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Abstract

While operations research is utilized across all sectors of whole-

sale electricity markets, it is most widely and intensely used in the

generation sector. We review the operations of a wholesale electric-

ity market and provide a detailed treatment of optimization in the

generation sector.

1 Introduction

The first example of energy market concepts and privatization of electric
power systems took place in Chile in the early 1980s. The idea behind the
Chilean model was to bring rationality and transparency to the operations of
the power system that would ultimately be reflected in power prices. Other
rationales for the eventuation of electricity markets include better reliability
(e.g. in the case of Argentinean electricity market,) and signaling appropri-
ate levels of investment in infrastructure in the energy sector. Today many
countries and jurisdictions rely on electricity markets to meet their electricity
needs. These include UK, Australia, New Zealand, the Nordpool market con-
sisting of Scandinavian countries, Brazil and other South American countries
as well as many jurisdictions in the US.

Electricity markets typically consist of five main sectors: the system oper-
ator, generators, consumers, distributors, and regulatory bodies overseeing
the regulations and operations of the market. While operations research is
utilized in every one of these sectors on a day to day basis, to keep this ar-
ticle to a reasonable length and be informative, we will only discuss the first
two sectors. In what follows we will describe the operation of an electricity

1



market. We then discuss each of the generation sector and describe how
operations research is utilized within that sector.

2 Market operation and the system operator

Electricity is not a storable commodity. It is injected into a transmission
grid at certain nodes of that transmission grid often referred to as grid in-
jection points (GIPs), and flows through the grid complying with physical
constraints. Electricity is withdrawn at grid exit points (GXPs) and deliv-
ered to consumers. Due to the physical constraints on the flow of electricity,
in all electricity markets the dispatch of the generation of electricity is left to
an independent system operator (ISO). In most electricity markets, an addi-
tional function of the ISO is to determine the price of electricity at different
nodes of the transmission network.

Typically in a wholesale electricity market, in each period of the day, each
generator offers in generation quantities for each of its plants (possibly lo-
cated at different GIPs), at certain prices. In its most general form, the
generation offers are supply functions (also known as offer curves) denoted
p = S(q), where S(q) is the marginal price of producing quantity q. These
supply offers are collected by the ISO. The ISO also estimates the demand
over that period. The ISO then solves a side constrained network optimiza-
tion problem where the objective is to minimize the total cost of production
of electricity. The constraints of this optimization problem reflect that de-
mand must be met at every node of the network, and that physical flow
constraints such as transmission line capacities and Kirchhoff’s laws must
be complied with. Often reactive power modelling is left out of the ISO’s
dispatch problem and the problem is in fact a direct current equivalent load
flow model [1, 2]. A general model for the ISO’s economic dispatch problem
(EDP) is formulated below.

EDP: minimize
∑

i

∑
m∈O(i)

∫ qm

0
Cm(x)dx

s.t. gi(y) +
∑

m∈O(i) qm = Di, i ∈ N , [πi]

qm ∈ Qm, m ∈ O(i), i ∈ N ,

y ∈ Y.

We use i as the index for the nodes in the transmission grid. We use m as the
index for the generators and O(i) indicates the set of all generators located
at node i. Generator m can supply quantity qm and the demand at node i is
denoted by Di. Qm indicates the capacity of generator m.
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Here the components of vector x measure the dispatch of each generator and
the components of the vector y measure the flow of power in each transmission
line. We denote the flow in the directed line from i to k by yik, where by
convention we assume i < k. (A negative value of yik denotes flow in the
direction from k to i.) It is required that this vector lies in the convex set
Y , which means that each component satisfies the thermal limits on each
line, and satisfies loop flow constraints that are required by Kirchhoff’s Law.
The function gi(y) defines the amount of power arriving at node i for a given
choice of y. This notation enables different loss functions to be modelled.
For example, if there are no line losses then we obtain

gi(y) =
∑
k<i

yki −
∑
k>i

yik.

With quadratic losses we obtain

gi(y) =
∑
k<i

yki −
∑
k>i

yik −
∑
k<i

1

2
rkiy

2
ki −

∑
k>i

1

2
riky

2
ik.

As indicated above, one of the functions of the ISO is to set the price. The
price of electricity is determined as the shadow price πi of the node balance
constraints above that indicate demand must be met at all nodes. This
price is the system cost of meeting one more unit of demand at node i.
This method of determining the electricity price is sometimes referred to as
locational marginal pricing (LMP). New Zealand and the PJM market in the
US are examples of electricity markets with LMP.

It is worth noting that some wholesale electricity markets operate by assum-
ing that demand and supply are located at the same node and trading takes
place in that one node. This means that a single price of electricity is arrived
at. Nevertheless, in order to ensure that the demand is met at all nodes and
that the flow complies with physical constraints, a balancing market would
follow in real time where the residuals of the single node market are traded.
The UK wholesale electricity market is an example of a single node market.

2.1 unit commitment

While the economic dispatch problem described so far minimizes the total
cost of generation based on the generators’ offers, it is concerned with cost
minimization over a single period. Besides the marginal cost of running gen-
eration units, other costs such as start up and shut down costs and constraints
such as minimum up and down time for the generation units may need to be
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considered. In some markets these concerns are left to the generators. They
are to figure these costs and constraints and reflect them in the way they
offer their generation into the market. Other markets, such as the PJM have
unit commitment constraints embedded and the economic dispatch problem
runs over a time horizon spanning a day. For a comprehensive discussion on
the unit commitment problem and the problem of market design embedding
unit commitment see [3].

3 Generators

The generation sector in wholesale electricity markets usually consists of coal
or gas fired thermal, nuclear power, hydro-electric, and/or other renewable
(such as wind or solar powered) generation. As mentioned above, generators
in a wholesale electricity market are required to submit an offer curve for
each of their generation units. Therefore the main question faced by any
generator in a wholesale electricity market is how to offer into the market in
such a way as to maximize its return. Before we explore this problem further
we must make a distinction between two different types of generators, the
so-called price makers and price takers. We should also note that since the
future is uncertain and neither the competitor offers and nor the demand is
known, in absence of any risk attitude, the generators will be maximizing
their expected profits.

3.1 Price-taker generators

A generator is defined to be a price-taker if the (nodal) price of power is not
affected by the generation strategy of the generator. A true price taker is
likely to have a relatively small capacity for generation (relative to the rest
of the market) with correspondingly little storage capacity. Therefore the
typical time horizon for the optimization problem is short to medium term.
Here the only significant uncertainty is in the price process. Other factors
such as the price of thermal fuel and inflows may be treated as deterministic
as they are well forecasted over the short time horizon. If the electricity prices
were independent from period to period then the optimal policy would be to
submit a stack so that dispatch is ensured if the price is above expectation
and water is saved for the subsequent period if the price is below expectation.
However this independence assumption does not hold for electricity prices.

Pritchard and Zakeri [4] have developed a time inhomogeneous Markov model
for electricity prices (at a node), where the transition probabilities depend
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on the time of day and the time of week. They use this price process to
set up and solve a stochastic dynamic program in order to determine the
release policies for operating a river chain, so that the expected profit of a
price-taker hydro-electric generator is maximized.

In a subsequent paper, Pritchard et. al. [5] relax the assumption of limited
storage. Here they consider a model where weekly expected releases for a
river chain are determined based on a long term model for electricity prices.
This expected release, along with a standard deviation on release is then
passed to another optimization problem with a much shorter time horizon
that focuses on a particular week. They then construct period to period offer
stacks for the week in question using dynamic programming. This model
integrates the long and and short term plans and allows for target release
levels (the expected release each week) as well as allowing deviations from
this target should an opportunity present itself in the shorter time horizon
model to take advantage of favorable prices.

Conejo et. al. [6] develop a model that addresses similar questions pertaining
to a thermal generator. The maximum output of a thermal unit is not
available instantaneously. Thermal generators are bound by their ramp rate
characteristics that dictate how the generator’s available output rises towards
it’s maximum output as a function of time. They must also comply with
minimum up and down constraints that constitute once a unit is turned off
it may not be turned on again until some time has elapsed and vice versa.
Conejo et. al. develop a mixed integer linear program (MILP) that produces
a bidding strategy for a price-taker thermal generator over the course of a day
given a price forecast for electricity prices that day. This bidding strategy
maximizes the generator’s expected profit. It should be noted that while
most models in the literature assume the generators are risk neutral and
aim to maximize expected profits, there has been some research addressing
production schedules in presence of a risk attitude; see e.g. [7]. For further
reading on price-taker generation optimization see also [8, 9, 10].

3.2 Price-maker generators

Due to economies of scale and the spatial distribution of consumers, almost
all electricity markets are oligopolies. Therefore the most natural setting for
a model is to assume that the offer strategies of a generator influence the
(nodal) price of electricity. In such a setting, the fundamental question for
the generators raised above needs to be revisited. The price of electricity
is no longer exogenous hence the profit optimization problem faced by the
generator now needs to take into account how the actions of the generator
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influence the price of electricity. This problem was first addressed in a paper
by Klemperer and Meyer [11] who were interested in modeling an oligopoly
facing uncertain demand, where each firm bids a supply function as its strat-
egy. This is in contrast to previous models in the economics literature where
firms were restricted to strategize over their quantities only (Cournot mod-
els) or their prices only (Bertrand models) and allows a firm to adapt better
to an uncertain environment. Green and Newbery address the same question
but in the context of the British spot market [12].

To begin, let us assume that there are only two generators supplying the
market (i.e. we are dealing with a duopoly) and suppose that the offer curve
of the competitor is given by q = S(p). Let us also assume that the demand
curve is given by q = D(p), that is the market will absorb quantity q if
the price is p. For their analysis, Klemperer and Meyer use the concept of
the residual demand curve faced by the generator. Consider the curve given
by q = D(p) − S(p). This determines what quantity must be offered into
the market if we desire the price to be p based on the demand curve and
the competitor’s offer strategy. The inverse of this curve describes how the
price is influenced by the quantity we offer and is referred to as the residual
demand curve. With this information at hand, it is now easy to optimize the
profits of the generator in question (see Figure 1).

Recall that Klemperer and Meyer point out that supply functions allow a
firm to adapt better to an uncertain environment. If there are multiple pos-
sible residual demand curves that a generator may face, the supply function
response may allow selecting a point on each of these residual demand curves
that would optimize the generator’s profit given that that residual demand
curve has realized. This is referred to as a strong supply function response
(see Figure 2). A number of papers construct the residual demand curve
by simulating the (single node) market and explicitly building the supply
function response, see e.g. [13] and [14]. In [13] the residual demand curve
takes on a step function form and the authors develop a non-linear integer
programming model of the generator’s revenue optimization problem. They
develop a combined coordinate search, branch and bound method to solve
this problem. Torre et. al. exploit the nature of the previous problem to
develop a more efficient solution method in [14].

In a sequence of papers Anderson and Philpott have also addressed the profit
maximization problem of a price maker generator under various assumptions.
In [15] they assume that a price-maker generator knows its competitors’
offer curves, but is faced with uncertain demand. They first establish the
existence of a strong supply function response, for such a generator, that
would be optimal for any realization of the uncertain demand. This strong
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Figure 1: Optimal point for a generator to get dispatched along a residual
demand curve.
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Figure 2: Building a strong supply function response from a distribution of
residual demand curves.
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supply function response is guaranteed to exist when the generation costs
of the generator in question are increasing and convex, and the competitor
offers are log concave. They discuss a procedure where the true aggregate
offer stack of the competitors is approximated by a log concave function.
Note that this (aggregate) offer stack would be a step function in almost
all real world electricity markets. They construct a strong supply function
response Sg, for the generator in question. Subsequently they approximate
Sg in order to comply with market rules. Finally they provide bounds on the
performance of such an offer strategy.

In [16] Anderson and Philpott generalize their model by allowing uncertainty
not only in the demand but also allow the competitor offers to be unknown.
They introduce the concept of a market distribution function ψ(q, p) pertain-
ing to a specific generator at a specific transmission node. They define ψ(q, p)
to be the probability of not being fully dispatched if the generator submits
a quantity q at price p. Let R(q, p) denote the or profit that the generator
makes if it is dispatched q at a clearing price of p. They demonstrate that
if the generator submits the curve s and the pertinent market distribution
function ψ is continuous then the expected profit of the company is given by

V (s) =

∫
s

R(q, p)dψ(q, p).

They proceed to provide conditions that guarantee (local) optimality of an
offer stack s that would maximize V (s). To address the question of estimating
the market distribution function see [17] and [18].

The work described thus far only deals with generators that are located at a
single node of the market or alternatively assumes that the wholesale market
is a single node market. As noted in section 2 however, most wholesale elec-
tricity markets use locational marginal pricing where the price of electricity
is different from node to node. To capture the effects of the transmission net-
work, a generator must look at the variations in the prices from the dispatch
problem EDP as a function of how it offers into the market. The revenue
optimization problem is now posed as a bilevel program, or a mathematical
program with equilibrium constraints (MPEC) and becomes a non-convex
optimization problem.

maximize R(x, π)
s.t. (x, π) ∈ arg min

∑
i

∑
m∈O(i)

∫ qm

0
Cm(x)dx

s.t. gi(y) +
∑

m∈O(i) qm = Di, i ∈ N ,

qm ∈ Qm, m ∈ O(i), i ∈ N ,

y ∈ Y.

9



Here x denotes the vector of quantities dispatched at each node if the gen-
erator offered at that node (or is 0 if the generator in question does not own
generation at a particular node), and π is the vector of electricity prices. Note
that the inner optimization problem, namely the economic dispatch problem
EDP can be replaced with its necessary and sufficient conditions for opti-
mality as it is a convex problem (see e.g. chapter 4 of [19]). In this case, the
reformulation is referred to as an MPEC [20]. Several papers have addressed
this problem and have developed techniques to produce local or global op-
timal solutions for it. In [21], Fampa et. al. develop a stochastic version
of the above problem in which they consider various demand and market
clearing scenarios. This results in a number of follow-on economic dispatch
problems. They propose some heuristic methods for solving this problem.
Pritchard also considers a stochastic version of the above problem in [22]. In
his model, the generator in question only owns generation assets at a single
node of the transmission network. He proposes a stochastic dynamic program
to solve the generator optimization problem. It should be noted that the lit-
erature surveyed for price-maker generators is only concerned with short to
medium term time horizons, where a reasonable distribution for competitor
behaviour and demand, or a reasonable estimate of the market distribution
function is available to a generator.

4 Other electricity sectors

The focus of this short article has been on the generation side of wholesale
electricity markets. Operations research is utilized in every sector of the
electricity market and in this section we provide a very brief overview of how
it is utilized by the demand side and the regulators.

Consumers of electricity can be loosely classified as major or minor users.
Major users of electricity are typically large industrial users who have the
ability to observe electricity prices in real time. In many wholesale electricity
markets, such users can also bid into the electricity market by specifying a
demand curve where they indicate their willingness to consume at different
prices. These consumers are similar to price-maker generators in that they
the ability to alter the price of electricity (through the amount that they
consume). Frequently they are not only able to withdraw electricity from a
GXP, but they may be in a position to produce their own power through a gas
or diesel generator say, or they may have flexibility to reduce their production
of goods which translates to reduction in consumption of electricity. Gomez-
Villalva and Ramos [23] have developed a mixed integer linear program for
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such an industrial consumer in a wholesale electricity market.

For some major consumers it may also be possible to shift the electricity usage
from one period to another, albeit at a cost. Large industrial chillers may be
able to cool their contents at earlier hours of the morning to lower degrees
simply because the price of electricity is lower in those off peak periods.
The cooler may be able to retain the low temperatures reasonably well for
instance and hence reduce their electricity consumption in the peak morning
hours thereby reducing their total cost of consumption. This is referred to
as load shifting. Middelberg et. al. [24] study an optimal control model for
load shifting with application to energy management of a colliery.

Regulators are interested in designing electricity markets so that they are as
competitive as possible and an efficient and reliable supply is accomplished.
They are also interested in diagnosing any ill functioning, such as abuse of
power by generating firms and introducing regulation that would prevent
such behaviour. They are therefore interested in models of steady-state be-
haviour of the market. There is a vast amount of literature on such models
ranging from models that derive Nash-Cournot equilibria and supply func-
tion equilibria to agent based simulation models. For some references see
[25], [26], [11], [27], [28], [29], [30], [31], [32], [33].
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