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Abstract

In this paper, we first present a market environment with a conven-
tional two settlement mechanism. We show that when we add some wind
generation to the system, the steady-state market conditions yield lower
social and consumer welfare and higher use of fossil fuels. We also present
results of a counterfactual stochastic settlement market which improves
social and consumer welfare after the introduction of new intermittent
generation. Thus, we conclude that the choice of market mechanism is a
critical factor for capturing the benefits of large-scale wind integration.

We also introduce a method to compute analytical equilibria of games
in which the payoff functions of players depend on the optimal solution
to an optimization problem with inequality constraints.

1 Introduction

The benefits of renewable energy are becoming clearer as economies of scale be-
gin to drive down the capital costs and charges are applied to carbon emissions.
It is likely that renewables will further increase their competitiveness and soon

surpass traditional generation technology. Many papers have investigated the
benefits resulting from using renewable resources; for example, [1], [2], [3], [4],
and [5] discuss the economic and environmental incentives for using renewable
energies. Two of the key drivers for the current interest in renewable energy
are: the reduction in CO2 emissions, and the desire to reduce dependence on
imported oil and gas. These provide a strong incentive for many countries to
turn to wind and other renewable energy resources to meet some of their energy
needs.

Penetration of renewable resources has occurred much faster than antici-
pated and 16.7% of global final energy consumption was supplied by renewable
sources in 2011 [3, 6]. Worldwide, the wind penetration growth rate has been
27.6% each year, and in fact, some countries have developed their wind gener-
ation capacity much more rapidly than this. For example, the growth-rate for
Mexico was 373% in 2009 [7].

The uncertainty in wind makes its integration with the electricity grid a diffi-
cult task, as far as the operation and planning of the power system is concerned
[8, 9]. Increasing wind penetration calls for more accurate wind prediction sys-
tems and more short-term and long-term reserves [8]. Readers should be aware
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that the unpredictability of wind production is much higher than the uncer-
tainty surrounding demand forecasts. Demand can be predicted with a good
accuracy, as it depends on (mostly) predictable parameters such as tempera-
ture and time of day/year [10]. Thus, introducing wind turbines (which are
dispatched to the extent that the wind blows) to the electricity grid calls for
fast-responding (usually expensive) generators to make up for the lack (or sur-
plus) of wind generation in some scenarios. Compounding this issue is the fact
that wind generation, in periods of low demand (e.g. during night), cannot be
stored to make up shortage of electricity in the other time periods. Increasing
intermittent generation penetration exacerbates these concerns.

One approach towards integration of intermittent generation is treating these
generators as conventional generators, while another approach could be to con-
sider intermittent generation as negative demand. Since some intermittent gen-
eration (e.g. wind) is uncontrollable, such generators cannot be integrated as
conventional generators into the electricity grid. Moreover, intermittency pre-
vents them from being used strategically, and therefore, may cause a bias to-
wards investment in other generators. On the other hand, fully dispatching
wind generation (i.e. considering it as negative demand) creates uncertainty for
the other generators (i.e. wind generators are not paying for the cost they im-
pose on the system) [11]. Several remedies have been suggested for integrating
intermittent generators into the electricity network (for example, see [12, 13]).
However, these remedies are not very effective for large-scale penetration and
new support schemes and mechanisms are called for [13]. One scheme, used in
the Nordic market, involves wind generators being penalised (through a lower
price) if their production imbalance contributes to the system imbalance; this
is a way of making the generators pay for the costs they impose on the system
[14].

Green and Vasilakos [15] provide a numerical supply function equilibrium
model for the UK electricity market in 2020. They investigate the impact of
large-scale wind generation on electricity prices, and conclude that the amount
of hourly wind generation will dramatically affect electricity prices. In Addition,
market power will increase the level and the volatility of prices. Negrete-Pincetic
et al. [11] have examined the negative effects of introducing a large-scale
intermittent generation into the electricity grid. Their paper uses a simulation
approach to quantify these effects, and emphasizes the need for designing new
market-clearing mechanisms for dealing more effectively with the uncertainty
introduced by intermittent generation. However, one important point lacking
from their analysis is the modelling of the strategic behaviour of firms after
the introduction of wind. They assume that the supply function offers of the
generating firms will not change after the integration of wind farms into the
system. This may not necessarily be the case in an electricity market with only
a few participants in absence of strict monitoring.

In this paper, we consider the strategic behaviour of firms, in a market
with and without wind generation. We aim to investigate the impacts of large-
scale wind integration on criteria such as expected social welfare and generation
from fossil fuels. To analyse this, we construct a stylized analytical model to
understand the changes in incentives of firms when stochastic wind generation is
present in the market. Specifically, we construct linear supply function equilibria
for markets with elastic demand and compare the equilibrium prices and welfare
before and after the integration of wind. As shown in [16] and [17], linear SFE
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models are good alternatives to general SFE models, as firstly under linear
marginal cost and demand functions, a linear SFE is also an equilibrium to
the unrestricted general SFE model, and secondly they are more tractable for
complex markets.

In order to compute these equilibria, we relax the non-negativity inequalities
in the optimization problem solved by the Independent System Operator (ISO),
which would otherwise lead to potential non-convexities. To do this we construct
an equivalent game, whose equilibrium is an equilibrium to the original game,
but one which permits an analytical solution. The methodology we employ to
solve this problem is reasonably general and can be used in other contexts.

We then discuss some of our results in the context of CO2 emissions and
demonstrate that the touted benefits of renewable generation (such as wind)
may not be realised due to the intermittent nature of such generation technology.

Finally, we present an alternate market mechanism which under the same
circumstances does not exhibit the same outcomes.

2 Market environment

We consider a single-node market with two types of generators: m cheap gener-
ators (e.g. nuclear generators) with a low short run marginal cost (SRMC) and
one more expensive thermal generator with high SRMC (later we also add a wind
generator to our model). Our expensive generator has the capability to change
output rapidly without incurring considerable extra cost for this change, i.e. it is
flexible. A further assumption is that the thermal generator is a non-strategic
generator. (For example, in the New Zealand Electricity Market (NZEM), a
diesel plant at Whirinaki is owned by the government and is offered in as a non-
strategic peaking plant.) The m cheap generators need to know their proposed
production for some time beforehand. They cannot increase their production
instantaneously, nonetheless they can cut down their generation.

In order to assess the cost and operating implications of adding intermittent
generation to such a market, we add a single wind generator to our model. We
assume that the short-run marginal cost of production from the wind generator
is $0. In addition, it is going to be added to the system as a price taker generator.
Due to market regulations it must offer at price $0, at all times. This happens
in currently active markets such as NZEM, and the Pennsylvania-New Jersey-
Maryland Interconnection (PJM) [18, 19].

After the introduction of this new generator, which introduces uncertainty
into the market, a pre-dispatch market is insufficient, and a real-time market
clearing is required for dealing with the sudden deviations in wind production.

In this paper, we aim to understand the possible implications of adding this
type of generator to the market by comparing the steady-state (equilibrium)
behaviour of firms before and after this modification.

Let qi denote the quantity to be generated by generator i. We assume that
the cost of generating qi for generator i is given by Ψ(qi) = αiqi + βi

2 qi
2.

We index the hydro generators i = 1, . . . ,m, and the thermal and wind
generators are indexed i = t, and i = w, respectively. The marginal cost of
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generation is αi + βiqi, with

αi =






α, i ∈ {1, . . . ,m},
ᾱ, i = t,
0, i = w,

βi =






β, i ∈ {1, . . . ,m},
β̄, i = t,
0, i = w.

Moreover, we assume 0 ≤ α ≤ ᾱ and 0 < β ≤ β̄.
Let Q and p(Q) denote total market generation and market price, respec-

tively. Demand is assumed to be elastic and deterministic, with a linear inverse
demand function

p(Q) = Y − ZQ.

This demand function can also be used to investigate the case of (nearly)
inelastic demand by choosing the appropriate Y and Z parameters.

3 Market before the introduction of wind

3.1 Market description

Prior to the addition of the wind generator, conditions are deterministic and a
forward (pre-dispatch) market is enough to determine dispatch quantities and
prices (i.e. to clear the market). Firms offer a linear supply function (ai + biqi)
as an indication of their marginal cost function (αi + βiqi). We assume bi > 0.

In this setting, ISO’s deterministic problem takes the following form:

ISODP :

min
q,Q

z =
m∑

i=1

(

aiqi +
bi

2
q2
i

)

+ atqt +
bt

2
q2
t −

(

Y Q −
Z

2
Q2

)

s.t.

m∑

i=1

qi + qt − Q = 0 (1)

qt ≥ 0.

In ISODP, Q is the total dispatched quantity (i.e. met demand), and the
ISO’s objective is to maximize observed social welfare, assuming firms offer their
true marginal cost. Note that we assume a single node market as reflected in
the ISO’s problem.

Remark One implicit (and logical) assumption we have made, is that both
α and ᾱ (i.e. minimum marginal cost of generation), are less than or equal
to Y (i.e. maximum price). (Otherwise, they would not participate in the
market.) This assumption ensures a positive total generation in the equilibrium.
Therefore, the cheaper generators (with α ≤ ᾱ and β ≤ β̄) will have a total
positive dispatch in the equilibrium, even without imposing a constraint in ISO’s
problem. In this paper, we have omitted the non-negativity constraints of the
cheap generators from ISODP for simplicity of computation. However, the final
symmetric equilibrium of this game in our examples satisfies these constraints.
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The dual variable corresponding to constraint (1) determines the market
price f , and firm i is paid fqi, regardless of its offered supply function (under
the assumption of uniform pricing). Therefore, the utility (i.e. profit) function
of firm i is

ui = fqi −

(

αiqi +
βi

2
q2
i

)

.

3.2 A simpler equivalent game

As the price a firm is paid is determined through ISODP, and the firm’s offer
strategy affects its dispatched quantity and final prices, each firm wishes to
maximize profit solving an optimization problem subject to ISODP. Due to
the constraint qt ≥ 0 in ISODP, it is not easy to find a closed-form solution
to ISODP. Therefore, in presence of this constraint, the profit optimization
problem of the firms becomes a non-convex problem. This would render the
equilibrium problem a tri-level optimization problem to which it is difficult to
find a closed form solution.

To simplify the computations, we present an equivalent game which uses a
relaxation to the ISODP by omitting the non-negativity constraint:

ISODPr :

min
q,Q

z =
m∑

i=1

(

aiqi +
bi

2
q2
i

)

+ atqt +
bt

2
q2
t −

(

Y Q −
Z

2
Q2

)

,

s.t.

m∑

i=1

qi + qt − Q = 0.

In order to find the steady-state behaviour of participants in the equivalent
game, we need an analytic solution to ISODPr, described above. In order
to make the closed form solution analytically tractable, we use the one-to-one
transformation described in lemma 3.1.

Lemma 3.1 Transformation H :

(
R

R+ \ {0}

)

→

(
R
R+

)

, where H

(
ai

bi

)

=
(

Ai

Bi

)

=

(
ai/bi

1/bi

)

, is a one-to-one transformation.

Proof We show that if

(
A1

i

B1
i

)

=

(
A2

i

B2
i

)

, we can conclude

(
a1

i

b1
i

)

=
(

a2
i

b2
i

)

. B1
i = B2

i implies b1
i = b2

i . Therefore, A1
i = A2

i simplifies to a1
i = a2

i .

In the following computations we denote

A =
m∑

i=1

Ai + At,

B =
m∑

i=1

Bi + Bt.
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Original Game (OG)

Thermal generator offers:

Bt = 1/β̄

At = ᾱBt

ISO solves ISODP

Equivalent Game (EG)

Thermal
generator offers:

Bt =






1/β̄
(Y +Z

∑m
i=1 Ai)

(1+Z
∑m

i=1 Bi)
− ᾱ > 0

B̂t ∈ [0, 1/β̄] (Y +Z
∑m

i=1 Ai)

(1+Z
∑m

i=1 Bi)
− ᾱ = 0

0 Otherwise

At = ᾱBt

ISO solves ISODPr

Table 1: Differences in conditions of the Original Game (OG) and the Equivalent
Game (EG)

P
ri

ce

Quantity

Supply funcion
of the thermal generato

r

Residual dem
and

function: case
1

Residual dem
and

function: case 2

Figure 1: Supply function of the thermal generator

Using this relaxed formulation, we change the game setting in order to ob-
tain an equivalent game (EG), as opposed to our original game (OG). We will
show that any equilibrium to EG is also an equilibrium to OG. Table 1 shows
the differences between OG and EG. Note that in EG, we have dropped the
non-negativity constraint qt ≥ 0 from the ISO’s dispatch. Yet by specifying a
different strategy for the thermal generator, we achieve the same outcome as
OG. Readers should be aware that EG is a simultaneous game, i.e. the thermal
generator and cheap generators offer simultaneously.

We mathematically prove that both clearing mechanisms yield the same
prices and dispatch quantities, and moreover, any Nash equilibrium of EG is
an equilibrium point for OG. However, fig. 1 intuitively shows this. Figure 1
shows two different cases of residual demand function as seen by the thermal
generator (the blue and green lines). The bold red line represents the supply
function of the thermal generator, which consists of two pieces. In EG, only the
piece of the supply function which is active (i.e. intersects the residual demand

6



function) is offered. Thus, if ᾱ is less than the price intercept of its residual

demand function (i.e. (Y +Z
∑m

i=1 Ai)

(1+Z
∑m

i=1 Bi)
), the thermal generator offers ᾱ + β̄qt (i.e.

At = ᾱ
β̄

, Bt = 1
β̄
). If ᾱ is equal to the price intercept, the slope of the thermal

generator does not affect the solution, so any slope gives the same q and f . In
this case, Bt is chosen Bt ∈ [0, 1/β̄]. When ᾱ is more than the price intercept,
the thermal generator offers no generation (i.e. Bt = At = 0).

Using this equivalent game formulation it is now possible to find a closed-
form solution. In the propositions and lemmas that follow we show that the EG
formulation yields the same optimal solution as the OG formulation. To this
end, we need to find a closed-form optimal solution to ISODPr.

Proposition 3.2 The solution to ISODPr can be represented as follows.

f =
Y + AZ

1 + BZ
qi = fBi − Ai i ∈ {1, . . . ,m} ∪ {t}

Proof The objective function of ISODPr is a convex function and constraints
are affine, thus solving KKT conditions provides the optimal solution. The
Lagrangian function is

L =
m∑

i=1

(

aiqi +
bi

2
q2
i

)

+ atqt +
bt

2
q2
t −

(

Y Q −
Z

2
Q2

)

− f

(
∑

i

qi − Q

)

.

Therefore the solution to ISODPr can be obtained from solving the following
system of equations.

∀i :
∂L

∂qi
= 0

∂L

∂Q
= 0

∂L

∂f
= 0

The following proposition shows that EG clears the market the same way as
OG does.

Proposition 3.3 Let Ai and Bi (i ∈ {1, . . . ,m}) be arbitrary but fixed. The
optimal dispatch and price resulting from OG is equal to the optimal dispatch
and price resulting from EG.

Proof Proposition 3.2 gives the solution to ISODPr. First, we show that the
optimal dispatch of ISODPr (qr

t ) is also optimal to ISODP. Let d denote the
difference between y-intercepts of the residual demand function and the supply
function of the thermal generator (i.e. (Y +Z

∑m
i=1 Ai)

(1+Z
∑m

i=1 Bi)
−ᾱ). Replacing the value of
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the optimal qr
t into the expression qr

t d simplifies it to the following non-negative
equation.

qr
t d =

((1 + BZ)At − (Y + AZ)Bt) 2

(1 + BZ)Bt (1 + Z(B − Bt))
≥ 0 (2)

Case 1 : when d > 0, inequality (2) implies qr
t ≥ 0. Therefore, qr

t (which
is the optimal solution to the relaxed problem) satisfies the non-negativity con-
straint. As the optimal solution to the relaxed problem ISODPr is feasible in
ISODP it is also the optimal solution to ISODP. Note that in this case Br

t = Bt

which makes this comparison valid.
Case 2: when d = 0, we have

Y + Z(A − At) = ᾱ(1 + Z(B − Bt)). (3)

Also, from the strategy set given in table 1, we know that

At = ᾱBt, (4)

thus (3) can be written as

Y + ZA

1 + ZB
= ᾱ. (5)

Therefore, according to proposition 3.2, fr = ᾱ and qr
t = ᾱBt − At. Fur-

thermore, we can use equation (4) to obtain qr
t = 0.

Similar to the previous case, this point is a feasible solution to ISODP. Thus,
it is also the optimal solution to ISODP.

Case 3: when d < 0, inequality (2) implies qr
t ≤ 0. As ISODP is convex

and the optimal solution to its relaxation (ISODPr) is not an internal point of
ISODP, the optimal solution to ISODP is on the boundary (i.e. qt = 0). Thus,
ISODP is equivalent to ISODPr if firm t offers nothing (i.e. Br

t = 0).
We demonstrated that q = qr, and Q = Qr. Furthermore, KKT conditions

for each ISODP and ISODPr imply f = Y −ZQ and fr = Y −ZQr, respectively.
As Q = Qr, we conclude f = fr.

Proposition 3.3 shows the equivalence of OG and EG for fixed offer param-
eters. However, it does not take into account the strategic behaviour of gener-
ators. Proposition 3.5 shows that any equilibrium to EG is also an equilibrium
to OG. We first prove a necessary lemma, which states that for any strategy for
firm i in OG, there exists another strategy in EG which yields higher profit for
that firm.

Lemma 3.4 Let A
(m)
−i denote

∑m
j=1
j 6=i

Aj. For any Ai and Bi and for any Bt,

there exist parameters Âi and B̂i for generator i ∈ {1, . . . ,m} that yield a higher
(or the same) profit for generator i from EG clearing mechanism (i.e. ISODPr

problem) in comparison with its profit under the OG clearing mechanism (i.e
ISODP). In other words,

uE
i (Âi, B̂i, A

(m)
−i , B

(m)
−i , Bt) ≥ uO

i (Ai, Bi, A
(m)
−i , B

(m)
−i )
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ISODPr : Bt = 1/β̄

ISODPr : Bt = 0

ISODP

Quantity

P
ri

ce

ᾱ

Figure 2: Residual demand function for one generator for ISODP and ISODPr

problems

Proof The residual demand function of generator i ∈ {1, . . . ,m} under ISODPr

is equal to the total demand ( Y
Z − 1

Z p) minus dispatch of the other generators
(−
∑

j 6=i Aj +
∑

j 6=i Bjp):

qISODPr

i (p) =
Y

Z
−

1
Z

p +
m∑

j=1
j 6=i

Aj −
m∑

j=1
j 6=i

Bjp + At − Btp.

Similarly, the residual demand function of generator i under ISODP is:

qISODP
i (p) =






Y
Z − 1

Z p +
∑m

j=1
j 6=i

Aj −
∑m

j=1
j 6=i

Bjp, p ≤ ᾱ,

Y
Z − 1

Z p +
∑m

j=1
j 6=i

Aj −
∑m

j=1
j 6=i

Bjp + ᾱ
β̄
− 1

β̄
p, p > ᾱ.

Observe that qISODP
i (p) is a continuous function and its derivative with re-

spect to p (where defined) does not increase when p increases. Thus, it is a
concave piecewise linear function (the inverse function of what is shown in fig. 2
i.e. the bold black piecewise linear function). Also, qISODPr

i (p) is a linear func-
tion that lies on one of the pieces of qISODP

i (p) for Bt = 1/β̄ or Bt = 0 (see
fig. 2). For Bt ∈ (0, 1/β̄), qISODPr

i (p) intersects qISODP
i (p) only at p = ᾱ so that

we have qISODPr

i (p) ≥ qISODP
i (p). Here, we prove the lemma only for Bt = 1/β̄.

Proof of the other cases follows similarly.
As each piece of qISODP

i (p) (and qISODPr

i (p)) is a linear function with nega-
tive (non-zero) slope, we can find the inverse demand function pISODP(qi) (and

9



pISODPr

(qi)). pISODP(qi) will also be a concave piecewise linear function as
qISODP
i (p) (see fig. 2). As pISODPr

(qi) is a linear function tangent to the con-
cave function pISODP(qi), we obtain pISODPr

(qi) ≥ pISODP(qi).
The profit of generator i in ISODP is dependent on the intersection of its

supply function (e.g. the green line with parameters Ai and Bi) and its resid-
ual demand function (i.e. the bold black function). As shown earlier, gener-
ating the same quantity under ISODPr yields a higher price (pISODPr

(qi) ≥
pISODP(qi)) and therefore a higher profit (this is the intersection of the red line
with the dashed green line in fig. 2). Note that there always exists an alter-
native linear supply function (e.g. the dashed green line) that passes through
(qi, p

ISODPr

(qi)). In other words, there exist parameters Â and B̂ that solve

qi = −Âi + B̂ip
ISODPr

(qi).

Thus,

there exist Â, B̂ : uE
i (Âi, B̂i, A

(m)
−i , B

(m)
−i , Bt = 1/β̄) ≥ uO

i (Ai, Bi, A
(m)
−i , B

(m)
−i ).

A similar argument can be applied to any Bt ∈ [0, 1/β̄].

Theorem 3.5 Any equilibrium to EG is also an equilibrium to OG.

Proof To prove the proposition, we use the property that any action profile
results in an identical utility (profit) for generators in OG and EG (proposition
3.3).

Assume νE = (AE , BE , BE
t , qE , QE , fE) is an equilibrium for EG. This

means for any i ∈ {1, . . . ,m}

∀Âi and B̂i : uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t ) ≥ uE

i (Âi, B̂i, A
E
−i, B

E
−i, B

E
t ). (6)

On the other hand, proposition 3.3 implies

uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t ) = uO

i (AE
i , BE

i , AE
−i, B

E
−i). (7)

From lemma 3.4 for any Ai and Bi we have that

there exist Âi and B̂i : uE
i (Âi, B̂i, A

E
−i, B

E
−i, B

E
t ) ≥ uO

i (Ai, Bi, A
E
−i, B

E
−i). (8)

Following (6), and (8) we obtain

uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t ) ≥ uO

i (Ai, Bi, A
E
−i, B

E
−i). (9)

Then, replacing the value of uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t ) from (7) into (9)

gives

∀i ∈ {1, . . . ,m} : uO
i (AE

i , BE
i , AE

−i, B
E
−i) ≥ uO

i (Ai, Bi, A
E
−i, B

E
−i),

which proves that νE is an equilibrium for OG.

We now have a way of constructing equilibria for OG through EG. In the
remainder of this paper, we will concentrate on EG and appeal to theorem 3.5.
The game under consideration throughout the rest of this paper is EG.
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3.2.1 Firms’ computations

As discussed previously, firm i’s revenue and cost are fqi and αiqi + βi

2 q2
i ,

respectively. Consequently, the utility (profit) of firm i can be represented as

ui(Ai, Bi) = fqi −

(

αiqi +
βi

2
q2
i

)

.

When firm i submits its supply function, it knows that its utility is a function
of its own and the other firms’ offered supply functions, as stated in proposition
3.2. Before proceeding to the best response functions, we prove a necessary
lemma.

Lemma 3.6 Assume that f(x, y) : R2 → R is defined on a Dx × Dy with
Dx, Dy ⊆ R. Furthermore, assume that x∗(y) ∈ Dx, maximizes f(x, y) for any
arbitrary but fixed y. Also assume g(y) = f(x∗(y), y) is maximized at y∗ ∈ Dy.
Then, f(x, y) is maximized at (x∗(y∗), y∗).

Proof Note that for any (x, y) ∈ Dx × Dy,

f(x, y) ≤ f(x∗(y), y)

by the assumption on x∗(y) ∈ Dx. Moreover, f(x∗(y), y) ≤ f(x∗(y∗), y∗).
Clearly then

f(x, y) ≤ f(x∗(y∗), y∗) for any (x, y) ∈ Dx × Dy.

Proposition 3.7 Let A−i and B−i be arbitrary but fixed, ui(Ai, Bi) for i ∈
{1, . . . ,m} is maximized over all Ai and Bi if

A∗
i (Bi) =

(1 + ZB−i) (αi − ZA−i + ZαiB − Y ) + (Y + ZA−i) (Z + β(1 + ZB−i)) Bi

(1 + ZB−i) (2Z + β(1 + ZB−i))
.

(10)

Proof To start out, assume that Bi is a fixed parameter, we can then show

d2ui

dA2
i

= −
(1 + ZB−i) (2Z + β + ZβB−i)

(1 + ZB)2
≤ 0.

This shows that ui is a concave function of Ai for any fixed Bi. Thus, we
can use first order conditions to obtain the optimizer Ai for any Bi:

A∗
i (Bi)=

(1 + ZB−i) (αi − ZA−i + ZαiB − Y ) + (Y + ZA−i) (Z + β + ZβB−i) Bi

(1 + ZB−i) (2Z + β + ZβB−i)
.

To find the optimal value for ui we can use lemma 3.6 and substitute A∗
i (Bi)

in ui(A∗
i (Bi), Bi). Surprisingly, ui(A∗

i (Bi), Bi) simplifies to a constant indepen-
dent of Bi (dui(A

∗
i (Bi),Bi)
dBi

= 0). Therefore,

max
Ai,Bi

ui(Ai, Bi) = max
Bi

ui(A
∗
i (Bi), Bi)

= ui(A
∗
i (Bi), Bi).
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Proposition 3.7, indicates that there are infinitely many choices of (Ai, Bi)
or (ai, bi) for firm i to ensure it maximizes its utility function.

In this particular case, this situation causes multiple equilibria. In order to
limit the number of equilibria, we consider the case in which the slope of the
supply function is fixed to a constant by the ISO. Note that this is a further
modification to game EG. As the supply function slope has an identical value
for all generators, we represent it by B1, (i.e. the inverse of the slope for the
first generator)

Bi = B1.

Using Bi = B1, equation (10) reduces to the best response function of firm
i ∈ {1, . . . ,m} for Ai. Readers should be reminded that the strategy of the
thermal generator is as stated in table 1 for EG.

Proposition 3.8 The following equations determine a symmetric equilibrium
in the market before the introduction of the wind generator.

Bt =






1/β̄ B0
t > 1/β̄

B0
t B0

t ∈ [0, 1/β̄]
0 Otherwise

(11)

At = ᾱBt (12)

∀i ∈ {1, . . . ,m} : Ai = H(Bt) (13)

where H(x) and B0
t are defined as

H(x) =B2
1(m−1)Z(β(ᾱxZ+Y )+mZα)−(xZ+1)(ᾱxZ+Y )+α(xZ+1)2

(xZ+1)(xZβ+mZ+Z+β)+B1(m−1)Z(β(xZ+1)+mZ)

+ B1(−((m−2)Z(ᾱxZ+Y ))+β(xZ+1)(ᾱxZ+Y )+(2m−1)Zα(xZ+1))
(xZ+1)(xZβ+mZ+Z+β)+B1(m−1)Z(β(xZ+1)+mZ) ,

B0
t = − B1(m − 1) −

1
Z

−
Y − ᾱ

(Y − ᾱ)β − mZ(ᾱ − α)
.

Proof Considering symmetry among firms 1 to m, we expect to see the same
equilibrium actions from these generators. Let A−i and B−i denote

∑
j 6=i Aj

and
∑

j 6=i Bj , respectively. Therefore, to find a symmetric equilibrium we can
use

∀i ∈ {1, . . . ,m} : A−i = (m − 1)Ai + At. (14)

On the other hand, B−i = (m − 1)B1 + Bt (B1 is a fixed parameter chosen
by the ISO). Inserting these equations into the best response function (equation
(10)) results in an equation in terms of Ai. Solving this equation for Ai, treating
Bt as a fixed parameter, gives

∀i ∈ {1, . . . ,m} : Ai = H(Bt).

This is what is claimed in the proposition. Now, inserting Ai = H(Bt) into
the supply function of firm t (from table 1) leads to

Bt =






1/β̄ Y +ZmH(Bt)
1+ZmB1

− ᾱ > 0,

B0
t ∈ [0, 1/β̄] Y +ZmH(Bt)

1+ZmB1
− ᾱ = 0,

0 Otherwise.

(15)

12



Note that Bt appears in the conditional expression on the right hand side of
parts 1 and 2 of (15). To ensure consistency we replace (15) with (16) bellow:

Bt =






1/β̄ Y +ZmH(1/β̄)
1+ZmB1

− ᾱ > 0,

B0
t

Y +ZmH(B0
t )

1+ZmB1
− ᾱ = 0, B0

t ∈ [0, 1/β̄]
0 Otherwise.

(16)

Here, the only solution to the equation Y +ZmH(B0
t )

1+ZmB1
− ᾱ = 0 that can be

non-negative is given by:

B0
t = − B1(m − 1) −

1
Z

−
Y − ᾱ

(Y − ᾱ)β − mZ(ᾱ − α)
.

Also, note that

Y + ZmH(1/β̄)
1 + ZmB1

− ᾱ > 0 ⇔ B0
t > 1/β̄.

Thus from (16), Bt can be written as

Bt =






1/β̄ B0
t > 1/β̄,

B0
t B0

t ∈ [0, 1/β̄],
0 Otherwise.

In the following section we will include a intermittent generator in the market
and observe the change in equilibrium behaviour.

4 Market after introducing wind

Introducing a new wind generator is equivalent to introducing uncertainty to
the system. This uncertainty is realized only in real time, when generators are
dispatched. One option to deal with this problem is to introduce an additional
clearing mechanism for dealing with this uncertainty in real time. We name this
a spot market, as it is somewhat analogous to the conventional spot markets.
We also name the first market a pre-dispatch or a day-ahead market.

The two settlement market model that we use in this paper is inspired by
NZEM. In the day-ahead market, generators offer their supply functions and
are dispatched according to a predicted demand or generation. In NZEM, wind
generators are price-taker generators and are dispatched ahead of other gener-
ators.

In the spot market, the optimization problem is re-solved based on the real-
ized demand and generation, and generators’ actual generation may be different
from their pre-dispatch quantities. However, these changes are limited by some
constraints. For example, some generators (like generators 1 to m in our model)
cannot increase their output instantaneously.

13



4.1 Market description

In our model, each generator offers a linear supply function ai + biqi and the
pre-dispatch market clears according to the expected demand and generation.
Then in the spot market, the ISO solves the same optimization problem with
the realized demand and generation.

Let us consider two scenarios for wind generation in the spot market and
assume θs denotes the probability of scenario s. Let ws denote the maximum
possible wind generation in scenario s. Without loss of generality, we assume
w1 < w2. We show that in our model the wind generator is dispatched up to ws

in scenario s, since in our model the wind generator must offer at price zero (see
proposition 4.1). It is important to note that we have assumed the case that
wind generation is less than the maximum demand (D(p = 0)). Let w denote
the expected generation from wind

w =
2∑

s=1

θsws.

Furthermore, let qw denote the quantity to be dispatched from the wind
generator in the day-ahead model. Also let yi,s and Cs denote generation from
generator i in scenario s and total consumption in scenario s respectively. Then,
the pre-dispatch and spot clearing optimization problems can be respectively
represented as follows.

ISOPP :

min z =
m∑

i=1

(

aiqi +
bi

2
q2
i

)

+ atqt +
bt

2
q2
t −

(

Y Q −
Z

2
Q2

)

s.t.

m∑

i=1

qi + qt + qw − Q = 0 [f ]

qw ≤ w

qt ≥ 0

ISOSPs :

min z =
m∑

i=1

(

aiyi,s +
bi

2
y2

i,s

)

+ atyt,s +
bt

2
y2

t,s −

(

Y Cs −
Z

2
C2

s

)

s.t.
m∑

i=1

yi,s + yt,s + yw,s − Cs = 0 [ps]

yw,s ≤ ws

yi,s ≤ qi i ∈ {1, . . . ,m}

yt,s ≥ 0

Note that f and ps are dual variables of the constraints balancing generation
with demand and represent pre-dispatch and spot market prices, respectively.
Also, qi is not a decision variable of ISOSPs, but a fixed parameter representing
the pre-dispatch quantity of generator i. The constraint yi,s ≤ qi represents the
deviation constraint of generators i ∈ {1, . . . ,m}.
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4.2 A simpler equivalent game

Similar to the previous model, we find an equivalent formulation to the original
model, in order to make the computations easier. The method is very similar
to the method we use to simplify the game without wind generation.

(1/β̄, 1/β̄, [0, 1/β̄])

(1/β̄, 1/β̄, 0)

(1/β̄, 1/β̄, 1/β̄)

(1/β̄, [0, 1/β̄], 0)

(1/β̄, 0, 0)

([0, 1/β̄], 0, 0)

(0, 0, 0)

Quantity

P
ri

ce

RDF
(scenario 1: w

1 )

RDF (Pre-dispatch: w)

RDF (scenario 2: w
2 )

RDF: Residual Demand Function

(Bt,1, Bt, Bt,2)

Figure 3: Coloured lines: possible cases that the supply function of the thermal
generator can intersect the residual demand functions of the pre-dispatch and
spot markets

Table 2 shows the differences in conditions of the original game with wind
generation (i.e. OGW) and the equivalent game with wind generation (i.e.
EGW). Readers should be aware that EGW is a simultaneous move game.

We mathematically prove why the clearing mechanisms OGW and EGW
are equivalent (i.e. for fixed offers Ai and Bi, i ∈ {1, . . . ,m}, they give the
same dispatch and price). It can also be explained intuitionally. In this mech-
anism, instead of one residual demand function, the thermal generator is faced
with three residual demand functions (i.e. pre-dispatch demand and two spot
scenarios). Each of these residual demand functions can intersect the supply
function in either of its two pieces (see fig. 3). The intersecting part can be dif-
ferent for each residual demand function. Thus, in EGW we assume the thermal
generator offers three supply functions, which actually comply with the original
supply function.

We also show that in all ISO’s problems (i.e. ISOPPr and ISOSPr
s) wind
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The Original Game after Wind integration(OGW)

Thermal generator offers:

Bt =1/β̄

At =ᾱBt

ISO solves ISOPP and ISOSPs (see the next section) with the non-negativity
constraints

qt ≥ 0,

yt,s ≥ 0.

The Equivalent Game after Wind integration (EGW)

Thermal generator offers:

Bt,2 =






1/β̄
Y +Z(A(m)−w2)

(1+ZmB1)
− ᾱ > 0

[0, 1/β̄]
Y +Z(A(m)−w2)

(1+ZmB1)
− ᾱ = 0

0 Otherwise

Bt =






1/β̄
Y +Z(A(m)−w)

(1+ZmB1)
− ᾱ > 0

[0, 1/β̄]
Y +Z(A(m)−w)

(1+ZmB1)
− ᾱ = 0

0 Otherwise

Bt,1 =






1/β̄ Y + Z

(

A(m) −
mB1(Y +Z(A(m)−w))

ZmB1+1 − w1

)

− ᾱ > 0

[0, 1/β̄] Y + Z

(

A(m) −
mB1(Y +Z(A(m)−w))

ZmB1+1 − w1

)

− ᾱ = 0

0 Otherwise

At = ᾱBt

At,s = ᾱBt,s

ISO solves ISOPPr and ISOSPr
s without the non-negativity constraints.

Table 2: Differences in conditions of the Original Game with Wind integration
(OGW) and the Equivalent Game with Wind integration (EGW)
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generator is dispatched fully (i.e. up to its maximum possible generation):

ISOPPr :

min
q,Q

z =
m∑

i=1

(

aiqi +
bi

2
q2
i

)

+ atqt +
bt

2
q2
t −

(

Y Q −
Z

2
Q2

)

s.t.

m∑

i=1

qi + qt + qw − Q = 0 [f ]

qw ≤ w,

ISOSPr
s :

min
y,C

z =
m∑

i=1

(

aiyi,s +
bi

2
y2

i,s

)

+ atyt,s +
bt,s

2
y2

t,s −

(

Y Cs −
Z

2
C2

s

)

s.t.
m∑

i=1

yi,s + yt,s + yw,s − Cs = 0 [ps]

yw,s ≤ ws

yi,s ≤ qi i ∈ {1, . . . ,m}.

Note that in addition to the non-negativity constraint, another difference
between ISOSPs and ISOSPr

s is in the slope of the supply function (bt vs. bt,s).
This is because in EGW, the thermal generator offers a different slope for the
pre-dispatch market and each scenario in the spot market (see fig. 3).

Proposition 4.1 The optimal solutions to ISOPPr and ISOSPr
s always satisfy

qw = w or f = 0, (17)

yw,s = ws or ps = 0. (18)

Proof We prove the proposition for ISOSPr
s; the other case can be proven

similarly.
The optimal solution to ISOSPr

s can be determined from its KKT conditions
(since its objective function is convex and it has affine constraints). Two of the
conditions from the KKT conditions are:

0 ≤ ws − yw,s ⊥ ηs ≤ 0 (19)

ps + ηs = 0 (20)

where ηs is the dual of the maximum wind generation constraint, with the
associated orthogonality condition 19, and equation 20 is the dual constraint
associated with yw,s. Combining these two constraints by eliminating ηs we
get:

0 ≤ ws − yw,s ⊥ ps ≥ 0,

which can be rewritten as in the statement of the proposition.

Proposition 4.1 indicates that wind generator is always a price taker gener-
ator and is dispatched up to its available capacity1.

1Wind generation may not always be the price taker in reality. For example, an ISO
with unit commitment considerations may dispatch wind generators less than their available
output.
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Substituting qw = w then results in the following formulation for ISOPPr:

ISOPPr :

min
q,Q

z =
m∑

i=1

(

aiqi +
bi

2
q2
i

)

+ atqt +
bt

2
q2
t −

(

Y Q −
Z

2
Q2

)

s.t.

m∑

i=1

qi + qt + w − Q = 0. [f ]

The spot problem can also be represented as

ISOSPr
s :

min
y,C

z =
m∑

i=1

(

aiyi,s +
bi

2
y2

i,s

)

+ atyt,s +
bt,s

2
yt,s −

(

Y Cs −
Z

2
C2

s

)

s.t.

m∑

i

yi,s + yt,s + ws − Cs = 0

yi,s ≤ qi i ∈ {1, . . . ,m}.

Let us use the same notation Ai = ai

bi
and Bi = 1

bi
. In addition, let At,

Bt, At,s, Bt,s, A(m), and B(m) denote at

bt
, 1

bt
, at

bt,s
, 1

bt,s
,
∑m

i=1 Ai, and
∑m

i=1 Bi,
respectively.

Proposition 4.2 The optimal solution to ISOPPr, for the specific market we
defined in this section, is as follows.

f =
Y + Z(A(m) + At − w)

Z(B(m) + Bt) + 1
qi = fBi − Ai

Proof The proof is effectively identical to the proof of proposition 3.2.

We can also find the optimal solution to ISOSPr
s.

Proposition 4.3 The optimal solution to ISOSPr
s , for the specific market we

defined in this section, is as follows.
Case 1: ws ≥ w,

ps =
Y + Z(A(m) + At,s − ws)

Z(mB1 + Bt,s) + 1

yi,s =

{
psBi − Ai i ∈ {1, . . . ,m}

psBt,s − At,s i = t

Case 2: ws < w,

ps =
Y + Z(A(m) + At,s − mB1f − ws)

ZBt,s + 1

yi,s =

{
qi i ∈ {1, . . . ,m}

psBt,s − At,s i = t
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Proof Let us first optimize the following relaxed version of ISOSPr
s.

ISOSPrr
s :

min z =
m∑

i=1

(

aiyi,s +
bi

2
y2

i,s

)

+ atyt,s +
bt,s

2
yt,s −

(

Y Cs −
Z

2
C2

s

)

s.t.

m∑

i=1

yi,s + yt,s + ws − Cs = 0

By using the same method used in proposition 3.2, the optimal solution to this
optimization problem is as follows.

p∗s =
Y + Z(A(m) + At,s − ws)

Z(mB1 + Bt,s) + 1

y∗
i,s =

{
p∗sBi − Ai i ∈ {1, . . . ,m}

p∗sBt,s − At,s i = t

Case 1 (ws ≥ w): The residual demand function of firm t is lower than that
of the pre-dispatch market. This is because the demand curve and offer func-
tions of the other generators are fixed, and wind generation is increased. This
means producing the same quantity will result in a lower price in comparison
with the pre-dispatch market. As the market price is equal to the intersection
of the supply function of this generator (see fig. 1) with the residual demand
function, the conclusion is p∗s ≤ f∗. Consequently, comparing y∗

i,s with q∗i (from
proposition 4.2), we conclude ∀i ∈ {1, . . . ,m} : y∗

i,s ≤ q∗i (we know that all our
generators are able to deviate downward, meaning that this solution is feasi-
ble). As the optimal solution to ISOSPrr

s is feasible in the original problem (i.e.
ISOSPr

s), it is also the optimal solution to the original problem.
Case 2 (ws ≤ w): We conclude q∗i ≤ y∗

i,s; this point cannot be feasible for the
primal problem. As this optimization problem is a convex optimization problem,
and the optimal solution to the relaxed problem is not feasible in ISOSPr

s, the
optimal solution must be on the boundaries:

∀i ∈ {1, . . . ,m}, y∗
i,s = q∗i .

Hence this problem can be represented, for this case, as follows:

ISOSPrr
2 :

min z =

(

atyt,s +
bt

2
y2

t,s

)

−

(

Y Cs −
Z

2
C2

s

)

s.t. yt,s +
m∑

i=1

qi + ws − Cs = 0.

Next we can solve ISOSPrr
2 similar to proposition 4.2, and the solution is

ps =
Y + Z(At,s −

∑m
i=1 qi − ws)

ZBt,s + 1
,

yi,s =

{
qi i ∈ {1, . . . ,m}

psBi − Ai Otherwise
.

Replacing qi = fBi −Ai into the first equation proves the proposition.
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Proposition 4.3 demonstrates why the clearing mechanism of EGW is equiv-
alent to the clearing mechanism of OGW. We also prove that any equilibrium
to EGW is an equilibrium to OGW (in proposition 4.6).

Proposition 4.4 For fixed offered parameters Ai and Bi for i ∈ {1, . . . ,m},
the optimal dispatch and price resulting from OGW mechanism is equal to the
optimal dispatch and price resulting from EGW mechanism.

Proof We prove this proposition only for the spot market of the first scenario.
Proof of the other cases follow in a same way.

Proposition 4.3 indicates

p1 =
Y + Z(A(m) + At,1 − mB1f − w1)

ZBt,1 + 1
.

The y-intercept of the residual demand function of firm t can be computed
as the market price if it offers no generation (i.e. At,1 = Bt,1 = 0), and is equal
to

p1(0) = Y + Z(A(m) − mB1f − w1).

The value of f from proposition 4.3 can be replaced in this expression. This
modifies p1(0) to the following form.

p1(0) = Y + Z

(

A(m) −
mB1(Y +Z(A(m)−w))

ZmB1+1 − w1

)

As illustrated in fig. 1 and stated in table 2, if this y-intercept (p1(0)) is
greater than or equal to ᾱ, the thermal generator offers a positive Bt,1 (i.e.
Bt,1 = 1/β̄). Similarly, if p1(0)− ᾱ = 0, Bt,1 can be any value in [0, 1/β̄] as the
value of Bt,1 does not change the solution in this case. Finally, if p1(0)− ᾱ < 0,
Bt,1 is chosen to be zero (i.e. no production in this scenario). The rest of the
proof is similar to the proof of proposition 3.3. We can further apply a similar
argument to prove this proposition for the spot market of the second scenario
and the pre-dispatch market.

The following lemma and theorem prove that any equilibrium to EGW is an
equilibrium to OGW.

Lemma 4.5 For any Ai and Bi for i ∈ {1, . . . ,m} and for any Bt,s ∈ [0, 1
β̄
],

there exist parameters A
(s)
i and B

(s)
i for generator i ∈ {1, . . . ,m} and for any

scenario s so that

uE
i,s(A

(s)
i , B

(s)
i , A

(m)
−i , B

(m)
−i , Bt,s) ≥ uO

i,s(Ai, Bi, A
(m)
−i , B

(m)
−i ).

Proof The proof that we used for lemma 3.4 can also be similarly applied to
this lemma.

Theorem 4.6 Any equilibrium to EGW is also an equilibrium to OGW.
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Proof Assume νE = (AE , BE , BE
t , BE

t,1, B
E
t,2, q

E , QE , fE) is an equilibrium for
EGW. This means ∀i ∈ {1, . . . ,m} :

∀Âi and B̂i : uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t , BE

t,1, B
E
t,2) ≥ uE

i (Âi, B̂i, A
E
−i, B

E
−i, B

E
t , BE

t,1, B
E
t,2).

(21)

Note that we have two scenarios. For each scenario, there exists an optimal
intersecting point on the residual demand function. The optimal intersection
for the low wind scenario yields higher quantity and price than that of the
high wind scenario. This means that we can always find parameters Ai and
Bi so to form an increasing supply function that passes through both these
optimal intersections. Therefore, it also maximizes the expected value of these
functions (i.e. uE

i ). In other words, the parameters Ai and Bi that maximize uE
i ,

also maximize uE
i,s for both scenarios. From (21) we understand AE

i and BE
i

maximize uE
i (Ai, Bi, A

E
−i, B

E
−i, B

E
t , BE

t,1, B
E
t,2). Therefore, they also maximize

profit for each scenario and each generator i:

∀Âi and B̂i : uE
i,s(A

E
i , BE

i , AE
−i, B

E
−i, B

E
t,s) ≥ uE

i,s(Âi, B̂i, A
E
−i, B

E
−i, B

E
t,s). (22)

In addition, from lemma 4.5 we know ∀Ai and Bi,

∃Âi and B̂i : uE
i,s(Âi, B̂i, A

E
−i, B

E
−i, B

E
t,s) ≥ uO

i,s(Ai, Bi, A
E
−i, B

E
−i). (23)

From (22) and (23), we obtain

uE
i,s(A

E
i , BE

i , AE
−i, B

E
−i, B

E
t,s) ≥ uO

i,s(Ai, Bi, A
E
−i, B

E
−i).

An expectation over all scenarios results in

uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t , BE

t,1, B
E
t,2) ≥ uO

i (Ai, Bi, A
E
−i, B

E
−i). (24)

On the other hand, proposition 4.4 implies

uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t , BE

t,1, B
E
t,2) = uO

i (AE
i , BE

i , AE
−i, B

E
−i). (25)

If we replace the value of uE
i (AE

i , BE
i , AE

−i, B
E
−i, B

E
t , BE

t,1, B
E
t,2) from (25) into

(24), we obtain

∀i ∈ {1, . . . ,m} : uO
i (AE

i , BE
i , AE

−i, B
E
−i) ≥ uO

i (Ai, Bi, A
E
−i, B

E
−i).

This proves that νE is an equilibrium for OG.

4.2.1 Firms’ computations

We remind the reader that we have assumed Bi is a constant (imposed by the
ISO) for the first m generators.

We investigate a case with two scenarios: Let w1 and w2 denote the low wind
generation scenario and the scenario with high wind generation respectively.

The expected utility function of firm i is computed by the following equation.

ui =
2∑

s=1

θs

(

psyi,s −

(

αiyi,s +
1
2
βiy

2
i,s

))

Now, we can proceed to find an equilibrium for EGW.
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Proposition 4.7 The following describes a symmetric Nash equilibrium to EGW.

Bt,2 =






1/β̄ B0
t,2 > 1/β̄

B0
t,2 B0

t,2 ∈ [0, 1/β̄]
0 Otherwise

Bt =






1/β̄ B0
t > 1/β̄

B0
t B0

t ∈ [0, 1/β̄]
0 Otherwise

Bt,1 =






1/β̄ B0
t,1 > 1/β̄

B0
t,1 B0

t,1 ∈ [0, 1/β̄]
0 Otherwise

At = ᾱBt

At,s = ᾱBt,s

Ai = G(Bt,1, Bt, Bt,2) i ∈ {1, . . . ,m}

Where G(Bt,1, Bt, Bt,2) is the solution to the following system of equations
with variable A1 (taking Bt, Bt,1, and Bt,2 as constant parameters). The closed-
form expression for G can be found in [16].

∂u1

∂A1
= 0

i ∈ {1, . . . ,m} : Ai = A1

At = ᾱBt

At,1 = ᾱBt,1

At,2 = ᾱBt,2

Also, B0
t,2, B0

t , and B0
t,1 are given as follows.

B0
t,2 ∈ {x ≥ 0 :

Y + Z
(
mG(1/β̄, 1/β̄, x) − w2

)

(1 + ZmB1)
− ᾱ = 0}

B0
t ∈ {x ≥ 0 :

Y + Z
(
mG(1/β̄, x,Bt,2) − w

)

(1 + ZmB1)
− ᾱ = 0}

B0
t,1 ∈ {x ≥ 0 : Y + Z

(
A(m) − mB1(Y +Z(mG(x,Bt,Bt,2)−w))

ZmB1+1 − w1

)
− ᾱ = 0}

Proof Using second order conditions, we can show that ui is a concave function
of Ai. Therefore, first order condition ∂ui

∂Ai
= 0 can be used to find a best

response Ai for firm i. Considering symmetry among first m generators, we
obtain Ai = G(Bt,1, Bt, Bt,2) as a condition for any symmetric equilibrium.

Inserting value of Ai into the equations of Bt, Bt,1, and Bt,2 from table 2,
determines equilibrium values of these quantities. For example,

Bt,2 =






1/β̄
Y +Z(mG(Bt,1,Bt,Bt,2)−w2)

(1+ZmB1)
− ᾱ > 0

[0, 1/β̄] Y +Z(mG(Bt,1,Bt,Bt,2)−w2)
(1+ZmB1)

− ᾱ = 0
0 Otherwise

. (26)

Note that Bt,2 appears in the conditional expression on the right hand side
of parts 1 and 2 of (26). To ensure consistency it must have the value of Bt,2
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for each condition i.e. 1/β̄ and Bt,2 ∈ [0, 1/β̄] respectively. Also, note that
residual demand function of the thermal generator for scenario 2 has a lower y-
intercept than that of pre-dispatch and scenario 1. Therefore, when Bt,2 = 1/β̄
or Bt,2 ∈ [0, 1/β̄], Bt and Bt,1 must be equal to 1/β̄ (As shown in fig. 3, in all
possible cases with Bt,2 = 1/β̄ or Bt,2 ∈ [0, 1/β̄], Bt = Bt,1 = 1/β̄). Accordingly,
we replace (26) with (27):

Bt,2 =






1/β̄
Y +Z(mG(1/β̄,1/β̄,1/β̄)−w2)

(1+ZmB1)
− ᾱ > 0

B0
t,2

Y +Z(mG(1/β̄,1/β̄,B0
t,2)−w2)

(1+ZmB1)
− ᾱ = 0, B0

t,2 ∈ [0, 1/β̄]
0 Otherwise

. (27)

Note that

B0
t,2 > 1/β̄ ⇔

Y + Z
(
mG(1/β̄, 1/β̄, 1/β̄) − w2

)

(1 + ZmB1)
− ᾱ > 0.

Thus, the equilibrium Bt,2 can be described as

Bt,2 =






1/β̄ B0
t,2 > 1/β̄

B0
t,2 B0

t,2 ∈ [0, 1/β̄]
0 Otherwise

.

By applying a similar method, other equations of the proposition can be
proved.

5 Results of wind integration

In this section, we compare the symmetric equilibrium computed without wind,
with the symmetric equilibrium computed after wind is added to the market.
One may be tempted to believe that adding additional wind generation to the
market (effectively decreasing the demand) will always depress the price; how-
ever, if that additional generation is uncertain and the other generators are not
sufficiently flexible for the system operator to take advantage of this generation,
the outcomes may become worse.

Social welfare before the integration of wind is given by

SWbefore = Y

(
m∑

i=1

qi + qt

)

−
1
2
Z

(
m∑

i=1

qi + qt

)
2

−
m∑

i=1

(

αqi +
1
2
βq2

i

)

−

(

ᾱqt +
1
2
β̄q2

t

)

,

and after the integration of wind, social welfare is computed through

SWafter =
S∑

s=1

θs

(

Y

(
m∑

i=1

yi,s + yt,s + ws

)

−
1
2
Z

(
m∑

i=1

yi,s + yt,s + ws

)
2

−
m∑

i=1

(

αyi,s +
1
2
βy2

i,s

)

−

(

ᾱyt,s +
1
2
β̄y2

t,s

))

.
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5.1 Example 1

Consider a market described as follows.

• We consider two markets: one with two and the other with three genera-
tors. The following table shows the features of these generators.

Game 1 Game 2 Offers Cost Dev. Dev.
# no wind with wind Strategically Function Up Down

Cheap gen c 1 1 Yes 10qc No Yes
Thermal t 1 1 No 90qt + 2q2

t Yes Yes
Wind w 0 1 −Demand 0 −Dem. −Dem.

Table 3: Market environment for the simple example

Note that the cheap generator cannot deviate upward in the spot market
(i.e. it is not flexible enough to increase output in the spot market).

• We consider 2 equally-likely wind scenarios 0 MW and 20 MW.

• Demand is deterministic and elastic with the demand function Q = 40 −
1

100p (or p(Q) = 4000− 100Q). Hence, our demand is nearly 40 MW with
low elasticity (Z = 100).

5.1.1 The market without wind generation

Figure 4 represents the offering behaviour of the cheap strategic generator, as
well as market clearing in the market before wind integration. In this case, the
strategic generator undercuts the offer of the non-strategic generator at $90 per
MW.

Also the equilibrium dispatch and prices of this market are listed in table 4.

Gen q Profit
1 39.1 3128
2 0 0

f SW CW PW
90 79568.5 76440.5 3128

Table 4: The equilibrium of the market without wind generation

5.1.2 The two settlement market after wind integration

Figure 5 represents the bidding behaviour of the strategic generator. It also
shows how the two settlement market clears. As shown in this picture, the
strategic generator cannot be used for the balancing (spot) market in the case
that scenario 1 occurs. Therefore, the more expensive generator is used. This
is why the price of electricity is higher in scenario 1 (see table 5).
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Figure 4: Equilibrium offered supply functions and clearing mechanism without
wind generation

Gen q E(Profit)
1 29.1 2213.3
2 0 48.1

Scen y:Gen 1 y:Gen 2 p
1 29.1 10 110
2 19.1 0 90

f SW CW PW
90.0 79219.5 76058.1 3161.4

Table 5: The equilibrium of the two settlement market after wind integration.

5.2 Example 2

In this example, we investigate the effect of demand elasticity on equilibrium
prices, the expected social welfare and cost of generation before and after the
introduction of a wind generation. The specific parameters are outlined in table
table 6. For this example, we inflate the inverse demand function introduced
earlier with an elasticity coefficient, e, which gives: p (Q) = e (Y − ZQ) (fig. 6).
This means that the maximum demand (when price is 0) is fixed at Y

Z , but
changing e allows us to analyse the effects that changing the slope of the de-
mand curve has on computed equilibria. Table 6 shows the numerical values of
parameters used in this example. Table 7 shows how adding wind can increase
the expected thermal generation and generation cost, and decrease expected
social welfare. Figure 7 represents the effects of adding a wind generator for
different levels of e. Our results for this example show that when demand elas-
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Figure 5: Equilibrium offered supply functions and clearing mechanism using
the two settlement mechanism after wind integration

ticity decreases wind integration is less successful, and finally our benchmarks
(i.e. the expected social welfare and generation cost) become worse than before
wind integration.

The example above demonstrates the counter-intuitive behaviour for a spe-
cific range of parameters Y,Z, α, etc2.

Parameter Value

m 5
α, β 4, 0.01
ᾱ, β̄ 30, 0.01
θ1, θ2 0.5, 0.5
w1, w2 0, 10
Y , Z 100, 1
b 0.01

Table 6: Parameter values of the example 1

2One can choose these parameters so that there is no e that would lead to such counter-
intuitive results.
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Figure 6: Demand function for different elasticity factors

e 0.01 1 10 100 100000

qbefore
t 0 0 0 0 0
qafter
t 0 0 0 0 0

yafter
t,1 0 0 0 4.48336 4.99948

yafter
t,2 0 0 0 0 0

SWbefore − SWafter -17.4192 -17.7895 10.2979 40.2826 43.6217
GCafter − GCbefore -14.1573 -20.8743 -20.9593 36.9467 43.6183

Table 7: Effects of demand elasticity on thermal generation, expected social
welfare (SW) and generation cost (GC), before and after introduction of the
wind generator

6 A stochastic settlement mechanism

In the first part of this paper, we introduced a two settlement market clearing
mechanism. In this mechanism, each participant is allowed to bid a linear
function as a representative of its marginal cost function. Then, we provided a
method that enabled us to analytically find an equilibrium for this complicated
game.

Comparing these equilibria, we showed that contrary to one’s expectations,
integrating wind generation into the market can decrease social welfare and
increase cost of generation. It can also increase generation from fossil fuels.

The choice of market clearing mechanism might account for these results. To
illustrate this point, in addition to a two settlement mechanism similar to the
first part of this paper, we analyse a stochastic settlement mechanism. Stochas-
tic settlement mechanisms tend to take possible future scenarios into account
in their pre-dispatch decisions. We present examples in which this mechanism
is able to overcome the difficulties of dispatching intermittent resources more
efficiently.
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Figure 7: Difference in expected thermal generation, social welfare and gen-
eration cost before and after wind introduction. TGafter − TGbefore: black,
SWbefore − SWafter: blue, GCafter − GCbefore: red

6.1 The stochastic settlement model

Our stochastic settlement model is a modified version of the stochastic pro-
gramming market clearing mechanism introduced by Pritchard et al. [20]. A
stochastic programming mechanism chooses pre-dispatch taking into account
different possible scenarios in the spot market. In other words, it chooses pre-
dispatch values that maximize expected social welfare. This is in contrast to
our two settlement mechanism that does not consider spot scenarios for clearing
the pre-dispatch market.

The model we use for the stochastic settlement mechanism is similar to the
model of Khazaei et al. [21]. The market process is as follows.

1. Each generator offers a linear supply function.

2. The ISO uses these offers and solves the following stochastic optimization
problem to determine pre-dispatch quantity and prices, and spot dispatch
and prices for different scenarios:

ISOSS: min
q,y,C

S∑

s=1

θs

(
n∑

i=1

(

aiyi,s +
bi

2
yi,s

2

)

− Y Cs +
Z

2
Cs

2

)

s.t. ws +
n∑

i=1

yi,s − Cs = 0, ∀s [θs ps]

yi,s ≥ 0, ∀i, s [λy
i,s]

qi ≥ 0, ∀i [λq
i ]

qi − yi,s ≥ 0, ∀i ∈ SU , s [λU
i,s]

yi,s − qi ≥ 0. ∀i ∈ SD, s [λD
i,s]

Note that we assume some generators may not be flexible in deviating
upward or downward. Set SD (SU) is the set of all generators that cannot
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decrease (increase) output (i.e. their pre-dispatch quantity) in the spot
market.

3. Demand is realized.

4. Generators produce their dispatch quantity from ISOSS for the realized
scenario.

6.2 Equilibrium computations

To find a Nash equilibrium to the game with stochastic market clearing, we use
a dynamic process. The idea is to allow each participant in a row to update its
strategy (assuming the strategy set of the other participants is fixed) by solving
the profit maximizing problem MaxProfit(i):

max ui

s.t.
ISOSS optimization problems,
Constraints on the supply function of generator i.

If we continue this process until no participant is willing to deviate from its
last strategy, we have actually found a Nash equilibrium [22, 23]. This dynamic
process is called fictitious play or tâtonnement, and is explained in detail in [16].
The dynamic procedure is as follows:

1. Set the initial supply functions to the true cost function for each generator.

2. While an equilibrium is not obtained (i.e. there exists at least one gener-
ator that has changed its supply function in the last round):

(a) For generator i in the set of all generators solve MaxProfit(i)

3. Output the equilibrium.

The optimization problem ISOSS is a convex optimization problem, as its
objective function is a convex function and all constraints are linear. Thus, we
can use KKT conditions to represent this problem. The detailed description of
the KKT conditions and MaxProfit(i) can be found in [21] and [16].

We use the global solver of LINGO to solve these optimization problems.
Reader can see [16] or [24] for more information about the global optimization
method used by LINGO. Also, the LINGO code of our program can be found
in [16].

6.3 An extension of example 1

In example 1 (section 5.1), we used our two settlement mechanism, and sur-
prisingly, we observed that adding a wind generator actually increases the cost
of generation and the use of fossil fuels. Here, we use a stochastic settlement
mechanism, and we observe that this mechanism integrates the wind generator
into the market more efficiently, and reduces cost of generation in comparison
with the time before wind integration.
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6.3.1 The stochastic settlement market after wind introduction

As the stochastic market clearing takes into account the future possibility of
shortage in scenario 1, it allocates more pre-dispatch for the cheaper offer. Thus,
a cheaper offer can also be used in scenario 1. The bidding behaviour, as shown
in fig. 8, is similar to the case without wind generation.

The equilibrium quantities of this market are shown in table 8. In this case,
the expensive inefficient generator is not used at all.
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Figure 8: Equilibrium offered supply functions and clearing mechanism using
the stochastic settlement mechanism after wind integration

Gen q E(Profit)
1 39.1 2328
2 0 0

Scen y:Gen 1 y:Gen 2 p
1 39.1 0 90
2 19.1 0 90

f SW CW PW
90.0 79668.5 76440.5 3228.0

Table 8: The equilibrium of the single settlement market after wind integration

6.3.2 Comparison

Let us use the following abbreviations for the name of our models and compar-
ison criteria:
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• TSBW (as a superscript): the two settlement mechanism before wind
integration,

• TSAW (as a superscript): the two settlement mechanism after wind inte-
gration,

• SSBW (as a superscript): the stochastic settlement mechanism before
wind integration,

• SSAW (as a superscript): the stochastic settlement mechanism after wind
integration,

• TG: thermal generation i.e. generation from fossil fuels,

• SW: social welfare,

• CW: consumer welfare,

• PW: producer welfare.

According to the equilibrium values from tables 4, 5 and 8, the following results
can be obtained for this example:

• thermal generation: TGTSAW>TGTSBW= TGSSBW= TGSSAW=0,

• social welfare: SWSSAW>SWSSBW= SWTSBW>SWTSAW,

• consumer welfare: CWSSAW= CWSSBW= CWTSBW>CWTSAW,

• producer welfare: PWSSAW>PWTSAW> PWSSBW= PWTSBW.

In summary, it appears that for this particular market, adding a wind gen-
erator can decrease social and consumer welfare if we use a conventional two
settlement clearing mechanism, while it improves these factors under a stochas-
tic settlement mechanism.

7 Conclusion

In this paper, we have considered the effects of uncertainty resulting from in-
termittent generation on market performance. We have modeled the impacts of
adding wind generation to a conventional two settlement market clearing mech-
anism, as well as a stochastic settlement mechanism under a supply function
equilibrium paradigm. Although there are papers that explore cost of wind in-
tegration in electricity markets, their approach does not take into account that
market participants can behave in a strategic manner in order to increase their
profits. Strategic behaviour is a natural part of many electricity markets and it
is essential for it to be considered in a market analysis. One important aspect
of our analysis, which sets our work apart from other papers on the cost of wind
integration, is the fact that we find and analyse a steady state equilibrium for
the market that includes the strategic behaviour of market participants.

We started by introducing a two-settlement market clearing mechanism with
firms that offer linear supply functions, with an Independent System Operator
solving an optimization problem to clear the market.
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It is difficult to find an analytical equilibrium for this market, as the payoff
(i.e. profit) function of market participants depends on an optimization problem
that does not yield a closed-form solution. Our first contribution in this paper
is providing a method that enables us to find an analytical equilibrium for
this game. This method can be used in similar games, where the payoff of
participants is a function of the optimal solution to an optimization problem
with inequality constraints.

Using our equilibrium analysis, we showed that increasing wind capacity does
not necessarily result in higher social or consumer welfare or lower generation
from fossil fuels. We presented examples in which wind integration decreases
social and consumer welfare. This is the second contribution of this paper.

We also demonstrated that market clearing mechanism is an important fac-
tor in obtaining such results. In other words, we showed that a market reform
might be essential if one considers large-scale wind integration into an electric-
ity market. To demonstrate this claim, we provided a stochastic settlement
market clearing mechanism, and showed that this mechanism improves social
and consumer welfare, while decreasing generation from fossil fuels for the same
example that yields lower social welfare under the conventional two settlement
mechanism.
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[19] J. Morales, A. Conejo, and J. Pérez-Ruiz, “Economic valuation of reserves
in power systems with high penetration of wind power,” Power Systems,
IEEE Transactions on, vol. 24, no. 2, pp. 900–910, 2009.

[20] G. Pritchard, G. Zakeri, and A. Philpott, “A Single-Settlement, Energy-
Only electric power market for unpredictable and intermittent partici-
pants,” Operations Research, Apr. 2010.

[21] J. Khazaei, G. Zakeri, and S. S. Oren, “Single and multi-settlement ap-
proaches to market clearing mechanisms under uncertainty,”

[22] J. Cheng and M. Wellman, “The WALRAS algorithm: A convergent dis-
tributed implementation of general equilibrium outcomes,” Computational
Economics, vol. 12, no. 1, pp. 1–24, 1998.

33



[23] A. Jafari, A. Greenwald, D. Gondek, and G. Ercal, “On no-regret learning,
fictitious play, and nash equilibrium,” in Machine Learning- International
Workshop Then Conference-, pp. 226–233, 2001.

[24] Y. Lin and L. Schrage, “The global solver in the LINDO - API - PB - taylor
& francis,” Optimization Methods and Software, vol. 24, no. 4, p. 657, 2009.

34


