditions

0≤−
∑
a∈A

wac ⊥ pc ≥ 0. (50)

This follows because

ρa(Ψa) = ρa

(
Za(ω)−

∑
c∈C

Wc(ω)wac

)
+
∑
c∈C

pcw
a
c , (51)

using the translation equivariance property of ρa, soWa is identical to Ca, and (50) is equivalent to P .

LEMMA 3. Suppose Ω is finite and each agent’s risk setMa is a polyhedron. If Za(ω), a ∈A, ω ∈Ω lies

in a bounded set, then the optimal solution toW lies in a bounded set.
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Proof. Recall Ea = {µk : k = 1,2, . . . , |Ea|}, the set of extreme points of Ma. The problem W can be

formulated as the linear program

WL : min
θ∈RA,w∈RA

Ω
.

∑
a∈A

θa (52)

subject to

θa +
∑
ω∈Ω

∑
c∈C

µk(ω)Wc(ω)wac ≥
∑
ω∈Ω

µk(ω)Za(ω), a∈A, k= 1,2, . . . , |Ea| ,

−
∑
a∈A

wac ≥ 0 c∈ C.

The dual ofWL is:

max
y≥0,p≥0

∑
a∈A

∑
µ∈M

∑
ω∈Ω

µk(ω)Za(ω) · yaµ (53)

subject to (54)

|Ea|∑
k=1

yak = 1, a∈A, (55)

|Ea|∑
k=1

∑
ω∈Ω

µk(ω)Wc(ω) · yak − pc = 0, a∈A, c∈ C, (56)

Note that the dual problem is feasible and bounded since 0 ≤ yak ≤ 1, and 0 ≤ pc ≤

maxµ∈M
(∑

ω∈ΩQµ,ω · (Wc(ω))
)
, and so by the duality theorem of linear programmingWL has an opti-

mal solution, that can be taken at an extreme point of its feasible region. If we let B be the corresponding

basis matrix, then this optimal solution ofWL can be written as

(θ̄, w̄) =B−1



∑
ω∈Ω µ1(ω)Za(ω)

...∑
ω∈Ω µ|Ea|(ω)Za(ω)

0


.
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Observe that every basis matrix for WL has elements that are 1, −1, or µk(ω)Wc(ω), which are fixed

parameters. By assumption Za(ω), a∈A, ω ∈Ω lies in a bounded set, and so
B−1



∑
ω∈Ω µ1(ω)Za(ω)

...∑
ω∈Ω µ|Ea|(ω)Za(ω)

0


: B is a basis matrix forWL, a∈A, ω ∈Ω


is bounded as required.

LEMMA 4. (G,S,M,C,P) has a Nash equilbrium when Arrow-Debreu securities are traded.

Proof. We know from Lemma 2 that Za(ω), a ∈A, ω ∈Ω lies in a bounded set. Lemma 3 then shows that

any Nash equilibrium for (C,P) lies in a bounded set, and the proof of Lemma 2 then shows that any Nash

equilibrium for (G,S,M) lies in a bounded set. Note that these bounded sets are dependent only on problem

parameters (and not values of decision variables). Thus we can apply Rosen’s theorem to show that there

exists a Nash equilibrium for (C,P) and there exists a Nash equilibrium for (G,S,M), satisfying the joint

KKT conditions of (G,S,M) and the joint KKT conditions of (C,P). Since these are the same as the joint

KKT conditions of (G,S,M,C,P), these solutions yield a Nash equilibrium for (G,S,M,C,P).

THEOREM 11. Under assumptions 7, 8, 9, and 10, the equilibrium for the overall problem that combines

problems (AP , IP , SM , CM ) exists when agents can trade Arrow-Debreu securities.

Proof. Follows directly from Lemma 1 and Lemma 4.

7.4. Existence of equilibrium in trading contracts for differences

Consider a set of agents A who trade contracts for differences through a market agent. Each agent

a ∈ A has a coherent risk measure defining a convex compact risk set Ma, and wants to improve the

risk-adjutsted return from their random costs Za by trading contracts. If contract c is bought at price

pc and pays out based on the spot price in node i then the payoff for an agent buying the contract is∑
b∈BT(ω, b)πi(ω, b)/

∑
b∈BT(ω, b)− pc.
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We want to demonstrate that there exists a contract price p and a contract trade wa for each agent a, that

together clear the market and give a minimum risk-adjusted cost for each agent. To do this we establish an

equivalent non-cooperative game (C,P) between the agents and the market agent. In order to simplify the

analysis we restrict attention to a contract in a single node system with one load block. The multidimensional

case is derived by de Maere dAertrycke and Smeers (2013) who give a proof of bounded contract quantities

that generalises the argument presented here. Given p ∈ R, each agent a selling wa contracts at p aims to

solve

Ca(Za,π, p) : min
wa

{
max
Q∈Ma

[EQ(Za)−wa(EQ[π]− p)]
}
.

Given wa, a∈A, the market agent aims to choose p≥ 0 to solve

P(w) : min
p≥0
−p

(∑
a∈A

wa

)
.

A Nash equilibrium of the game (C,P) is a set of contract quantities wa, a ∈ A and a price p with wa

solving Ca(Za,π, p) and p solving P(w). Observe that P(w) has a solution only when
∑

a∈Aw
a ≤ 0, and

its optimal value is 0.

LetM := ∩a∈AMa represent the intersection of the risk sets. Also, for each agent a ∈A define the set

of admissible contract prices,

Pa = {p∈R|∃Q∈Ma : p=EQ[π]}.

(This is called the set of “not too attractive prices” by de Maere dAertrycke and Smeers (2013). An admis-

sible contract price is one at which an agent cannot trade contracts to make an infinite risk-adjusted profit.)

LEMMA 5. Pa is convex.

Proof. If p1, p2 ∈Pa and λ∈ (0,1) then pi =EQi
[π], so

(1−λ)p1 +λp2 = (1−λ)EQ1
[π] +λEQ2

[π]

= (1−λ)

∫
πdQ1 +λ

∫
πdQ2

=

∫
πd((1−λ)Q1 +λQ2)

= EQ[π]
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for some Q∈Ma, becauseMa is convex. This establishes the result.

LEMMA 6. If p /∈Pa, then the risk-adjusted disbenefit of agent a is unbounded below.

Proof. Suppose there exists some M such that that for every wa

Πa = max
Q∈Ma

[EQ(Za)−wa(EQ[π]− p)]> max
Q∈Ma

EQ(Za)−M. (57)

Since Ma is convex, p /∈ Pa implies that either p < EQ[π] for every Q ∈ Ma or p > EQ[π] for every

Q∈Ma. In the former case set

wa =
M

minQ′∈Ma EQ′ [π]− p
.

Then

Πa = max
Q∈Ma

[EQ(Za)−wa(EQ[π]− p)]

≤ max
Q∈Ma

[
EQ(Za)−

(
M

minQ′∈Ma EQ′ [π]− p

)(
min

Q′∈Ma
EQ′ [π]− p

)]
= max

Q∈Ma
EQ(Za)−M,

which contradicts (57).

In the latter case p >EQ[π] we set

wa =− M

p−maxQ′∈Ma EQ′ [π]

so

Πa = max
Q∈Ma

[EQ(Za)−wa(EQ[π]− p)]

≤ max
Q∈Ma

[
EQ(Za) +

(
M

p−maxQ′∈Ma EQ′ [π]

)(
max

Q′∈Ma
EQ′ [π]− p

)]
= max

Q∈Ma
EQ(Za)−M,

which contradicts (57). Thus the risk-adjusted disbenefit of agent a is unbounded below when p /∈Pa.

LEMMA 7. If p∈ intPa, then the optimal risk-adjusted disbenefit of agent a is bounded.
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Proof. Suppose the risk-adjusted disbenefit for a is unbounded. Then for every n> 0, there is some wa(n)

such that

max
Q∈Ma

[EQ(Za)−wa(n)(EQ[π]− p)]<−n. (58)

Given wa(n) let the maximum of EQ(Za)−wa(n)(EQ[π]− p) be attained by Q∗n. Then (58) implies that

wa(n) has the same sign as EQ∗n [π]− p. There is an infinite subsequence S with either wa(n)> 0 for every

n or wa(n)< 0 for every n∈ S . Without loss of generality assume the former. Then for every n∈ S ,

p <EQ∗n [π], and wa(n)> 0,

and wa(n)→∞. Let

EQ̄[π] = min
Q

EQ[π].

Suppose EQ̄[π]< p. Then for large enough n

EQ̄(Za)−wa(n)(EQ̄[π]− p)> max
Q∈Ma

EQ(Za)

and so

EQ̄(Za)−wa(n)(EQ̄[π]− p)≤EQ∗n(Za)−wa(n)(EQ∗n [π]− p)

yields

max
Q∈Ma

[EQ(Za)−wa(n)(EQ[π]− p)]> max
Q∈Ma

[EQ(Za)] .

This contradicts (58), so minQEQ[π] ≥ p, which is equivalent to EQ[π]− p ≥ 0 for all Q ∈Ma, or p /∈

intPa.

The preceding lemmas show that the contract trading problem for each agent is bounded if p∈ intPa and

is unbounded if p /∈ Pa. To show that an equilibrium exists we need to bound wa even when p is on the

boundary of Pa. This is possible if we take account of the counterparties in a contract trade. An equilibrium

will exist if the sets of admissible contract prices for all agents intersect. This will follow from Assumption

8.

The following lemma establishes that in equilibrium the choice of pwill be in Pa, and the contract trading

problem for each agent will admit a bounded solution as long as Assumption 8 holds.

LEMMA 8. If Assumption 8 holds then there exists an equilibrium to (C,P).
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Proof. For n= 1,2, . . . , consider the noncooperative game (C(n),P(n)) where agent a solves

Ca(n)(Za,π, p) : min
wa∈Wa(n)

{
max
Q∈Ma

[EQ(Za)−wa(EQ[π]− p)]
}
.

and the market agent aims to choose p to solve

P(w) : min
p∈P
−p ·

(∑
a∈A

wa

)
,

where Wa(n) := {wa : |wa| ≤ n}, and P = [minω∈Ω πω − 1,maxω∈Ω πω + 1]. Given a bounded strat-

egy space for each agent, it follows from Debreu (1952) that (C(n),P(n)) has at least one equilibrium

(w(n), p(n)).

If, in this equilibrium,
∑

a∈Aw
a(n)< 0, then it follows that p(n) = minω∈Ω πω − 1. Each agent a then

solves

min
wa∈Wa(n)

{
max
Q∈Ma

[
EQ(Za)−wa(EQ[π]− (min

ω∈Ω
πω − 1))

]}
.

Since for every Q∈Ma, EQ[π]>minω∈Ω πω−1, we havewa(n) = n, which contradicts
∑

a∈Aw
a(n)< 0.

Thus ∑
a∈A

wa(n)≥ 0. (59)

If in this equilibrium
∑

a∈Aw
a(n)> 0, then it follows that p(n) = maxω∈Ω πω+1. Each agent a then solves

min
wa∈Wa(n)

{
max
Q∈Ma

[
EQ(Za)−wa(EQ[π]− (max

ω∈Ω
πω + 1))

]}
.

Since for every Q∈Ma, EQ[π]<maxω∈Ω πω+1, we havewa(n) =−n, which contradicts
∑

a∈Aw
a(n)>

0. Thus ∑
a∈A

wa(n)≤ 0. (60)

Combining (59) and (60) these contracts satisfy

∑
a∈A

wa(n) = 0. (61)

In order to prove existence of equilibrium we show that there exists a solution (w(n), p(n)) with wa(n)

in the interior of Wa(n) for every a. We assume the contrary and derive a contradiction. So suppose that
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for every n> 0, there is some player ân with wân(n) = n that solves Cânn (Z ân , p) (A similar argument will

yield a contradiction if we assume wân(n) =−n). If for every n> 0, there is such a player, then there must

be a non-empty subset of agents Ân ⊂ A with
∑

a∈Ân
wa ≤ −n. The sequence {ân, Ân} is finite valued

and so it has an infinite subsequence with every element (ân, Ân) = (â, Â) for some â and Â. Without loss

of generality, we now trim the sequence to this subsequence and continue using n for the index.

By assumption, for every n> 0, wâ = n minimises

max
Q∈Mâ

{
EQ[Z â]−wâ(EQ[π]− p(n))

}
overW â(n). Choose Q̄∈Mâ that satisfies

EQ̄[π] = min
Q∈Mâ

EQ[π].

Suppose there is some ε > 0 such that for every N , there is some n > N with p(n) > EQ̄[π] + ε. Then

choosing N sufficiently large gives n>N with

EQ̄[Z â]−n(EQ̄[π]− p(n)) > EQ̄[Z â] +nε

> max
Q∈Mâ

EQ[Z â],

yielding

max
Q∈Mâ

{
EQ[Z â]−n(EQ[π]− p(n))

}
> max

Q∈Mâ
EQ[Z â].

It follows that wâ = n does not minimise

max
Q∈Mâ

{
EQ[Z â]−wâ(EQ[π]− p(n))

}
as assumed. Thus for every ε > 0 there is some N such that n > N implies p(n)≤minQEQ[π] + ε. This

means that we can extract a further subsequence of (w(n), p(n)) with εn→ 0, and

EQ[π]− p(n)≥−εn ∀Q∈Mâ. (62)

Now if
∑

a∈Âw
a(n)≤−n, then there is an agent a∈ Âwith an optimal choice of contractwa(n)→−∞

as n→∞. For this agent we have

max
Q∈Ma

{EQ[Za]−wa(n)(EQ[π]− p(n))} ≤ max
Q∈Ma

EQ[Za]. (63)



Kok, Philpott and Zakeri.: Value of transmission under risk
44 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Now let

EQ̄[π] = max
Q

EQ[π].

Suppose there is some ε > 0 such that for everyN , there is some n>N with p(n)<EQ̄[π]−ε. Then (since

wa(n)→−∞ ) choosing N sufficiently large gives n>N with

EQ̄[Za]−wa(n)(EQ̄[π]− p(n)) > EQ̄[Za] + |wa(n)|ε

> max
Q∈Mâ

EQ[Za],

yielding

max
Q∈Mâ

{EQ[Za]−wa(n)(EQ[π]− p(n))}> max
Q∈Mâ

EQ[Za].

This contradicts (63) so for every ε > 0 there is some N such that n>N implies p(n)≥maxQEQ[π]− ε.

This means that we can extract a subsequence of (w(n), p(n)) with εn→ 0, and

EQ[π]− p(n)≤ εn ∀Q∈Ma. (64)

Now p(n) is bounded, so we can extract a convergent subsequence (lying in both the subsequences in

(62) and (64)) for which p(n)→ p̄, which yields

EQ[π]− p̄ ≥ 0 ∀Q∈Mâ,

EQ[π]− p̄ ≤ 0 ∀Q∈Ma.

Thus π defines the normal of a hyperplane that separates riMâ and riMa. It follows that

riMâ ∩ riMa = ∅

which contradicts Assumption 8.

It follows that it is not true that for every n > 0, there is some player â(n) with wâ(n)(n) = n, and no

value of wâ < n solves C(n). In other words for some n there is an equilibrium for (C(n),P(n)) in which

every player a has wa < n. In this equilibrium the solution wa satisfies the optimality conditions of C. So

(wa, p) is an equilibrium for (C,P).

LEMMA 9. (G,S,M,C,P) has a Nash equilbrium when contracts for differences are traded.
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Proof. We know from Lemma 2 that Za(ω), a ∈A, ω ∈Ω lies in a bounded set. Lemma 8 then shows that

any Nash equilibrium for (C,P) lies in a bounded set, and the proof of Lemma 2 then shows that any Nash

equilibrium for (G,S,M) lies in a bounded set. Note that these bounded sets are dependent only on problem

parameters (and not values of decision variables). Thus we can apply Rosen’s theorem to show that there

exists a Nash equilibrium for (C,P) and there exists a Nash equilibrium for (G,S,M), satisfying the joint

KKT conditions of (G,S,M) and the joint KKT conditions of (C,P). Since these are the same as the joint

KKT conditions of (G,S,M,C,P), these solutions yield a Nash equilibrium for (G,S,M,C,P).

It is worth mentioning two degenerate instances for (C,P). If πω is the same across all scenarios then

all contracts have zero payoff. An equilibrium exists in which wa = 0, p = π. A second instance is when

∩a∈AMa is a singleton P, and so has no relative interior. This would occur for example when agents are

risk neutral. Then all contracts are traded at p= EP[π], and have zero payoff. So an equilibrium exists in

which wa = 0.

THEOREM 12. Under assumptions 8, 9, and 10, the equilibrium for the overall problem that combines

problems (AP , IP , SM , CM ) exists when agents have coherent risk measures and can trade contracts for

differences.

Proof. Follows directly from Lemma 1 and Lemma 9.

7.5. Appendix B.1: Stacked KKT conditions: Model with variational inequalities

Here we take the individual optimisation problems for each of the agents (gentailer, transmission operator,

and market side constraints) and state the KKT conditions of the equilibrium model. For readability, we

substitute

Ψa(ω) =



∑
c∈C (pc− (Wc(ω,π(ω)))) ·wac

+
∑

i∈I,k∈K xCk ·xai,k +
∑

i∈I,k∈K oCk · zai,k

+
∑

b∈BT(ω, b) ·
∑

i∈I,k∈K (gCk(ω, b)−πi(ω, b)) · yai,k(ω, b)

+
∑

b∈BT(ω, b) ·
∑

i∈I,h∈H(πi(ω, b)− rh) · (dai,h(ω, b)− qai,h(ω, b))

+
∑

b∈BT(ω, b) ·
∑

i∈I,h∈H vh · qai,h(ω, b)


∀a∈A, ω ∈Ω. (65)
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AP : Generation agent problem (∀a∈A)

P: 0 ≥ zai,k−xai,k −kai,k ⊥ ξai,k ≥ 0 ∀i∈ I, k ∈K (66)

0 ≥ yai,k(ω, b)−mk(ω, b) · zai,k ⊥ µai,k(ω, b) ≥ 0 ∀i∈ I, k ∈K, ω ∈Ω, b∈B (67)

0 ≥
∑
b∈B

T(ω, b) · yai,k(ω, b)

−nk(ω) · zai,k ⊥ νai,k(ω) ≥ 0 ∀i∈ I, k ∈K, ω ∈Ω (68)

D: 0 ≥ ∂ρa(Ψa)

∂zai,k

−
∑

ω∈Ω,b∈B

mk(ω, b) ·µai,k(ω, b)

−
∑
ω∈Ω

nk(ω) · νai,k(ω) + ξai,k ⊥ zai,k ≥ 0 ∀i∈ I, k ∈K (69)

∂ρa(Ψa)

∂xai,k
− ξai,k ⊥ uai,k ≥ xai,k ≥ 0 ∀i∈ I, k ∈K (70)

0 ≥ ∂ρa(Ψa)

∂yai,k(ω, b)
+µai,k(ω, b)

+T(ω, b) · νai,k(ω) ⊥ yai,k(ω, b) ≥ 0 ∀i∈ I, k ∈K, ω ∈Ω, b∈B (71)

∂ρa(Ψa)

∂qai,h(ω, b)
⊥ dai,h(ω, b)≥ qai,h(ω, b) ≥ 0 ∀i∈ I, h∈H, ω ∈Ω, b∈B (72)

0 =
∂ρa(Ψa)

∂wac
⊥ wac ∀c∈ C (73)

IP : Transmission operator problem

P :0 =
∑
j:

((i,j)∪(j,i))∈L

ci,j
2
· (fi,j(ω, b))2 (74)

−Li(ω, b) ⊥ φi(ω, b) ∀i∈ I, ω ∈Ω, b∈B (75)

0 =
∑

(i,j)∈Le

si,j,e · fi,j(ω, b) ⊥ θe(ω, b) ∀e∈ E , ω ∈Ω, b∈B (76)

D : πi(ω, b)−πj(ω, b) (77)

−ci,j ·φi(ω, b) · fi,j(ω, b) (78)

−ci,j ·φi(ω, b) · fi,j(ω, b) (79)

+
∑
e∈E:

(i,j)∈Le

si,j,e · θe(ω, b) ⊥ f+
i,j ≥ fi,j(ω, b)≥ f−i,j ∀(i, j)∈L, ω ∈Ω, b∈B (80)
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0 = φi(ω, b) +πi(ω, b) ⊥ Li(ω, b) ∀i∈ I, ω ∈Ω, b∈B (81)

SM : Side constraints - Spot market

∑
a∈A,k∈K

yai,k(ω, b) (82)

+
∑

a∈A,h∈H

[
qai,h(ω, b)−dai,h(ω, b)

]
(83)

+
∑
j∈I:

(j,i)∈L

fj,i(ω, b)−
∑
j∈I:

(i,j)∈L

fi,j(ω, b)−Li(ω, b) ⊥ P̄≥ πi(ω, b)≥ 0 ∀i∈ I, ω ∈Ω, b∈B (84)

CM : Side constraints - Contract market

0≤−
∑
a∈A

wac ⊥ pc ≥ 0 ∀c∈ C (85)
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7.6. Appendix B.2: Stacked KKT conditions: Model with agents representing the market

Here we state the KKT conditions derived from the game comprising the physical investment problem, G,

the transmission problem, S, the spot market agent,M, each agent’s contract investment problem, C, and

the contract market agent, P .

G: Generation agent investment and operation problem (∀a∈A)

P: 0 ≥ zai,k−xai,k −kai,k ⊥ ξai,k ≥ 0 ∀i∈ I, k ∈K (86)

0 ≥ yai,k(ω, b)−mk(ω, b) · zai,k ⊥ µai,k(ω, b) ≥ 0 ∀i∈ I, k ∈K, ω ∈Ω, b∈B (87)

0 ≥
∑
b∈B

T(ω, b) · yai,k(ω, b)

−nk(ω) · zai,k ⊥ νai,k(ω) ≥ 0 ∀i∈ I, k ∈K, ω ∈Ω (88)

D: 0 ≥ ∂ρa(Ψa)

∂zai,k

−
∑

ω∈Ω,b∈B

mk(ω, b) ·µai,k(ω, b)

−
∑
ω∈Ω

nk(ω) · νai,k(ω) + ξai,k ⊥ zai,k ≥ 0 ∀i∈ I, k ∈K (89)

∂ρa(Ψa)

∂xai,k
− ξai,k ⊥ uai,k ≥ xai,k ≥ 0 ∀i∈ I, k ∈K (90)

0 ≥ ∂ρa(Ψa)

∂yai,k(ω, b)
+µai,k(ω, b)

+T(ω, b) · νai,k(ω) ⊥ yai,k(ω, b) ≥ 0 ∀i∈ I, k ∈K, ω ∈Ω, b∈B (91)

∂ρa(Ψa)

∂qai,h(ω, b)
⊥ dai,h(ω, b)≥ qai,h(ω, b) ≥ 0 ∀i∈ I, h∈H, ω ∈Ω, b∈B (92)

S: Transmission problem

P :0 =
∑
j:

((i,j)∪(j,i))∈L

ci,j
2
· (fi,j(ω, b))2 (93)

−Li(ω, b) ⊥ φi(ω, b) ∀i∈ I, ω ∈Ω, b∈B (94)

0 =
∑

(i,j)∈Le

si,j,e · fi,j(ω, b) ⊥ θe(ω, b) ∀e∈ E , ω ∈Ω, b∈B (95)

D : πi(ω, b)−πj(ω, b) (96)

−ci,j ·φi(ω, b) · fi,j(ω, b) (97)
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−ci,j ·φi(ω, b) · fi,j(ω, b) (98)

+
∑
e∈E:

(i,j)∈Le

si,j,e · θe(ω, b) ⊥ f+
i,j ≥ fi,j(ω, b)≥ f−i,j ∀(i, j)∈L, ω ∈Ω, b∈B (99)

0 = φi(ω, b) +πi(ω, b) ⊥ Li(ω, b) ∀i∈ I, ω ∈Ω, b∈B (100)

M: Spot market problem

D :
∑

a∈A,k∈K

yai,k(ω, b) (101)

+
∑

a∈A,h∈H

[
qai,h(ω, b)−dai,h(ω, b)

]
(102)

+
∑
j∈I:

(j,i)∈L

fj,i(ω, b)−
∑
j∈I:

(i,j)∈L

fi,j(ω, b)−Li(ω, b) ⊥ P̄≥ πi(ω, b)≥ 0 ∀i∈ I, ω ∈Ω, b∈B (103)

C: Agent contract problem (∀a∈A)

D : 0 =
∂ρa(Ψa)

∂wac
⊥wac ∀c∈ C (104)

P: Contract market agent problem

D : 0≤−
∑
a∈A

wac ⊥ pc ≥ 0 ∀c∈ C (105)


