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Abstract

Interconnecting distinct electricity markets by adding a new transmission line

affects the outcomes in these markets in a complicated way when there is uncer-

tainty in demand or participant behaviour. We use market distribution functions

to examine the effects of interconnection using a single transmission line under the

assumption that this line has a differentiable loss function and agents in each of

the interconnected markets do not change their behaviour in response to the inter-

connection. We give analytical formulae for computing market outcomes when the

uncertain events in the markets being connected are statistically independent, and

show by example how to compute these outcomes when these events are correlated.
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1 Introduction

Over the last decade, there has been considerable interest in the design and operation of

wholesale markets for electricity generation and distribution (see [16] and [15] for surveys

of these developments). Recently attention has focussed on the transmission infrastruc-

ture needed to support these markets. This infrastructure can be provided by central

planners, or through a merchant transmission investment model (see e.g. [12]). A ques-

tion of interest to a provider of transmission investment is the effect on market outcomes

(electricity dispatch and prices) of making changes to the transmission system. This

question has been addressed by Borenstein et al. [6], who consider strategic generators

operating in a deterministic setting.

This paper provides a methodology for investigating the effects of building a transmis-

sion line to connect two previously separate electricity markets when there is uncertainty

in demand and participant behaviour. Cross-border interconnections between electricity

markets are being planned or proposed in many regions around the world including North

America, Australia, and Europe. It is not hard to see that connecting two separate net-

works by a single link will admit an increased trade in electricity. However quantifying

the exact effect on dispatch and prices after the connection is not straightforward, and

requires some careful modelling. A natural approach would be to construct a computer

simulation of the new market. This paper shows how one might attack this problem

analytically.

Our focus in this paper is on a model in which each market is a nodal electricity pool

market, characterized by a central dispatch and pricing mechanism. In a pool market

the price of electricity in each trading period is determined by solving an optimization
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problem that matches supply and demand so as to minimize the total revealed cost of

power delivery. The cost to be minimized in pool markets is provided by the prices

attached to offers made by generators in the form of supply curves that define how much a

generator will supply at any given price. In a perfectly competitive market, the generation

can be assumed to be offered at its marginal cost. However, in an oligopoly, generators

will offer supply curves with the objective of maximizing their profit, and so the dispatch

and price outcomes then depend on the strategic behaviour of generators.

One approach to modelling behaviour of electricity generators in nodal electricity

markets is to look for a Nash equilibrium strategy for the market participants. Since the

actions of the generators are represented by supply functions, we would like to obtain

supply function equilibria. This is the approach taken by Green and Newbery [10] and

Anderson and Philpott [3], building on the analysis of Klemperer and Meyer [13], but

these papers consider the simplest case with just one node in the network. Unfortunately

it is very difficult to find a supply function equilibrium in a network with transmission

constraints, and in some cases an equilibrium may not exist. A number of authors have

proposed simplifications. Often competition is restricted to Cournot bidding of quantities

(see e.g. [7], [14], [11]). These formulations can lead to types of mixed linear complemen-

tarity problem, which can be solved for large systems. Alternatively one might work with

supply functions but restrict the form of supply function offered, for example to affine

functions [5] or piecewise affine functions [4]. A different approach adopted by [9] is to

assume a conjectured supply function response of the other generators - this correctly

supposes that changes in price will lead to changes in the quantity dispatched from other

generators, but does so in a way that may not match the actual supply function response

at equilibrium.
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As mentioned above, this paper is concerned with the flow that occurs on a link

joining two otherwise disconnected subnetworks. Our framework is stochastic - we provide

formulae for the probability distributions for the flow on the link (and the line rental that

it earns).

Our discussion illuminates the importance of correlation and independence between

demand at different locations - this would not emerge from a deterministic analysis. It is

important to realise that the probability distributions of nodal prices are not exogenous

in our model - after interconnection they alter in response to the changes in transmission.

However a significant restriction is that we do not consider the strategic behaviour of gen-

erators in response to the addition of the interconnection. This would lead to equilibrium

considerations, and as we have already mentioned, such an analysis is intractable.

The approach we follow is based on the concept of a market distribution function

introduced in [2]. Market distribution functions capture the effects on prices of changes

in demand (or injections across a link), and so they provide a natural tool for investigating

the effects of interconnecting two networks. The market distribution function ψ(q, p) at

any node is defined to be the probability that a generator at this node who makes a single

offer to supply an amount q at price p is not fully dispatched by the market. In the case

of a single node, ψ(q, p) can be thought of in terms of different possible realisations for

the supply functions Sk(·) used by the other generators (k = 1, . . . ,K) and the (random)

demand h. A single realisation ω gives supply functions S(ω)k (p) and a demand quantity

h(ω). In this framework ψ(q, p) is the probability of those events ω where h(ω) is less

than q +
PK

k=1 S
(ω)
k (p). This interpretation does not apply in a nodal market, in which

generation is offered at nodes of a constrained transmission network. Here the dispatch

and prices are determined, not by the intersection of two curves, but by the primal and
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dual solutions of a convex optimization problem. In a nodal market, a separate market

distribution function must be defined for each node.

The paper is laid out as follows. In the next section we give an overview of nodal elec-

tricity markets that are dispatched using convex optimization models. An understanding

of these models is necessary to understand the effects of transmission losses on dispatch

and prices. In section 3 we study the connection of two markets in which the behaviour

of participants and the demand in each component is assumed to be independent. We

prove three theorems that respectively give formulae for the probability distribution of

line flows after connection, the probability distribution of line rentals after connection,

and the market distribution function at the connecting nodes. In section 4 we consider

the more realistic situation in which the market behaviours and demands are correlated,

and illustrate by example some of the effects that different degrees of correlation have on

market outcomes.

2 Nodal electricity markets

When the generators offer at nodes of a constrained transmission network, the dispatch

and prices are determined by a convex optimal dispatch problem (called the pricing prob-

lem in [2]), which delivers an optimal primal solution defining the dispatch at each node

and an optimal dual solution defining a set of nodal prices.

This problem can be formulated as follows. Suppose the network has N nodes with

indices i = 1, 2, . . . , N , and there are K market participants indexed k = 1, 2, . . . ,K,

where each market participant k is assumed to be located at a single node. We denote by

K(i) the set of participants at node i.
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Let uk denote the net injection of energy of market participant k. The cost of injection

uk is represented by the nondecreasing convex function Ck(uk). For those participants k

who buy power we treat their purchase as a negative injection, i.e. uk ≤ 0 with Ck(uk) ≤ 0

defined over this range. The cost function Ck should be thought of as a notional cost. For

generators it is the integral of the inverse supply curve rather than the actual generation

costs, and for demand-side participants it represents their bids into the market. The

net injection uk of each participant is typically constrained by capacity bounds, denoted

collectively by u ∈ U , where u is the vector of K injections and U is a convex subset of

RK . We distinguish demand-side participants who bid for power (through a curve Ck)

from inelastic demand, which is denoted by di, i = 1, 2, . . . , N .

For each j > i, vij is defined to be the flow of energy sent from node i to node j.

Here vij is unrestricted in sign, but must be chosen so that the vector v ∈ V , where V is

constructed to account for the specific transmission and security constraints that apply

to the market in which the pricing problem is solved. The form of our pricing model is

motivated by the Australian and New Zealand pricing and dispatch models described by

Alvey et al [2]. In this context V includes the loop-flow constraints of a linearized DC

load flow, along with linear constraints that are added to the model to ensure robustness

of the solution in case of contingencies.

In addition the losses on each link (i, j) are modelled by a strictly increasing concave

differentiable function τ ij whereby a flow of vij entering the line at i results in a flow out at

j of τ ij(vij). (The standard approximations of active power losses in transmission networks

based on DC load flow are based on quadratic loss functions.) In practice the loss function

will have τ ij(0) = 0, and losses in lines will be symmetric so that τ ij(−vij) = −τ−1ij (vij)

which gives τ 0ij(0) = 1. We assume that these properties hold throughout the paper.
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Figure 1: Smooth loss function compared with lossless capacitated line

As an example of such a loss function consider the curve defined for positive vij

by τ ij(vij) = vij − 0.1v2ij plotted in Figure 1. If vij is negative we obtain τ ij(vij) =

−1−
√
1+0.4vij

0.2
. (This formula gives minus the power sent from j to i when the power

received at i is −vij.)

It is easy to see that this framework admits line capacities as a limiting case. For

example the figure shows that the effective capacity of the line is 5. Beyond that point

(given a suitable smooth extension of τ) all extra sent power is lost. To approximate

the behaviour of flow on a link with no losses and a constraint, it is possible to define a

smooth loss function τ that is arbitrarily close to the piecewise linear curve shown in the

figure.

The pricing problem is now formulated as

P: minimizeu,v
P

k Ck(uk)

subject to
P

k∈K(i) uk +
P

j<i τ ji(vji)−
P

j>i vij ≥ di, i = 1, 2, . . . , N,

u ∈ U, v ∈ V.
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Observe that to guarantee convexity, we use inequality flow balance constraints at each

node. This allows the possibility of the free disposal of energy at each node, although in

practice this will rarely occur. (A discussion of this issue can be found in [8]).

We will make use of primal and dual solutions to P under different realisations ω of

uncertain offers C(ω)
k (·), k = 1, . . . ,K, and demand d

(ω)
i , i = 1, 2..., N . This will enable

us to derive the market distribution function for a network that is constructed by linking

two existing networks using a transmission line.

The nodal prices in a pool market can be found by solving a Lagrangian dual problem

for P, which is to choose nonnegative prices pi, i = 1, 2..., N , to maximize E(p) where

E(p) is the optimal value of

minimizeu,v
P

k Ck(uk)−
P

i pi(
P

k∈K(i) uk +
P

j<i τ ji(vji)−
P

j>i vij − di)

subject to u ∈ U, v ∈ V.

Since P is a convex problem, there will be nonnegative prices pi, injections uki, and link

flows vji, that are feasible for P, and satisfy

E(p) =
X
k

Ck(uk),

thereby solving P and its dual problem. It is useful to formalize the optimality conditions

as follows:

pi(
X

k∈K(i)
uk +

X
j<i

τ ji(vji)−
X
j>i

vij − di) = 0, i = 1, 2, . . . , N , (1)

X
k∈K(i)

uk +
X
j<i

τ ji(vji)−
X
j>i

vij ≥ di, i = 1, 2, . . . , N , (2)

uk ∈ Ak(pi), k ∈ K(i), i = 1, 2, . . . , N , (3)

v ∈ B(p), (4)

u ∈ U, v ∈ V, pi ≥ 0, , i = 1, 2, . . . , N . (5)
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Here Ak(pi) is the set of injections from participant k that minimizes Ck(uk) − piuk

over u ∈ U , and B(p) denotes the set of v that minimizes the Lagrangian subject to

v ∈ V . Thus the optimality conditions (3) ensure that each generator (demand bid) is

dispatched if the spot price exceeds (is below) their offer price. The optimality conditions

(4) guarantee that the flow on each link is consistent with the prices at the endpoints. If

for a particular link (i, j), V does not constrain vij, then (4) for this link is equivalent to

pjτ
0
ij(vij)− pi = 0. (6)

In the pricing problems we consider in this paper, we will often assume that both

the primal and dual solutions are unique. Uniqueness of the primal solution occurs when

there is only one possible dispatch that can solve problem P. A unique set of prices will

occur when the value of the optimal solution is a smooth function of the right hand sides.

A range of possible prices signals a corner in the optimal value function. This may occur

when either some loss function τ ij or some Ck is not smooth.

One situation when this uniqueness will not hold occurs when offers at the same node

are made at the same price (corresponding to affine segments of two Ck curves which have

the same derivative). This leads to circumstances where the market dispatch mechanism

must use some sort of tie breaking or sharing rule to decide which generator is dispatched.

Note that our uniqueness assumption is stronger than specifying a tie-breaking rule as it

requires the pricing problem to deliver the unique primal and dual solutions automatically.

We need to make a careful distinction between a situation in which an offer is made at

a certain node (as is used to define the ψ function) and a situation in which an injection is

made at the same node, under an assumption that all the other offers and demand remain

fixed (denoted by realisation ω). In case of an injection there is change in the right hand
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side of the flow balance constraint at the node in question, while in the case of the offer

there is an additional u variable which appears in the objective function. However the

two situations are closely connected as the following lemma shows.

Lemma 1 If for some realisation ω, P has a unique primal and dual optimal solution for

every offer made at node n, then the following two statements are equivalent: (a) an offer

of q at price p at node n is not fully dispatched; (b) an injection q at node n the price at

n is strictly less than p.

Proof. Suppose that an offer of q at price p is made at node n for a fixed realisation ω

of demand and player offers. Write q∗ for the amount dispatched from the offer and let

p∗n be the price at node n, both under realisation ω. If (q, p) is not fully dispatched, then

q∗ < q and p∗n ≤ p. This implies that when, instead of this offer being made at n, there

is an injection of q∗ at n, then the power flows in the network are still feasible. Moreover

the optimality conditions (1-5) are all still satisfied with the price at node n being p∗n.

Now the optimal value function of the pricing problem is a convex function of demand

for power at node n, with a (nondecreasing) slope equal to the clearing price at n. Thus

increasing the injection (thereby decreasing demand) cannot increase the price, and so

when the injection is q the price at node n is no greater than p∗n, and hence no larger

than p. If the injection of q leads to a price of p at node n, then the pricing problem

with an offer of q at price p has an optimal solution under realisation ω with this offer

fully dispatched (again by considering the optimality conditions). This gives a different

solution to the pricing problem, which contradicts the uniqueness assumption, and so we

obtain (b).

Now suppose that an offer of q at price p is fully dispatched. In other words q∗ = q
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and p∗n ≥ p. The flows in the network are feasible for the problem with an injection of q,

and the prices satisfy (1-5) with this injection, and so p∗n is the (unique) price at node n,

which contradicts (b). ¤

3 Connecting two networks

We now consider two distinct transmission networks, called North and South. We are

interested in connecting North and South by a transmission line that connects node s

in South with node n in North. The new line connecting s to n is assumed to have

unlimited capacity but will incur losses in transmission given by a strictly increasing

concave differentiable loss function τ .

Since North and South are distinct, the link from s to n will not create any loop flows

between North and South. We assume that there are no other constraints on the flow in

this link. This means that the optimality condition (6) for the link sn is equivalent to

pnτ
0
sn(vsn)− ps = 0.

In order to model the effects of interconnection, we need to consider the optimal

dispatch problem in each network separately and its relationship to the optimal dispatch

problem of the interconnected network. We write N and S for the North and South

networks and we let S×N be the network consisting of N and S with interconnection from

s to n. We denote by PS, PN, and PS×N the pricing problems in the respective networks.

We first consider a single realisation for the demands and participant behaviour in each

network. Suppose under this realisation that the price at node s before interconnection

is ps and the price at node n is pn. After interconnection the prices are p̃s and p̃n and the

flow in the link from s to n is y.
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Lemma 2 Suppose ps < pn. Then after interconnection y ≥ 0, and ps ≤ p̃s ≤ p̃n ≤ pn.

If PS and PN each have unique primal and dual solutions, then y > 0.

Proof Suppose ps < pn and y < 0 after interconnection. Then because PS is convex, the

optimal dual variable at s is increasing with y, and so p̃s ≤ ps. Similarly, PN is convex

implies p̃n ≥ pn. Thus p̃s < p̃n. However

p̃nτ
0
sn(y) = p̃s, (7)

and τ 0sn(y) ≥ 1, as y < 0, which yields a contradiction.

Since y ≥ 0, ps ≤ p̃s and p̃n ≤ pn both follow from convexity, and τ 0sn(y) ≤ 1 follows

from the fact that τ sn is concave with τ 0sn(0) = 1. Thus (7) implies p̃s ≤ p̃n, and so

ps ≤ p̃s ≤ p̃n ≤ pn.

Now suppose PS and PN have unique primal and dual solutions for the realisation of

demand and participant behaviour being considered. If ps < pn and y = 0 after intercon-

nection then p̃s = p̃nτ
0
sn(0) = p̃n. Since y = 0, the flows and prices in S must satisfy the

optimality conditions for PS (otherwise the solution of PS×N could be improved). Since

PS has a unique dual solution, p̃s = ps. Similarly p̃n = pn, which is a contradiction. So

y > 0. ¤

Lemma 2 demonstrates the unsurprising result that joining together separate networks

at nodes with different prices will give flows in the direction of higher prices, and that

these prices will tend to converge as the flow increases. Network owners or investors con-

templating building an interconnecting link will of course be interested in the probability

distributions of these effects. In order to compute the probability distribution of flows

and prices after interconnection we need to make use of the market distribution functions

at s and n.
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To do this suppose that we know ψ(s) and ψ(n), the market distribution functions at

nodes s and n before the connection is made. We wish to use this information to compute

the distribution of the flow in the link when the connection is made. More than this,

we will develop formulae both to construct the market distribution function ψ at node A

after the connection is made, and to produce the distribution of flow and prices at either

end of the link. In our model we assume that all participants behave exactly as they did

before the introduction of the link, and that this behaviour, and the demand distributions

in the North and South networks are independent. We also make the assumption that

ψ(s) and ψ(n) are continuous.

We now wish to study the dispatch of a generator who makes a single offer (q, p) at

some node in S × N . In this case the realisation (ωS, ωN) denotes all the other offers

and loads in the network not including (q, p). We derive our construction by conditioning

on the flow y in the link from s to n. By treating the flow y as an extra injection of

flow at n we can use ψ(n) to model these outcomes. To do this rigorously requires a

number of technical lemmas that allows us to compute the probability of dispatch and

price outcomes at n when there is an injection of flow at this node. In these lemmas

we write PN(ωN , y) for the optimal dispatch problem in the network N with an injection

of y at node n (y may be negative corresponding to an additional demand at n). This

corresponds to decreasing the right hand side of one of the constraints of the problem by

y.

In the remainder of this section we shall require that PN(ωN , 0) has a unique primal

and dual solution, irrespective of any offers that might be made at n. This allows us to

prove the following lemma.
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Lemma 3 Suppose the optimal solution for PS×N(ω1S, ωN) gives p
1
s as the price at node s,

and a flow of y1 entering the link at s, and the optimal solution for PS×N(ω2S, ωN) gives

p2s and y2, for these two quantities. If y1 > y2, then p1s < p2s .

Proof

First observe that if the optimal solution for PS×N(ωS, ωN) has a flow of y on sn

then the dispatches in N under (ωS, ωN) are also optimal for PN(ωN , τ(y)) (otherwise

we could improve the solution to the S×N problem by substituting the PN solution for

the flows in N). Moreover the prices that arise for PS×N(ωS, ωN) in N are also the prices

in PN(ωN , τ(y)), since they are easily seen to satisfy the optimality conditions for this

problem.

Now let ν(z) be the optimal value of PN(ωN , z). Then the price pn at node n for PN

is given by pn = −ν 0(z). Since ν(z) is convex, ν 0(z) is a nondecreasing function, so pn is

nonincreasing with z. Thus, p1n ≤ p2n, since p
1
n is the price at node n for PN(ωN , τ(y1)),

and p2n is the price at node n for PN(ωN , τ(y2)), and τ(y1) > τ(y2).

But if p1n = p2n, then an offer of (τ(y1), p
1
n) to PN(ωN , 0) could be dispatched either at

τ(y1) or τ(y2) while remaining optimal. So PN(ωN , 0) has alternative optima for this offer

which contradicts our assumption. So the inequality is strict.

But since y1 > y2 and p1n < p2n, we have 0 < τ 0(y1) ≤ τ 0(y2), and so

p1s = τ 0(y1)p1n < τ 0(y2)p2n = p2s.

Thus we have shown that p1s < p2s as we require. ¤

Lemma 4 The value of y in an optimal solution to PS×N(ωS, ωN) is uniquely determined

by ωN and ps.
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Proof

Follows immediately from the previous lemma. ¤

Define y(ωN , p) to be the flow along sn, if the price at s is p and ωN occurs in N. From

lemma 4 we know that this is well defined and from lemma 3 it is a nonincreasing function

of p. The smoothness assumption on τ also enables us to write down the (unique) price

at node n if the price at s is p and ωN occurs in N. It is p/τ
0
(y(ωN , p)).

Lemma 5 For given price p at s the probability that ωN falls in the set for which y(ωN , p) <

y is given by ψ(n)(τ(y), p/τ
0
(y(ωN , p))).

Proof

We let Γ(y) = {ωN : y(ωN , p) < y}. From lemma 1 we know that ψ(n)(τ(y), p/τ 0(y(ωN , p)))

is given by the probability of ωN being in the set Ω(τ(y), p/τ
0
(y(ωN , p))) = {ωN : an injec-

tion of τ(y) at n leads to a price strictly less than p/τ
0
(y(ωN , p))}. Suppose that ωN /∈ Γ(y)

so y(ωN , p) ≥ y. Then from the optimality conditions an injection of τ(y(ωN , p)) leads to

a price of p/τ
0
(y(ωN , p)). Since prices are decreasing in the injection, an injection of τ(y)

leads to a price no lower than this and so ωN /∈ Ω(τ(y), p/τ
0
(y(ωN , p))).

On the other hand if ωN ∈ Γ(y), so y(ωN , p) < y, then an injection of τ(y(ωN , p))

leads to a price of p/τ
0
(y(ωN , p)) and an injection of τ(y) will result in a price the same

or lower. Thus Γ(y) ⊂ Ω(τ(y), z) for every z > p/τ
0
(y(ωN , p)). Since ψ

(n) is continuous,

the result is established. ¤

Corollary 6 For given price p,

Pr({ωN : y(ωN , p) ≤ y}) = ψ(n)(τ(y), p/τ
0
(y(ωN , p))).

Proof
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Follows immediately from lemma 5 and the continuity of ψ(n). ¤

Our next result describes the distribution of the flow in a link joining two networks

in terms of the market distribution functions of the two networks when separated. We

have assumed up to now that PN has a unique primal and dual solution, irrespective of

any offers that might be made at n. To prove the next result we need in addition that PS

has a unique primal and dual solution, irrespective of any offers that might be made at

s. For convenience we say that PS and PN satisfy the uniqueness assumption.

Theorem 7 Suppose that events in N and S are independent, and that PS and PN satisfy

the uniqueness assumption. Then the probability H(y) that the flow from s to n is less

than y is given by the Stieltjes integral

H(y) =

Z p=∞

p=0

ψ(n)(τ(y), p/τ 0(y))dG

where G is the monotonic function G(p) = ψ(s)(−y, p).

Proof

Define k(ωS, y) to be the price at node s (considering S on its own) if there is a demand

of y at node s, and ωS is an instance of the set of possible demands and player offer curves

in S. We first show that if k(ωS, y) = p and y(ωN , p) ≤ y then (ωS, ωN) results in a flow

of no more than y. Suppose otherwise, and let y1 > y be the flow under (ωS, ωN). Then

from lemma 3 we must have ps < p. We can divide up the network and observe that this

means that with a demand of y1 occurring at s, the price at s is ps. But this contradicts

the fact that the price at s is a nondecreasing function of y1.

We also need the reverse: if k(ωS, y) = p and (ωS, ωN) results in a flow of no more

than y then y(ωN , p) ≤ y. Suppose that (ωS, ωN) results in a flow of y2 ≤ y. Let
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p1 = k(ωS, y2). Then p1 ≤ p, since the price at s is a nondecreasing function of y. But

we have y(ωN , p1) = y2 ≤ y. Since y(ωN , p) is a nonincreasing function of p, this gives

y(ωN , p) ≤ y as required.

Now fix y. Let K(p) = {ωS | k(ωS, y) = p}. Let W (p) be the events (ωS, ωN) that

have k(ωS, y) = p and also give rise to a flow of no more than y in the link. Then from

our discussion above

W (p) = {(ωS, ωN) | y(ωN , p) ≤ y and ωS ∈ K(p)}

= {ωN | y(ωN , p) ≤ y} ×K(p)

using independence. Now, from Lemma 6, Pr{ωN) | y(ωN , p) ≤ y} = ψ(n)(τ(y), p/τ 0(y))

and so we have established that

H(y) =

Z ∞

0

ψ(n)(τ(y), p/τ 0(y))dρ(p)

where dρ(p) is a measure on p defined as the measure of the events in K(p). If we let

M(p) = {ωS | k(ωS, y) < p} it only remains to show that Pr [M(p)] = ψ(s)(−y, p). Now

this is immediate since by lemma 1 k(ωS, y) < p if and only if an offer of −y at price p is

not fully dispatched under realisation ωS. ¤

We now turn our attention to line rentals. In pool markets with location marginal

prices, the rental earned by a transmission line is the difference in payment received by

the system operator from purchases of transmitted power at the downstream end of the

line as compared with payments made to generators for this power at the upstream end.

Formally the line rental earned by a flow y on a line from s to n is defined by

r = pnτ(y)− psy,

where we denote the price at s by ps, and the price at n by pn. Our next result gives a

17



formula for the distribution of line rentals on a line that links two separate markets.

To do this we require some definitions. We let

h(r, p) = sup{y | τ(y)
τ 0(y)

− y ≤ r

p
},

and

g(r, p) = inf{y | τ(y)
τ 0(y)

− y ≤ r

p
}.

It is easy to show that ( τ(y)
τ 0(y) − y) is a nondecreasing function of y for y > 0, and a

nonincreasing function of y for y < 0, so for any r, g(r, p) ≤ 0 ≤ h(r, p).

Theorem 8 Suppose that at node s in S the market distribution function ψ is ψ(s) and

at node n in N the market distribution function is ψ(n), that events in N and S are

independent, and that PS and PN satisfy the uniqueness assumption. If the two networks

are connected with a link from s to n with loss function τ , then the probability L(r) that

the line rental earned on the line from s to n is less than r is given by the Stieltjes integral

L(r) =

Z p=∞

p=0

ψ(n+)(r, p)dG(+) −
Z p=∞

p=0

ψ(n−)(r, p)dG(−),

where

ψ(n+)(r, p) = ψ(n)(τ(h(r, p)), p/τ 0((h(r, p))),

ψ(n−)(r, p) = ψ(n)(τ(g(r, p)), p/τ 0(g(r, p))),

G(+)(r, p) = ψ(s)(−h(r, p), p),

G(−)(r, p) = ψ(s)(−g(r, p), p).

Proof

The line rental on the line from s to n is defined by

r = pnτ(y)− py = p(
τ(y)

τ 0(y)
− y),
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where we denote the price at s by p, and the price at n by pn. We seek L(r) the probability

of the set of events (ωS, ωN) that give rentals at most r. This is the set of events in (p, y)

space giving line flows for which

p(
τ(y)

τ 0(y)
− y) ≤ r,

Then since g(r, p) ≤ 0 ≤ h(r, p), we have

{(ωS, ωN) | p( τ(y)
τ 0(y)

− y) ≤ r} = {(ωS, ωN) | g(r, p) ≤ y ≤ h(r, p)}.

Thus

L(r) = Pr{(ωS, ωN) | g(r, p) ≤ y ≤ h(r, p)}

= Pr{(ωS, ωN) | y ≤ h(r, p)}− Pr{(ωS, ωN) | y ≤ g(r, p)}.

It remains to show that

Pr{(ωS, ωN) | y ≤ h(r, p)} =
Z ∞

0

ψ(n+)(r, p)dG(+)

and

Pr{(ωS, ωN) | y ≤ g(r, p)} =
Z ∞

0

ψ(n−)(r, p)dG(−).

Recall from the proof of Theorem 7 that under the independence assumption the set

W (r, p) of events (ωS, ωN) that have k(ωS, h(r, p)) = p and also give rise to a flow y ≤

h(r, p) in the link is

W (r, p) = {ωN | y(ωN , p) ≤ h(r, p)} × {ωS | k(ωS, h(r, p)) = p}.

So

Pr{(ωS, ωN) | y ≤ h(r, p)} =
Z p=∞

p=0

ψ(n)(τ(h(r, p)), p/τ 0((h(r, p)))dψ(s)(−h(r, p), p).
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The corresponding expression for Pr{(ωS, ωN) | y ≤ g(r, p)} is derived in the same way.

This gives the result. ¤

We now prove a result that defines the market distribution function at node s after

the networks N and S have been joined by a transmission line.

Theorem 9 Suppose that at node s in S the market distribution function ψ is ψ(s) and at

node n in N the market distribution function is ψ(n), events in N and S are independent,

and PN satisfies the uniqueness assumption. Then the market distribution function at

s when the two networks are connected with a link with loss function τ is given by the

Stieltjes integral

ψ(q, p) =

Z y=∞

y=−∞
ψ(s)(q − y, p)dF

where F is the monotonic function F (y) = ψ(n)(τ(y), p/τ 0(y)).

Proof

Consider an offer at s (in S) of (q, p) for fixed q and p. Recall that y(ωN , p) denotes

the flow along the link starting at node s if the price at s is p and ωN occurs in N. We

first establish a preliminary result that uses y(ωN , p) to decouple the independent events

in S and N. (For convenience we shall use the notation ω ≺ (q, p)s to mean that (q, p) is

not fully dispatched at node s under realisation ω.)

Let

ΩS(ωN) = {ωS | ωS ≺ (q − y(ωN , p), p)s in S}.

We claim that ΩS(ωN) is precisely the set of ωS which leads to an offer of (q, p) at s not

being fully dispatched in S ×N when ωN occurs in N. i.e. ΩS(ωN) = X(ωN) where

X(ωN) = {ωS | (ωS, ωN) ≺ (q, p)s in S×N}.
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We need to show the inclusion in two directions. First suppose that ωS ∈ X(ωN). Suppose

that the realisation (ωS, ωN) together with an offer (q, p) leads to a price ps at node s and

a flow y in the link. Since (q, p) is not fully dispatched ps ≤ p. By lemma 3, y ≥ y(ωN , p).

Now under ωS an offer (q−y, p) is not fully dispatched in S, hence an offer of q−y(ωN , p)

at price p is also not fully dispatched and so ωS ∈ ΩS(ωN).

Now suppose ωS ∈ ΩS(ωN). Suppose that the realisation (ωS, ωN) with an offer of

(q, p) leads to a price ps and flow y. If ps > p then y < y(ωN , p) and so, from the definition

of ΩS(ωN), an offer of q − y would not be fully dispatched in S. So, under the restriction

that the flow in the link is y an offer of (q, p) at s in S×N leads to a price no higher than

p, which is a contradiction. If ps = p then y = y(ωN , p) which gives from the definition of

ΩS(ωN) that the offer is not fully dispatched and so ωS ∈ X(ωN). Finally when ps < p

then clearly the offer is not fully dispatched and ωS ∈ X(ωN).

Now to construct ψ we need to consider the set of events which lead to an offer (q, p)

not being fully dispatched at s. We do this by conditioning on the value of y(ωN , p) to

give the set Z(y) of such events that occur when the flow in the line is y. Let B(y) =

{ωN | y(ωN , p) = y} and define a measure on y by taking dµ(y) as the measure of the

events in B(y). Then

Z(y) = {(ωS, ωN) | ωN ∈ B(y) and (ωS, ωN) ≺ (q, p)s in S×N}

= {(ωS, ωN) | ωN ∈ B(y) and ωS ∈ X(ωN)}

= {(ωS, ωN) | ωN ∈ B(y) and ωS ∈ ΩS(ωN)}

= {ωS | ωS ≺ (q − y(ωN , p), p)s in S} ×B(y).

The last equality follows from observing that ΩS(ωN) is the same set for each ωN ∈ B(y).

Now using independence, the probability measure for Z(y) is given by the product of
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µ(y) and the probability of an offer at s of q − y at price p not being fully dispatched in

S. Hence we have shown that

ψ(q, p) =

Z y=∞

y=−∞
ψ(s)(q − y, p)dµ(y).

It only remains to show that dµ is the same as dF . But observe that if we let Γ(y) =

{ωN | y(ωN , p) ≤ y} then by lemma 1 dµ is just the change in the probability of Γ(y) as

y varies. ¤

There are three significant restrictions on the results we have given. First observe that

our results only apply to two networks linked by a single line. If the two networks are

already connected and we are considering adding a new link then the situation is quite

different. In fact if the network is a tree network then the methods we have described can

be used to build up the market distribution of the whole network by adding one node at

a time and repeatedly using Theorem 9. The second restriction is that we have to assume

that both demand and player bids are independent between the two networks. There will

often be significant correlation between the demands at the two ends of a link, and so this

is a serious restriction. Finally we have made various smoothness assumptions (notably on

the losses in the link). Even though an accurate physical model might well have a smooth

loss function, the actual dispatch is usually carried out by solving an approximation to P

which assumes a piecewise linear loss function. (This is the approach followed in the New

Zealand and Australian markets.)

In the next section we explore how, for a link connecting two single-node markets, we

can investigate optimal bidding patterns when the second and third assumptions break

down - demand between two ends of a link is correlated and losses on the link are not

smooth. In these circumstances, the answers are provided by a direct calculation rather
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than the application of the theorems in this section.

4 Connecting two single-node markets

Up to now we have assumed that demands and generator offers in the two parts of the

network are independent of each other. There are many practical situations in which this

independence assumption is questionable. It is not possible to provide general formulae

without an assumption of independence, but we can carry out some direct calculations in

the case when demand at the two ends of a link are correlated. In this section we look

at a simple two-node model in which the demands at the two nodes are drawn from a

bivariate distribution.

It turns out to be simpler to work through an example where the loss function τ is

not smooth. Our major theorems in the previous section are hard to establish with non-

smooth losses as this requires us to work with left and right derivatives of τ . However,

for the case of a two node network, it is possible to carry out the analysis directly.

Suppose that generator A is located at node s and the aggregate supply function for

the other generators at node s is S1(p). The aggregate supply function at node n is S2(p).

Suppose also that demand at node s is D1(p) + �1 and demand at node n is D2(p) + �2

where �1 and �2 are random shocks with (�1, �2) drawn from a bivariate distribution on

the positive orthant.

We want to calculate the optimal offer for generator A and so we wish to derive the

ψ function at node s. We suppose that generator A offers q at price p at node s. We

will show that this offer fails to be completely dispatched exactly when (�1, �2) falls into

a particular region in the positive orthant.
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Because we will allow the loss in the link to be a non-smooth function, we need to

adjust the optimality conditions. Specifically (6) becomes

pjτ
0
ij−(vij) ≥ pi ≥ pjτ

0
ij+(vij),

where we write τ 0ij− and τ 0ij+ for the left and right derivatives of τ ij.

Let the function y(�2, p) be the flow along sn if the price at s is p and the demand

shock at n is �2. We will show that this is well-defined, and decreasing in p, even though

we may not have a smooth loss function in the link. First suppose that y1 < y2 are two

possible flows, both having price at s being p, and demand shock �2, then τ(y1) < τ(y2).

From flow balance at node n, D2(pn1)−S2(pn1) < D2(pn2)−S2(pn2) where pni is the price

at node n associated with flow yi. Hence pn1 > pn2. Thus

p ≥ pn1τ
0
+(y1) > pn2τ

0
−(y2) ≥ p

giving a contradiction.

Next we consider the effect on y(�2, p) of a change in p. Let p1 > p2 and suppose that

y(�2, p1) > y(�2, p2). We write pn1 and pn2 for the price at node n associated with p1 and

p2. Then, since τ(y(�2, p1)) > τ(y(�2, p2)) from the flow balance equations at node n, we

can see that pn1 < pn2. However

pn1 ≥ p1/τ
0
−(y(�2, p1)) > p2/τ

0
+(y(�2, p2)) ≥ pn2

giving a contradiction.

We define

T (q, p, �2) = q + S1(p)−D1(p)− y(�2, p).

Observe that y(�2, p) is increasing in �2, so T is a decreasing function for fixed q and p.

The equation �1 = T (q, p, �2) defines a monotonic curve for fixed q and p, and as we show
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below an offer of (q, p) is not fully dispatched exactly when (�1, �2) lies to the left of this

curve.

Lemma 10 ψ(q, p) = Pr{(�1, �2) : �1 < T (q, p, �2)}.

Proof

We want to show that an offer of q at price p is not fully dispatched if and only if

�1 < T (q, p, �2). Suppose that the offer is fully dispatched, so the price at s is at least p.

and hence from our discussion above the flow entering the link is no more than y(�2, p).

The supply from other generators at s is at least S1(p), and the demand is no more than

D1(p). Hence the supply is at least q+S1(p), and the outflow is at most �1+D1(p)+y(�2, p).

Thus flow balance implies �1 ≥ T (q, p, �2).

On the other hand if the offer is not fully dispatched then the price is p or less and the

total supply is strictly less than q + S1(p). The flow entering the link is at least y(�2, p)

with total demand at node s of at least �1 +D1(p). Thus flow balance implies that the

total supply is at least �1 +D1(p) + y(�2, p). So �1 < T (q, p, �2) as required. ¤

We consider a specific example. Consider a transmission line linking s and n which

has no capacity limit and has linear losses so

τ(y) =


αy y > 0

( 1
α
)y y ≤ 0

(8)

We need to start by calculating the function y(�2, p). We fix �2 and p and let pn be the

price at node n. Then y and pn must satisfy

τ(y) = D2(pn) + �2 − S2(pn),

τ
0
−(y) ≥

p

pn
≥ τ

0
+(y),
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Figure 2: The region �1 ≤ T (q, p, �2)

It is then straightforward to check that y defined as follows is the only solution to these

conditions.

y(�2, p) =


α(D2(αp) + �2 − S2(αp)) �2 < S2(αp)−D2(αp)

( 1
α
)(D2(p/α) + �2 − S2(p/α)) �2 > S2(p/α)−D2(p/α)

0 otherwise.

Hence as a function of �2, T is piecewise linear and the region where the offer is not fully

dispatched is simply the shaded region shown in Figure 2.

4.1 Optimal offers with correlated and uncorrelated demand

Now we will specialise our example even further. Our aim is to investigate the form of

an optimal offer when there is correlated demand at two ends of a link and compare this
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with the optimal offer when demand is uncorrelated. The optimal choice of offer depends

on the profit function R. We shall suppose that there are no contracts and the generator

costs are independent of quantity dispatched (as may occur with a hydro generator). Thus

R(q, p) = pq.

Following [2] we will use ψ to calculate the optimal offer curve, which can be obtained

using the function

Z(q, p) =
∂ψ

∂p
(q, p)

∂R

∂q
(q, p)− ∂ψ

∂q
(q, p)

∂R

∂p
(q, p). (9)

If Z(q, p) = 0 defines an nondecreasing curve q = S(p) with Z(q, p) ≥ 0 when q < S(p)

and Z(q, p) ≤ 0 when q > S(p), then S(p) is a locally optimal offer curve.

We suppose that demand at the two ends of the link have the same form: both are

given 1 − p + � where � is a random shock with 0 ≤ � ≤ 1. Generator A is the only

generator at node s. At node n there is one other generator who offers an offer curve

S2(p) = p. The losses on the line are linear, as given by (8) with α = 4/5.

As before we write �1 for the demand shock at node s and �2 for the demand shock

at node n. In order to have continuous derivatives for ψ we need to be careful that the

bivariate distribution of (�1, �2) has zero density at the boundaries of the unit square. We

consider two cases: the strongly correlated case where �1 has a distribution given by

Pr(�1 ≤ x) = x2(3− 2x) (10)

and �2 = �1; and the uncorrelated case where both �1 and �2 have a distribution given by

(10) and corresponding joint density function on [0, 1]× [0, 1]

ρ(u, v) = 36(u− u2)(v − v2). (11)
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We start by determining the �1 = T (q, p, �2) line. Now in this example S1(p) = 0, so

T (q, p, �2) = q − 1 + p− y(�2, p) (12)

where

y(�2, p) =


(4/5)(1− (8/5)p+ �2) �2 < (8/5)p− 1

(5/4)(1− (5/2)p+ �2) �2 > (5/2)p− 1

0 otherwise.

Strongly correlated case

With �2 = �1 we just need to calculate the probability that (�1, �2) lies on that part of

the �1 = �2 line which is to the left of the �1 = T (q, p, �2) line. We need to consider three

cases depending on the segment of the T curve that the �1 = �2 line crosses. At the point

where the lines cross we have �2 = q− 1+p− y(�2, p). The crossing occurs on the vertical

section if (8/5)p− 1 ≤ q − 1 + p ≤ (5/2)p− 1, i.e. if (3/5)p ≤ q ≤ (3/2)p. In this case

ψ(q, p) = Pr(�2 ≤ q − 1 + p)

=


0 q + p < 1

(q + p− 1)2(5− 2q − 2p) 1 ≤ q + p ≤ 2

1 q + p > 2

.

Thus in this region

Z(q, p) = ψp(q, p)Rq(q, p)− ψq(q, p)Rp(q, p)

= (p− q)(−2(q + p− 1)2 + 2(q + p− 1)(5− 2q − 2p))

= 6(p− q)(2− p− q)(p+ q − 1).

In this region, where (3/5)p ≤ q ≤ (3/2)p and 0 ≤ ψ ≤ 1, the only potential (locally

optimal) offer curve has S(p) = p, where Z is zero (see Figure 3). With this offer curve
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the generators at both ends of the link make the same offer and are dispatched equally

(since �1 = �2).

The second case we need to consider, has the �1 = �2 line crossing the T curve on the

section corresponding to flow from n to s (low �2): this occurs if q < (3/5)p. In this case,

at the crossing we have

�2 = q − 1 + p− (4/5)(1− (8/5)p+ �2)

i.e. �2 =
19

15
p+

5

9
q − 1.

And so

ψ(q, p) = Pr(�2 ≤ 19
15

p+
5

9
q − 1)

=


0 19

15
p+ 5

9
q < 1¡

19
15
p+ 5

9
q − 1¢2 ¡5− 38

15
p− 10

9
q
¢

1 ≤ 19
15
p+ 5

9
q ≤ 2

1 19
15
p+ 5

9
q > 2

Hence in this region

Z(q, p) = 2

µ
19p

15
− 5q
9

¶Ã
−
µ
19

15
p+

5

9
q − 1

¶2
+

µ
19

15
p+

5

9
q − 1

¶µ
5− 38

15
p− 10

9
q

¶!

= 6

µ
19p

15
− 5q
9

¶µ
2− 19p

15
− 5q
9

¶µ
19p

15
+
5q

9
− 1
¶
.

It is not hard to check that Z is positive throughout this region (where q < (3/5)p

and 0 ≤ ψ ≤ 1) and so there are no potential optimal supply curves to consider.

The final case occurs when the crossing occurs on the section corresponding to flow

from s to n, i.e. when q > (3/2)p. In this case

�2 = q − 1 + p− (5/4)(1− (5/2)p+ �2)

i.e. �2 =
11

6
p+

4

9
q − 1.
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And so

ψ(q, p) = Pr(�2 ≤ 11
6
p+

4

9
q − 1)

=


0 11

6
p+ 4

9
q < 1

(11
6
p+ 4

9
q − 1)2(5− 11

3
p− 8

9
q) 1 ≤ 11

6
p+ 4

9
q ≤ 2

1 11
6
p+ 4

9
q > 2

.

Hence in this region

Z(q, p) = 2(
11

6
p− 4

9
q)(−

µ
11

6
p+

4

9
q − 1

¶2
+

µ
11

6
p+

4

9
q − 1

¶
(5− 11

3
p− 8

9
q))

= 6

µ
11p

6
− 4q
9

¶µ
11p

6
+
4q

9
− 1
¶µ

2− 11p
6
− 4q
9

¶
.

We can check that the only potential locally optimal supply curve in this region (where

q > (3/2)p and 0 ≤ ψ ≤ 1) is S(p) = 33p/8 (see Figure 3).

Thus we have a second potential offer which is much more aggressive (offering more

at any given price) with the aim of capturing larger market share. It remains to check

which of these strategies produces the highest profit. For the first offer, S(p) = p and on

this curve

ψ(q, p) = (2p− 1)2(5− 2p)

= 28p2 − 22p− 8p3 + 5.

The region over which we need to integrate starts at p = 1/2 and ends at p = 1. Hence

the expected profit is

Z
S

qpdψ =

Z 1

1/2

p2(56p− 22− 24p2)dp = 247

120
.
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For the second offer curve

ψ(q, p) =

µ
11

6
p+

4

9
(33p/8)− 1

¶2
(5− 11

3
p− 8

9
(33p/8))

= 121p2 − 44p− 2662
27

p3 + 5

and this is defined over the region p ∈ (3/11, 6/11). Thus the expected profit is
Z
S

qpdψ =

Z 6/11

3/11

33p2

8
(242p− 44− 2662

9
p2)dp =

621

880
.

Consequently the first solution S(p) = p is better.

Independent case

Now we consider the case where �1, �2 are independent. Rather than use the result of

Theorem 9 we will calculate ψ(q, p) directly from the regions determined by (12). Now

�1, �2 have a joint continuous distribution with density function ρ(u, v). Hence.

ψ(q, p) =

Z 1

0

Z [T (q,p,v)]

0

ρ(u, v)dudv

=

Z [(8/5)p−1]

0

Z [q+(57/25)p−(9/5)−(4/5)v]

0

ρ(u, v)dudv

+

Z [(5/2)p−1]

[(8/5)p−1]

Z [q+p−1]

0

ρ(u, v)dudv

+

Z 1

[(5/2)p−1]

Z [q+(33/8)p−(9/4)−(5/4)v]

0

ρ(u, v)dudv.

Here we have used the notation [x] in the integral limits to indicate that where x lies

outside the range [0, 1] we correct back to this range (i.e. we take the projection of x onto

[0, 1]).

31



Now we can calculate ψq and ψp.

ψq(q, p) =

Z [(8/5)p−1]

0

ρ(q + (57/25)p− (9/5)− (4/5)v, v)dv

+

Z [(5/2)p−1]

[(8/5)p−1]
ρ(q + p− 1, v)dv

+

Z 1

[(5/2)p−1]
ρ(q + (33/8)p− (9/4)− (5/4)v, v)dv

where we take ρ to have value 0 outside the unit square [0, 1]× [0, 1]. Also

ψp(q, p) =

Z [(8/5)p−1]

0

(57/25)ρ(q + (57/25)p− (9/5)− (4/5)v, v)dv

+

Z [(5/2)p−1]

[(8/5)p−1]
ρ(q + p− 1, v)dv

+

Z 1

[(5/2)p−1]
(33/8)ρ(q + (33/8)p− (9/4)− (5/4)v, v)dv.

The next step is to calculate the Z function.

Z(q, p) = ψp(q, p)Rq(q, p)− ψq(q, p)Rp(q, p)

=

Z [(8/5)p−1]

0

((57p/25)− q)ρ(q + (57/25)p− (9/5)− (4/5)v, v)dv

+

Z [(5/2)p−1]

[(8/5)p−1]
(p− q)ρ(q + p− 1, v)dv

+

Z 1

[(5/2)p−1]
((33p/8)− q)ρ(q + (33/8)p− (9/4)− (5/4)v, v)dv.

The only Z = 0 line, and the optimal solution, is given by the supply function which

occurred as a local, but not global, optimum for the strongly correlated case, i.e. S(p) =

33p/8. This is shown in Figure 3 with the solution from the strongly correlated case. The

offers are only significant in the band where ψ is between 0 and 1 (which is shown by the

dashed lines in the figure).

It is interesting that with uncorrelated demand it is no longer possible to keep flows in

the link at zero by offering the same as the other generator, and so the previous optimal

offer is no longer effective. We can expect this type of behaviour to occur in other
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Figure 3: Optimal offers for correlated and independent demand

examples. The losses in the link will give an incentive to offering in ways that balance

offers at the two ends of the link, but this incentive will be weakened as correlation between

demand at the two ends of the link decreases.

5 Conclusions

The market distribution function introduced by [2] is a powerful tool for representing the

probabilistic behaviour of an electricity market. Previous work has focussed on its use in

optimizing the offer of a generator. In this paper we have shown how to use the market

distribution function to analyse the probabilistic behaviour of flow on an interconnector.

This enables the calculation of the distribution of line rentals for the interconnector. We

have also shown how to derive the market distribution function for the interconnected
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market, allowing the optimization of offers in this environment.

In practice the analysis of the effects of interconnection under uncertainty would typ-

ically be studied using a simulation model. In this paper we have explored the extent to

which an analytical treatment is possible. This leads to an understanding of the limits of

an analytical treatment in contrast to one based on simulation models.

A significant restriction on our analysis is that it takes no account of changes in partic-

ipant behaviour that arise from the interconnection. As shown by Borenstein et al [6] an

interconnection between two markets is likely to induce more competitive behaviour. We

conjecture that when the generators adjust their offers after interconnection the expected

flow in the interconnector will be less than computed by our analysis. Similarly we expect

the price difference to be reduced. This will imply that our estimate of line rentals will

be higher than the value that is observed when the generators change their behaviour.

The analysis of interconnection in the first half of the paper is very general. In this

framework it is very difficult to establish any results unless the random effects in each

market are independent. In practice the variations in electricity demand are dependent

on climate and time of day, so there will be significant correlations between demand at

the two ends of an interconnector.

In general correlated demand will tend to give an increased correlation in prices at the

endpoints of the interconnector. Thus compared with the uncorrelated case we expect

a reduction in the flow in the interconnector and the associated rentals. The effect of

ignoring correlated demand and strategic generator behaviour is to overestimate the flows

and rentals for the interconnector.
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