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Much of the literature on electricity markets has been predicated on the assumption that firms are risk neu-

tral; that they make decisions based upon maximizing expected profits. In reality, many firms are controlled

by shareholders or owners who take a point of view usually no longer than five to ten years hence, and seek

to minimize risk. A firm that does not return profits in that time period is likely to be wound up or forced

into bankruptcy. Under such an incentive scheme, firms are likely to be risk-averse, with serious implications

for policy analysis. We introduce a model of an electricity market where firms can choose to enter the retail

market, then enter into retail contracts, and finally purchase electricity in a wholesale market to satisfy their

contracts. We explicitly assume that firms are risk-averse in this model, and act to minimize their conditional

value-at-risk (while maximizing profit). We demonstrate how firms’ behaviour changes with risk-aversion,

and use the example of an asset-swap policy to demonstrate the importance of risk-aversion in determining

policy outcomes.
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1. Introduction

Much of the literature on electricity markets is based on published models that assume firms

act in a risk-neutral manner. Classic results such as the importance of long-term contracts in

lowering spot market prices (Allaz and Vila, 1993; Carlton, 1979) and the efficiency of nodal pricing

markets (Caramanis, 1982) were proved using this assumption. However, the question of whether

risk-neutrality is a realistic assumption is open to attack. A risk-neutral firm, for instance, would

be happy to take on a 99% chance of making zero profits if the last 1% chance earned a profit
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sufficiently large. Such a firm would theoretically be perfectly happy operating over a hundred

year period making no money year to year. In practice, the firm’s investors would likely pull the

plug long before the hundred years were up. If firms are in reality risk-averse then many of the

policy predictions are suspect. For example, Neuhoff and De Vries (2004) show that generation

investment is not necessarily efficient in equilibrium if consumers and investors are risk-averse.

Much of the risk inherent in electricity markets falls on the retail sector. Retailers typically

form fixed price, variable quantity contracts with their customers (residential and commercial

consumers). This places all of the risk of supplying the electricity on the retailer, exposing them

to a variety of sources of uncertainty through the wholesale market, including price fluctuations

from transmission or plant outages, fuel cost shocks, or direct risk from demand shocks. In many

markets, retailers vertically integrate with generators. This is presumably to mitigate the risk faced

by the retailer, yet there is almost no analysis on this subject in the literature.1 The few papers

that explicitly use risk-averse firms usually focus on long-term contract formation by generators

and avoid modelling the retail market. There is also no discussion of transmission risk, which is

arguably critical to pricing in nodal markets, and limited discussion of any kind of competition or

entry into retail markets. Furthermore, all of these papers employ the expected utility formulation

of risk-aversion, which abstracts away from the behaviour of real-world firms.

In this paper, we introduce a model of an electricity market where risk-averse generators and

retailers act to maximize profit in a three-stage game. We explicitly model the formation of contract

prices in the retail sector, allowing for full strategic behaviour by firms. Furthermore, firms have

the option of choosing whether or not to enter the retail market in the first place (including those

firms who own generation), making vertical integration (or lack thereof) an endogenous outcome

of the model. The other novel feature in our model is our characterization of risk-aversion. Rather

than pick an arbitrary expected utility function, the firms in our model maximize profit while

minimizing conditional value-at-risk (henceforth CVaR). This measure is similar to value-at-risk

1 This can also hedge generators where fuel costs are uncertain.
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(VaR) and thus arguably closer to capturing how real world firms actually behave in response to

uncertainty.

The existing literature on risk-aversion in electricity markets can be crudely divided into three

distinct strands. One is the modelling of the decisions of individual generators based upon input

risks (such as water flows for hydro generators). This considers risk from the perspective of a single

generator, and does not consider market outcomes of multiple risk-averse generators, so is not

particularly relevant to our model. Another strand takes the point of view of large consumers faced

with a risky series of electricity prices. In this strand, prices are taken as exogenous, not formed

through competition between risk-averse firms. The final strand, most relevant to this paper, is the

study of risk-aversion in the formation of long-term contracts. Examples include articles by Powell

(1993), Neuhoff and De Vries (2004), and Baldursson and von der Fehr (2007). These papers all use

the expected utility method to model risk-aversion, since concave utility functions are known to

mimic risk-averse behaviour. Of these, only Baldursson and von der Fehr analyze the behaviour of

risk-averse firms in both wholesale and retail markets simultaneously. They consider a model where

risk-averse firms vertically integrate, finding that vertical integration impairs market performance

by increasing the gap between contract and (expected) spot prices. Their measure of risk is mostly

the constant relative risk-aversion (CRRA) measure commonly used by economists.2 Firms are

price takers in the wholesale (spot) market. They consider either fixed retail prices, or prices linked

to wholesale prices. Retail prices are not determined by retail competition. The goal of their paper

is to see if long-term contracts can still enhance competition when risk-aversion is incorporated.

A limitation of the existing literature is the use of expected utility functions to model risk-

aversion – i.e. assuming that the expected utility from a given strategy is less than the utility of the

expected profit of that strategy. In practice, firms often use the concept of value-at-risk to measure

their exposure to risk. Value-at-risk is ubiquitous throughout finance: both in the academic and

practical sides of the field. Here risk is defined as the threshold value that the losses may exceed

2 They use a more general formulation in their initial modelling.
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with some probability. For example if losses are predicted to exceed $100 with a probability of 5%

then the VaR5% is $100. Investors with a high level of risk-aversion have the option of minimising

their value-at-risk, trading off low returns for little or no chance of losing money. Investors with

less risk-aversion can do the opposite. An economic model directly incorporating the assumption

of value-at-risk can be reasonably argued to be more realistic than those that assume either risk-

neutrality or incorporate risk through the use of a utility function.

Value-at-risk has not been used much in equilibrium models due to its intractability. In particu-

lar, utility functions incorporating value-at-risk need not be convex (Artzner et al., 1999). However,

conditional value-at-risk (CVaR) is closely related, and has been employed to model generator

behaviour in the Operations Research literature. Papers in this area include Carrion et al. (2009)

and Carrion (2008). All these papers model a single firm’s point of view; considering the best

response of the firm given perceived risk. This paper, on the other hand, considers the equilib-

rium responses of multiple firms acting to maximize their profits less conditional value-at-risk. We

demonstrate that the behaviour of risk-neutral firms compared to firms maximizing their profit

less conditional value-at-risk can be very different, with obvious consequences for policy decisions.

In this paper we begin by presenting the concept of conditional value-at-risk and discussing how

we employ it in the context of electricity markets. We then construct a model of an electricity

market with three stages: entry, retail competition to form retail contracts, followed by wholesale

market-clearing to set the spot prices.3 We use this model first to present a simple example to

illustrate the impact of risk-aversion on retail pricing and finally a general model formulation

which we use to show how nodal price risk can cause generators to limit their retail obligations

to nodes where they have their own generation capacity. We give examples that illustrate how

risk-averse firms’ behaviour varies significantly from their risk-neutral counterparts, and finish with

an extended policy example: an analysis of a generator asset-swap in the New Zealand Electricity

Market, designed to reduce risk and thereby decrease retail prices. Our model has several features

3 We assume a competitive equilibrium in the wholesale market.
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that set it apart from the literature to date. Not only do we use an innovative measure of risk,

but we explicitly incorporate the option for firms (both those owning generators and new entrants)

to enter the retail market. This implies the model could be used to discuss concepts of vertical

integration, as well as the formation of long-term contracts, and can be used to analyze market

design issues around such concepts.

2. Modelling Risk-averse Firms

When companies are making investment decisions or entering contracts they do not solely consider

the expected benefit from the decisions. They also take into account the consequences if the return

on the investment is lower than expected – behaviour which is known as risk-aversion. Companies

are responsible to shareholders over both the short and long term, so they need to make decisions

that seek to minimize their risk, while at the same time maximizing expected profit.

In the academic literature, there are several commonly used methods to model risk-aversion.

One common way of incorporating risk-aversion into optimization problems is to use a utility

function. This approach is commonly used by economists. If a business is risk-averse, a concave,

increasing utility function will reflect this. That business can then maximize its expected utility (as

a function of profit) rather than its expected profit; the optimal solution to this will have a lower

(or equal) expected return than if the firm had been profit maximizing, but the risk associated

with this decision will be less. In the finance literature, mean-risk optimization is commonly used,

in portfolio optimization. This approach involves solving a bi-objective optimization problem and

typically results in finding a set of Pareto optimal solutions, known as the efficient frontier. In

such models risk is typically measured by the variance of the return or by using the downside-risk,

as introduced by Markowitz (1959). A popular measure of risk is value at risk (VaR). Here risk

is defined as the threshold value that the losses may exceed with some probability. For example if

losses are predicted to exceed $100 with a probability of 5% then the VaR5% is $100.

In order to formalize the concept of risk, Artzner et al. (1999) introduced coherent measures

of risk. A coherent risk measure must comply with the following four axioms: sub-additivity;
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translation invariance; positive homogeneity; and monotonicity. Risk measures complying with

these axioms exhibit key properties that are valuable for a risk-averse agent. For example, sub-

additivity ensures that there is a risk-pooling effect: the sum of risks is greater than or equal to

the risk of the sum. Critically, none of the above risk measures satisfy the property of coherency.

The Value at Risk measure, for example, violates the sub-additivity property.

The current approaches are unsatisfactory in other ways. The utility function approach is the

one used by previous papers in this literature. However, determining a particular utility function is

difficult. There are several common utility functions used to model risk in the economics literature,

such as the constant risk-aversion utility function and the natural log function, but these are chosen

primarily for tractability, not for realism. Of the above, Value at Risk would be the most attractive

choice from a realism point of view, as it is widely used by firms as well as by academics. However,

it is very intractable to use in an optimization setting, since its violation of the sub-additivity

property can lead to a lack of convexity.

However, there is a related measure known as conditional value at risk (CVaR)4 that is a coherent

risk measure. The CVaR at level α of some random return z is simply the expected loss if one’s

interest were restricted to the lowest 100α% of returns. If returns z are continuously distributed with

some distribution function F (z) and associated probability density function f(z) then CVaRα(z)

can be written as:

CVaRα (z) =− 1

α

∫ F−1(α)

−∞
zf (z)dz.

Initially this measure of risk may seem impractical for optimization problems. The above descrip-

tion requires the order of the profits to be known a priori, when in fact, in many circumstances, the

ordering of outcomes often will depend on the decision variables being optimized over. Fortunately

though, Shapiro et al. (2009) present an alternate formulation which enables the bottom 100α% of

outcomes to be computed through a linear program. Moreover, for profit functions that are concave

in the decision variables, we have a convex optimization problem when we maximize a weighted

4 This is also known as average value at risk, or expected shortfall.
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combination of expected profit and risk. In the formulation below, θ is a parameter between 0 and

1 and changes the weightings on risk and return5, z is a random variable which may be a function

of some of the parameters.

max (1− θ)Ez [z]− θCVaRα (z) . (1)

In this paper, we use the above mean-risk formulation in our model of an electricity retail market

with risk-averse firms.

3. Electricity Market Model with One Node

In this section we begin our exposition by outlining the model in the single node case. Assume

that electricity is traded in a market with two stages. At the first stage, retailers offer electricity

contracts for sale to consumers. These are fixed price, variable quantity contracts, by which the

retailer agrees to supply any quantity of electricity to the consumer at a fixed price. Each retailer

sets a price for their contracts, and consumers choose which retailer will supply them. At the second

stage, retailers must buy electricity in the wholesale market to satisfy their contractual obligations.

Electricity is supplied by generators who make offers to sell electricity in the wholesale market.

When the market clears, the electricity is generated and delivered to consumer. Retailers pay the

wholesale price for the electricity consumed by their customers, generators receive the wholesale

price for the quantity of electricity dispatched. Final consumers cannot buy electricity directly on

the wholesale market.

Assume that there is a set of firms Fg who own generation. Each firm f ∈Fg owns a mix of two

types of plant, hydro plants and thermal plants. The two types of plant differ by their short-run

marginal cost functions.6 We also allow for another set of firms who do not own any generation,

but may be interested in buying electricity in the wholesale market and on-selling it in the retail

market. We call these firms ‘retailers’ and denote the set of such firms by Fr.

5 See the Appendix, or Shapiro et al. (2009) for a derivation of this expression.

6 We will specify exact cost functions later when we create our examples.
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Before the actual electricity market runs, there is a ‘zeroth’ stage at which each firm f ∈Fg ∪Fr

must decide whether or not to enter the retail market. We will assume that a firm will enter the

retail market if its risk-adjusted profits minus the cost of entry are positive. Denote the set of

generators who enter the retail market by Eg ⊆Fg. Denote the set of pure retailers who enter the

retail market by Er ⊆Fr. Let E = Eg ∪Er be the set of all firms who have entered the retail market.

Before we formally define the full game, we detail behaviour in the retail and wholesale markets.

3.1. Retail Market

The first stage of the electricity auction process is the formation of retail contracts, in what we

term the Retail Market. We assume that retail contracts are formed according to take-it-or-leave-it

fixed price offers. Every firm f ∈ E simultaneously offers a price pf ≥ 0 at which they are willing

to sell contracts. The contracts on offer are fixed price, variable quantity contracts – the retailer

agrees to supply any amount of demand in real-time (conclusion of stage 2 of our model) at a fixed

price determined now in stage 1.

On the demand side, we assume there is a continuum of consumers who each demand the same

amount of electricity, adding up to a total demand of X MW. Each consumer must pick a firm to

buy their electricity retail contract from. If consumers could see all the prices, and had no other

basis on which to choose a firm, then the Bertrand assumption would hold and all consumers

would choose the firm with the lowest price. We do not make this assumption as we find it less

than realistic.7 Rather, we assume that consumers have some type of preferences over which firm

supplies them. These preferences might be formed from a consumer search model, or a spatial

model, but in this paper we abstract away from the exact specification and note that, following

Vives (1999), the general concept can be captured by assuming a differentiated products demand

function.

7 In the New Zealand market, firms offer retail contracts at fixed prices. These prices are available at the well-known
PowerSwitch website. Note that there is considerable price dispersion amongst the offers, yet firms with high prices
still have considerable market share. This throws doubt on whether Bertrand is a realistic assumption for retail
electricity markets.
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Demand Model D̂

We will use a linear formulation similar to that found in Vives (1999), adjusted to assume that

total consumer demand for electricity is inelastic and equal to X. Denote the market-share for firm

f by φf . If every firm i∈ E offers price pi, then market share for firm f ∈ E is

φ̂f =
1

|E|

1− b
∑

i∈E\{f}

(pf − pi)

 , (2)

where |E| is the number of firms in set E , and b reflects the willingness of consumers to switch.8

Given a overall demand of X, we can compute the demand for an individual firm by multiplying

the firm’s market share by X.

x̂f =Xφ̂f . (3)

Note that in this model the overall demand is inelastic; however, for the individual firms, demand

is lost or gained based on the inverse maximum switching cost, b, and the price differences between

firms.

The demand model (D̂) is only valid if prices are such that all firms have positive demand. If this

condition is violated, some firms will have negative demand which is incorrect and arises because

D̂ does not include all the boundary conditions that are present in the actual demand model. With

an arbitrary number of firms offering arbitrary prices, the true demand model is very difficult to

write as a closed-form expression, thus for computational reasons (and for ease of understanding)

we express the full demand model as an algorithm.

Demand Model D

If each firm i∈ E chooses a price pi, we can compute demand for firm f from the following algorithm.

1. Define Ē initially to be the set of firms who have entered the retail market i.e. Ē = E .

8 If b is small, the cross elasticity is low, meaning that firms cannot easily gain or lose customers through changing
their prices, whereas if b is large, small price differences can lead to large numbers of consumers switching.
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2. For each firm f ∈ Ē , compute φf = 1

|Ē|

[
1− b

∑
i∈Ē\{f}

(pf − pi)

]
. For each firm f ∈ (Fg ∪Fr)\Ē ,

set φf = 0.

3. If φf ≥ 0, ∀f ∈ Ē then end.

4. Remove arg maxf∈Ē {pf} from Ē .9

5. Go to step 2.

Below we present a theorem which states that any firm re-entering the market at the termination

of the above algorithm would receive a negative market-share. This ensures that the solution

computed from this algorithm is consistent with the assumptions.

Theorem 1. Any firm who is not in the market at the end of the above algorithm would receive a

negative market-share if they were to re-enter.

Proof: According to the algorithm a firm will leave the market if its market-share is negative.

Thus if a firm exits, it cannot immediately re-enter. Moreover, any firm that had exited previously

must have a retail price higher than the most recent firm to exit.

Therefore, since the most recent firm to have exited would receive a negative demand if it were

to re-enter, if any other firm were to re-enter it would also receive a negative market share (since

its retail price is higher).

3.2. Wholesale Market

In the retail market, firms only form contracts. No electricity is actually produced or supplied at

this stage. Generation and delivery take place in the second stage of the market, typically known as

the Wholesale Market. At the time the wholesale market is run, any uncertainty in the market (see

below for more details) is resolved, so all parameters, including demand in particular, are known

exactly before any offers are placed. The wholesale market is a standard nodal pricing market.

Generators make offers to sell a certain quantity of electricity at a specified price. Retailers submit

9 Note that the firm removed must have negative market-share, since φf is a decreasing function of pf , and at least
one firm has negative market-share.
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how much demand they need to satisfy (since demand is inelastic, there is no point in submitting

bids). The market will dispatch generators in such a way to satisfy demand at the lowest possible

cost.

The focus in this paper is on the retail market, so for simplicity we assume that the wholesale

market is perfectly competitive. In this we follow the example of Baldursson and von der Fehr

(2007). This is the simplest assumption about the behaviour of the firms, since the offers are

set to the plants’ marginal costs. Given these offers, a system operator solves an optimization

problem (the economic dispatch problem) to minimize the cost of satisfying the demand, yielding

the optimal generation and nodal prices. These nodal prices are defined to be the marginal cost of

an additional demand at a node.

3.3. Uncertainty

In this paper we consider two possible sources of uncertainty that are representative of other types.

One source arises from demand uncertainty from retail consumers. In this model, the parameter

X in equation (3) may be a random variable drawn from a known distribution. This uncertainty

is resolved after the retail market prices are set, but before the wholesale market clears. Another

possible source of risk is the cost of water to firms owning hydro generation. When water storage

is low, the opportunity cost of using water is higher. However, future river flows and lake levels

are unknown when prices are set in the retail market, so firms are uncertain about the value of

storage. These parameters are realized before the wholesale market.

We define Ω to be the set of possible realizations of uncertainty. For a given ω ∈Ω, we superscript

any variables whose outcome depends upon the realization of uncertainty; e.g. xωf is the demand

for electricity from firm f in state ω. Any uncertainty in the model is resolved between the first

and second stages. That is, firms deciding whether to enter and then setting prices in the retail

market do so without knowledge of the actual realisation of the uncertain variables – they know

only the distribution of the variables. However, all uncertainty is resolved before the wholesale

market opens, so firms making offers at this stage do so with full information.
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3.4. Profit

Each retailer in this model, vertically integrated with a generator or not, seeks to maximize (risk-

adjusted) profit. Let E be the set of retail market entrants; for a given outcome, ω ∈ Ω, in the

wholesale market, the profit earned by a retailer is

πωf (E) =

{
(pf − cω)xωf +P ω

f , f ∈ E ,
P ω
f , otherwise,

where cω is the wholesale clearing price and P ω
f is the profit firm f makes in the wholesale market

under realisation ω ∈Ω.

In the risk-neutral case, a firm will simply be interested in maximizing its expected profit in

the retail plus wholesale markets. In the risk-averse case, the firm will instead maximize expected

profit less a weighted measure of risk (in this case: CVaR), as we discussed in section 2. Using

θ ∈ [0,1] as a weighting on risk and return, we define the following risk-adjusted profit function for

a firm f

πf = (1− θ)Eω
[
πωf
]
− θCVaRα

(
πωf
)
. (4)

In the retail market, firms simultaneously choose prices so as to maximize their risk-adjusted

profit function. For a given set of firms, E , having entered into the market, we denote the retail

market game using demand model D as GE (or ĜE when demand model D̂ is used).

Later when we introduce the full game, we will prove that under certain conditions, the equilibria

arising from using the two different demand models are identical. We leave this discussion for

Section 3.5.

Lemma 1. When firms are risk-neutral, all firms in the retail market choose identical prices for

their retail sales, and each firm gets an equal market share. Furthermore, as the number of firms in

the market increases, the equilibrium retail prices tend to the demand-weighted average wholesale

prices.
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3.5. Full Model

With the above structure in place, we can formally define the full model. The structure is as follows.

At stage 0, each firm f ∈ Fg ∪ Fr simultaneously decides whether to enter the retail market or

not. Some set E ⊆Fg ∪Fr choose to enter. (Note that because we assume all retail-only firms are

symmetric, our results will merely give the number of such firms entering at equilibrium, not which

firms.) At stage 1, retail firms choose prices as described in Section 3.1 and realise retail contract

demand accordingly, and at stage 2 generators make bids in the wholesale market as described in

section 3.2, which subsequently clears to realize the state-dependant wholesale price. Firms then

realize profits from both the retail market and the wholesale market.

The full game comprising all three stages will be denoted G if demand model D is used (or Ĝ

when D̂ is used). In the appendix, we prove that, under certain conditions, the equilibria for games

G and Ĝ are identical.10 Thus, for the remainder of this paper will restrict our interest to the game

Ĝ.

Under the assumption that the consumers have no preference toward incumbents over new

entrants we can once again use the demand functions given by equation (2); this equation is

repeated below for convenience:

φ̂f =
1

|E|

1− b
∑

i∈E\{f}

(pf − pi)

 . (5)

4. Example: Retail Competition at a Single Node

In this section, we will construct an example of retail competition at a single node, using the model

introduced in section 3. We will first examine the outcome of the retail competition stage if all firms

are risk-neutral, and then compare this to the equilibrium when one or both firms are risk-averse.

Finally, we will couple the first-stage entry model with the retail competition stage and investigate

how risk-aversion affects the number of firms willing to enter the retail market.

10 See Lemma 7 and Theorem 2 for details.
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4.1. Risk-neutral Case

Consider a market where the network has a single node, and suppose retail demand is equal to

150MW and totally inelastic. In the market there are two firms, each with a retail base. Firm A

owns a hydro plant with capacity 100MW and cost $h/MWh and firm B owns a thermal plant

with capacity 100MW and cost $50/MWh. The hydro costs are uncertain when the retail prices

are chosen, however, it is common knowledge that the hydro costs, h are distributed uniformly

between 0 and 100.

First, we solve for the optimal dispatch as a function of h. This gives the following dispatch

quantities, qA, qB for each plant and clearing price, c.

qA =

{
100, h≤ 50,
50, h > 50,

qB =

{
50, h≤ 50,
100, h > 50,

c =

{
50, h≤ 50,
h, h > 50.

Now we can compute the expected profits for the firms as

πA = E [qA× (c−h) +xA (pA− c)]

= 1
100

[∫ 50

0

100 (50−h)dh+xA

∫ 50

0

(pA− 50)dh+xA

∫ 100

50

(pA−h)dh

]
= 1250 +xA (pA− 62.5) .

Substituting in xA (with b= 1
75

) and differentiating with respect to pA gives

∂πA
∂pA

= 75− 2pA + pB + 62.5.

Similarly for firm B we find

∂πB
∂pB

= 75− 2pB + pA + 62.5.
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Assuming an interior solution, these first order conditions yield equilibrium prices

peA = peB = 137.5.

Observe that here, in spite of the different generation assets that the firms own, they set identical

prices in the retail market and share the retail demand equally. This agrees with the general result

of the previous section.

4.2. Risk-Averse Case

In a risk-averse setting, the symmetry we observed in Lemma 1 is lost. This is because the out-

come of the wholesale market cannot be merely treated as a constant in the risk-adjusted profit

maximization problem. To examine the impact of this change, we extend the example introduced

in section 4.1 to incorporate risk using the CVaR measure.

For this example, we will define the CVaR risk level to be α=0.1, and examine the effect of

varying θ on the behaviour of the firms. In order to compute the conditional value at risk, we need

to rank the profit for each firm as a function of h for each retail price it may choose. The profit for

a given h and pA for firm A is

πhA =

{
(pA− 50) (75− pA + pB) + 100 (50−h) , h≤ 50,

(pA−h) (75− pA + pB) , h > 50.

Note from the above equation that so long as the retail demand is positive, the profit of firm A

is decreasing in h. The profit for a given h and pB for firm B is

πhB =

{
(pB − 50) (75− pB + pA) , h≤ 50,

(pB −h) (75− pB + pA) + 100 (h− 50) , h > 50.

From above we can see that firm B’s profit is constant over h ∈ [0,50], however for h > 50 we

have

∂πhB
∂h

= 25 + pB − pA,
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hence if pA − pB ≥ 25 then the profit is decreasing in h, whereas if pA − pB ≤ 25 the profit is

increasing in h; it can be shown that the former case is not possible at equilibrium. Therefore here

we try to find an equilibrium where pA− pB ≤ 25; assuming this inequality is valid, we can write

the risk-adjusted profit functions for both firms as follows

πA =
1− θA

100

∫ 100

0

πA (h)dh+
θA
10

∫ 100

90

πA (h)dh

= (1− θA) [(pA− 62.5) (75 + pB − pA) + 1250] + θA [(pA− 95) (75 + pB − pA)] ,

πB =
1− θB

100

∫ 100

0

πB (h)dh+
θB
10

∫ 10

0

πB (h)dh

= (1− θB) [(pB − 62.5) (75 + pA− pB) + 1250] + θB [(pB − 50) (75 + pA− pB)] .

We can then solve for the equilibrium, from first order conditions, giving

peA =
5

6
(165 + 26θA− 5θB) , peB =

5

6
(165 + 13θA− 10θB) .11

Note that if we set θA = θB = 0 then we recover the risk-neutral equilibrium. Moreover, as firm

A’s risk-aversion weighting is increased the equilibrium prices of both players increase; whereas

as firm B’s risk-aversion weighting is increased the equilibrium prices of both players decrease.

This result is due to the wholesale market positions of the firms, and the way risk-averse tends to

emphasize the worst-case scenarios.

Firm A, who owns hydro generation receives the least profit when hydro costs are high, thus

a risk-averse firm emphasizes these occurrences and when optimizing in the retail market sees a

higher risk-adjusted ‘average’ spot price. Conversely, firm B, who owns thermal generation receives

the least profit when hydro costs are low, thus when determining its optimal retail price sees a

lower risk-adjusted ‘average’ spot price. Furthermore, the effects of competition mean that the

risk-aversion of one firm will affect the other’s optimal pricing strategy.

This example has illustrated how risk-aversion can affect the retail equilibrium prices.

11 Note that we needed to verify this equilibrium, by considering incentives for the players to deviate such that
pA − pB > 25.
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4.3. Endogenous Entry

We can extend the example introduced in sections 4.1 and 4.2 to study when and how many firms

would enter the market under varying conditions.

Using this demand function (with X = 150 and b= 1
75

), we can solve for the equilibrium retail

prices as a function of the number of firms entering the market, for various levels of risk-aversion

(θ). For the purposes of this example we will assume that the two firms owning generation assets

will always participate in the retail market. In the table below we show the equilibrium retail prices

for for different numbers of retailers n (≥ 2).

n Retailer (Hydro) Retailer (Thermal) Retailers (No generation)
2 $137.50 $137.50 N/A
3 $100.00 $100.00 $100.00
4 $87.50 $87.50 $87.50
5 $81.25 $81.25 $81.25
6 $77.50 $77.50 $77.50

Table 1 Risk-Neutral (θ= 0.0)

n Retailer (Hydro) Retailer (Thermal) Retailers (No generation)
2 $138.75 $123.75 N/A
3 $107.25 $89.25 $107.25
4 $97.32 $78.04 $97.32
5 $92.50 $72.50 $92.50
6 $89.66 $69.20 $89.66

Table 2 Risk-Averse (θ= 0.5)

n Retailer (Hydro) Retailer (Thermal) Retailers (No generation)
2 $140.00 $110.00 N/A
3 $114.50 $78.50 $114.50
4 $107.14 $68.57 $107.14
5 $103.75 $63.75 $103.75
6 $101.82 $60.91 $101.82

Table 3 Risk-Averse (θ= 1.0)

It can be shown that as the number of entrants into the retail market increases the equilibrium

prices for the firms tend towards the wholesale price when firms are risk neutral, however, risk-

aversion leads to the retailer with thermal generation to reduce its retail price, and all the other
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retails to increase their prices.

n Retailer (Hydro) Retailer (Thermal) Retailers (No generation)
∞ $62.50 + 32.50θ $62.50− 12.50θ $62.50 + 32.50θ

Table 4 Equilibrium prices as the number of firms becomes large.

In the following graph we plot the risk-adjusted profits of the entering firms (those without

generation assets) as functions of risk-aversion parameter θ. In this plot we have included a cost

of entry ; this horizontal line is the line above which firms would have had incentive to enter the

market. When the profit is below this line one firm (or more) would have not entered the market

at equilibrium.

Figure 1 Risk-adjusted profit for retailers for varying numbers of entrants.

We can therefore see that for a cost of entry of 500 [dollars per period?], for θ ∈ [0,0.107] three

retailers enter the market, for θ ∈ (0.107,0.524] two retailers enter, and finally for θ ∈ (0.524,1]

only one retail-only firm will enter the market, along with the two firms owning generation. The

expected profits and the equilbrium prices for all firms as a function of risk-aversion (with the

equilibrium number of firms entering the market) can be seen in figures 2 and 3.
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Figure 2 Expected profit for retailers as function of risk-aversion with optimal number of entrants.

Figure 3 Equilibrium retail prices as function of risk-aversion with optimal number of entrants.

We can see that as firms become more risk-averse, fewer have incentive to enter the retail

market, allowing the firms already in the market to charge higher prices and therefore make higher
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expected profits; this, however, is somewhat offset by the risk-aversion causing sub-optimal (in

expectation) pricing decisions. Moreover, for low levels of risk-aversion, three unhedged retailers

enter the market; these firms have incentive to increase their retail pricing as they become more

risk-averse (as they are concerned with the possibility of high wholesale prices) this aversion leads

to higher expected profits for retailers. However, as the risk-aversion increases, fewer of these firms

enter the market, and the thermal owner, who benefits from higher prices, becomes more dominant.

This leads to a situation where all firms’ profits decrease as they become more risk-averse.12

4.4. Summary

So far in the paper we have introduced a three-stage model of risk-averse retailers competing in an

electricity market. In the single-node examples that we have examined the uncertainty has been

represented by through continuous distributions and the examples have been solved analytically. In

the next section we will consider multiple-node transmission networks, and use monte-carlo sam-

pling to create the possible scenarios. We will solve these problems numerically as complementarity

problems.

5. Electricity Market Model with Multiple Nodes

Finally we extend the model introduced in section 3 to accommodate networks. Assume the market

now operates on a network with multiple nodes, n∈N . We denote by En ⊆Fg ∪Fr the set of firms

that have entered the retail market at node n. As before, there is uncertainty about future demand

levels and nodal prices. The different scenarios are indexed by ω ∈Ω.

In order to find the most efficient way to allocate electricity over a network, a dispatch model is

required. This means that it is more difficult to model the uncertainty using continuous distribution

functions. Thus we turn to discrete distribution functions instead, and employ computational

methods to find equilibria of the model. We incorporate CVaR using a formulation from Choi and

Ruszcynski (2008).

12 The thermal generator’s expected profit decreases because it is charging a lower retail price than it would if it were
risk-neutral, whereas the other firms’ profits decrease because their customer base is being eroded by the thermal
generator’s low retail prices.
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The notation for this section extends the model of section 3 with the addition of a subscript n

where a parameter is specific to a node n. Where a parameter is also refers to a particular firm,

we adopt the convention that the node subscript comes first, followed by the firm subscript. The

parameters and variables are ammended as listed below.

Parameters:

• cωn is the wholesale price in scenario ω at node n;

• Xω
n is the total retail demand in scenario ω at node n;

• pni is the retail price offered by firm i at node n, the matrix p−f contains all these values other

than those pertaining to firm f ;

• P ω
f is the wholesale profit for firm f in scenario ω;

• ρ is the probability of scenario ω.

Variables:

• ηf is the α-quantile profit of firm f ;

• vωf is the positive deviation from the α-quantile profit of firm j;

• wωf is the negative deviation from the α-quantile profit of firm j;

• φnf is the realised retail market-share for firm f at node n;

• πωf is the profit for firm f in scenario ω;

• pnf is the retail price offered by firm f at node n.

Below we give a mathematical program that maximizes a single firm’s risk-adjusted expected

profit, given the retail prices chosen by the other firms (assuming demand model D̂).

Πf (p−f ) = max
∑
ω∈Ω

ρπωf − θ
α

∑
ω∈Ω

ρ
[
(1−α)wωf +αvωf

]
s.t. πωf = ηf + vωf −wωf

[
λωf
]
∀ω ∈Ω

πωf =
∑
n∈N

[
Xω
n

∑
i∈En∩{f}

(pni− cωn) φ̂ni

]
+P ω

f

[
µωf
]
∀ω ∈Ω

φ̂nf = 1
|En|

[
1 + b

∑
i∈En\{f}

(pni− pnf )

]
[νnf ] ∀n∈N

wωf , v
ω
f ≥ 0 ∀ω ∈Ω.

The above problem, Pf (p−f ), can be shown to be equivalent to a convex optimization problem
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(see Lemma 2 in the appendix). Therefore the solution to Πf (P−f ) is the solution to the system

of KKTs for Πf (P−f ), given below (and these are valid for firm f ∈ E).

πωf = ηf + vωf −wωf ∀ω ∈Ω, ∀f ∈F∑
n∈N

Xω
n

∑
i∈En∩{f}

(pni− cωn) φ̂ni

+P ω
f −πωf = 0 ∀ω ∈Ω, ∀f ∈F

φ̂nf =
1

|En|

1 + b
∑

i∈En\{f}

(pni− pnf )

 ∀f ∈ En, ∀n∈N
−ρ+λωf +µωf = 0 ∀ω ∈Ω, ∀f ∈F

−
∑
ω∈Ω

λωf = 0 ∀f ∈F

−
∑
ω∈Ω

Xωφ̂nfµ
ω
f + b

|En| − 1

|En|
νnf = 0 ∀f ∈ En, ∀n∈N

νnf −
∑
ω∈Ω

Xω
n

∑
i∈En∩{f}

(pni− cωn)µωf

= 0 ∀f ∈ En, ∀n∈N

0≤ vωf ⊥ θρ−λωf ≥ 0 ∀ω ∈Ω, ∀f ∈F

0≤wωf ⊥ θ
1−α
α

ρ+λωf ≥ 0 ∀ω ∈Ω, ∀f ∈F .

This system of equations is known as a mixed complementarity problem (MCP), which can

be solved in GAMS using the PATH solver (2000). Since each firm is solving a convex optimization

problem, any solution to the above MCP gives an equilibrium for ĜE .

In the appendix we will prove that the equilibrium solution we find from the MCP above, is

indeed an equilibrium to the game using the demand model D....EXPAND?***

6. Application to Asset Swapping

In October 2010, the New Zealand Government reorganized the New Zealand Electricity Market.

One of the changes implemented was an ‘asset transfer’, in which one of the state-owned firms

purchased generation assets from another; this sale took place in June 2011. One of the key aims

of this asset transfer was to improve competition in the retail electricity market. All major firms

in New Zealand are vertically integrated, owning both generation assets and a portfolio of retail

consumers. Despite the existence of five large retailers nationally, many areas of the country are
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served by no more than two retailers, a fact believed to be due to nodal price risk in the wholesale

market. The goal of the asset swap was to give more of the vertically integrated firms a geograph-

ically diverse portfolio of generation assets, thus giving those firms the confidence to enter into

various retail markets around the country.13

Nodal price risk is believed to be a serious problem in the New Zealand market. New Zealand

is dominated by hydro generation, however, there is limited water storage, so the availability of

hydro generation is dependent on the weather. In so called ‘dry years’, river inflows fall and hydro

plants must cut back on generation to conserve water. The resulting constriction of supply causes

wholesale prices to rise up to 1000% above average. Firms who rely on hydro generation to satisfy

their retail contractions must then buy expensive electricity on the wholesale market and sell at loss

in their retail market (since the latter is contractually fixed). This is one source of risk. The other

source of risk is due to geographical location. New Zealand has two main islands. The South Island

contains excess generation, the North Island conversely has most of the load. If the inter-island

cable fails, prices will then diverge sharply between the two islands. Thus a firm without assets in

one island will be unlikely to build a retail base in that island, as they will be exposed to wholesale

price fluctuations when the inter-island cable is out of service. The asset swap implemented in 2010

is expected to reduce both sources of risk, but formal analysis has been limited to the effect on the

wholesale market (Downward et al., 2011).

We can use the model presented in this paper to analyze the impact of such an asset swap on

the retail market. In particular, we can look at such questions as whether an asset swap causes

more retail competition, including new entrants to each market (North and South). We investigate

two types of asset swap. One is a physical asset swap, as described above, where two firms swap

ownership of physical assets. The other is a virtual asset swap, where the two firms enter a long-term

contract to ‘swap’ electricity at two nodes. The virtual asset swap was another recommendation

from the 2009 Electricity Technical Advisory Group.

13 See the discussion document from the 2009 Electricity Technical Advisory Group (2009) for more background
on the asset swap. This report stated that this reallocation should improve competition in the retail market, by
incentivising gentailers (firms with both generation and retail arms) to enter into new markets; thereby driving prices
down for consumers.
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6.1. Example: Risk-averse Firms with Fixed Entry

In this example, we will present a two-node network (North and South) with three firms (A,B and

C). Prior to any swapping of assets, firm A has two thermal plants in the North, firm B has has

one thermal plant in the North and one hydro plant in the South and Firm C two hydro plants in

the South. The asset swap that we consider will consist of firms A and C swapping a thermal in

the North and a hydro in the South. These allocations are depicted in figure 4 below. We will also

compare this physical swap with a virutal swap, where a financial contract is established, which

trades North power for South power between firms A and C. Ignoring any fixed payments, this

contract, for x MW of power, gives the following payments to the firms (or costs, if negative). For

firm A the payment is: (pS − pN)x; and for firm C the payment is (pN − pS)x, where pN and pS

are the spot prices for North and South power respectively.

Figure 4 Physical asset swap.

The production cost of each of the thermal plants is

cT (q) = 50q+ 0.05q2,
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and for the hydro it is

cH (q) = 10q+hq2,

where h is a random variable representing water scarcity. For the upcoming examples, h is normally

distributed, with mean 0.3 and standard deviation 0.1.

The demand in the North is dN = 2000 MW, the demand in the South is dS = 1000 MW, and the

nominal capacity of the HVDC is 250 MW, with a 5% chance of an outage (note that the probability

of an outage is independent of h). Given these parameters, using Monte Carlo simulation, we solve

the dispatch problem (assuming competitive offering behaviour) and record the nodal prices and

firm profits. The distributions of nodal price differences and firm profits are shown in figures 5 and

6 below.

Figure 5 Cumulative distribution function for price difference.
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Figure 6 Cumulative distribution function for wholesale profits.

Given which players are in the market, using the formulation detailed in section 5, we can

compute the equilibrium prices for the three firms. For simplicity, we will assume that firm A and

B are initially in the retail market in the North and firms B and C are in the retail market in the

South and that none of these firms wish to exit (one could think of this as the firms having a high

exit cost).

Equilibrium computations here are made numerically (due to the dispatch problem), thus we

need to set the parameters specifying the risk-aversion parameters and the cross-elasticity of the

demand. We set the risk-aversion parameters for all three firms to be identical: α= 0.1, and θ= 0.5

– this means that the firms are maximizing, the expected profit and the conditional expectation of

the lowest 10% of profits with equal weightings. The cross-elasticity of the demand at both nodes

is b= 1
200

.
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Genesis Contact Meridian Consumer
North South North South North South Costs

Before Swap 281.91 – 287.48 325.16 – 325.16 894,238
After Swap 283.58 – 288.31 325.74 – 326.33 897,702
Virtual (250MW) 281.91 – 287.48 325.16 – 325.16 894,238
Virtual (500MW) 281.91 – 287.48 325.16 – 325.16 894,238

Table 5 Status Quo Retail Entrants

We are interested in determining how the equilibrium pricing changes once a physical or virtual

asset swap takes place. To do this we first compute the equilibrium pricing under various swaps

assuming the entry is the same as the status quo described above. In table 5 we present the

equilibrium pricing before and after the physical asset swap, as well as two virtual swaps. This

shows that if the physical asset swap is carried out and no new entrants enter the market then the

overall costs to the retail customers increases, whereas with the virtual swaps there is no change

to the equilibrium retail pricing. As the firms are less well hedged (i.e. they have less generation

where their customers are located), their risk-aversion entices them to increase their prices thereby

reducing their customer base.

Now we will consider the situation where there is full entry (i.e. all three firms are offering retail

contracts at both nodes). In table 6 we show the equilibrium prices and consumer costs for the

same four cases, with the before swap case serving as a counter-factual for comparative purposes.

Once again we see that the physical asset swap leads to higher overall retail costs, however this

time the virtual swaps have decreased prices and lead to lower overall costs for retail consumers.

The reasons for these effects are subtle. In the case of the physical swap, since all three firms have

a single thermal unit in the North and single hydro in the South none of the firms are particularly

well hedged. The prices have increased because before the swap, there was one well hedged firm

at each node, and this firm could offer a lower price than the others leading to higher competition

and lower equilibrium pricing. The situation with the virtual swap is different, there is no physical

swap, however there is a contract traded between the firms. Prices in the South drop, because Firm

A effectively receives power in the South without bearing the physical risk associated with high

water values.
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Genesis Contact Meridian Consumer
North South North South North South Costs

Before Swap 220.99 242.87 224.58 250.61 224.58 242.57 691,234
After Swap 226.38 226.38 226.38 226.38 226.38 226.38 711,248
Virtual (250MW) 218.25 236.14 223.67 251.04 223.67 251.04 686,987
Virtual (500MW) 216.48 226.13 222.82 246.14 223.02 247.31 676,326

Table 6 Full Entry

6.2. Example: Risk-averse Firms with Endogenious Entry

Finally, we consider the full game. In the first stage firms A and B decide whether or not to enter

the retail market at the South and North nodes, respectively. Once the entrants are fixed, the

equilibrium retail prices can be computed.

In figure 7 below, we plot the equilibrium cost to retail customers as a function of the cost of

entry into the retail markets. On the right side of the figure the cost of entry is large, here under

all four scenarios there is no (additional) entry into the retail market. This case was shown in table

5 above. On the left side of the figure the cost of entry is small, here under all for scenarios there

is entry from both firms A and C into the South and North, respectively, as shown in table 6. For

the medium entry costs there is a third case, where Firm A enters the South, but firm C does not

enter the North.

From figure 7 we can see that the physical asset swap leads to higher consumer costs for much

of the range of entry costs. The only times it reduces the overall costs is when the swap entices

entry into the market by firm C who, prior to the swap would have preferred to have not entered

(cost of entry: $17,200 – $23,000).

The virtual swaps not only reduce consumer costs for a particular set of entrants, it also leads

to firm A entering into the South, even with large entry costs (although there is little change to

the incentives for firm C to enter the North).

To summarise, if the cost of entry is large, the best way to entice entry into the market is by way

of a virtual swap. Virtual assets are also the best way to reduce prices when cost of entry is low.

The only time the physical swap improves welfare is to entice firm C to enter the retail market in

the North, when there is a medium cost of entry.
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Figure 7 Comparison of retail customer costs, before and after physical and virtual asset swaps over a range of

entry costs.
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7. Conclusions

Motivated by Prof. Frank Wolak’s report on the NZEM and the Ministerial Review into the elec-

tricity industry, we have constructed a model which encompasses both the retail and wholesale

markets. We first observe that with risk-neutral firms and a competitive wholesale market, retailers

will reach a symmetric equilibrium. We then examine how their behaviour may change using a

simple one-node example with two firms. We find that risk-aversion does not always mean that

a premium is passed onto consumers, in fact, retail prices may drop as a firm becomes more

risk-averse (this effect is dependent upon the particular circumstances of the retailers).
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8. Proofs

Proof of Lemma 1.Proof: Risk-neutral firms aim to maximize their expected profit. Given a set

of firms in the retail market E , the expected profit function for firm f ∈ E is given by

πf =Eω

(pf − cω)
Xω

|E|

1− b
∑

i∈E\{f}

(pf − pi)

+P ω
f

 .
This corresponds to equation 4 where θ= 0. Recall that P ω

f is firm f ’s profit from the wholesale

market and cω is the clearing price in the wholesale market, for the realization of uncertainty ω ∈Ω.

Now we wish to compute the Nash equilibrium for the retail game14; that is a point where

no firm can alter its strategy to unilaterally improve its expected profit. Since each player has a

smooth, concave profit function, we can find the maximum profit from the first order condition.

Differentiating the expected profit function with respect to pf , we get

∂πf
∂pf

=
1

|E|
Eω [Xω] +

b

|E|
Eω [Xω]

∑
i∈E\{f}

pi−
b (|E|− 1)

|E|
(2pfEω [Xω]−Eω [cωXω]) .

Solving for price p∗f yields

∂πf
∂pf

∣∣∣∣
pf=p∗

f

= 0⇒ p∗f =

1 + b
∑

i∈E\{f}
pi + b (|E|− 1) Eω [cωXω ]

Eω [Xω ]

2b (|E|− 1)
. (6)

At the equilibrium point, the above equation must be satisfied for all firms simultaneously. To

solve for this point we first sum the above equation for all f ∈ E , yielding

∑
f∈E

p∗f =

|E|+ b (|E|− 1)
∑
f∈E

p∗f + b |E| (|E|− 1) Eω [cωXω ]

Eω [Xω ]

2b (|E|− 1)
,

which can be rearranged to give

∑
f∈E

p∗f =
|E|

b (|E|− 1)
+ |E| Eω [cωXω]

Eω [Xω]
.

14 We will demonstrate that there is only one equilibrium as part of the construction.
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Finally we substitute the above expression into equation (6) to find the equilibrium price for

firm f .

pef =
1

b (|E|− 1)
+
Eω [cωXω]

Eω [Xω]
.

For scenario ω the retail demand that each firm f gets is

x∗f =
Xω

|E|
.

In other words, we find that the firms all choose identical prices for their retail sales, and each

firm gets an equal market share. This is because the profit from the wholesale market is not affected

by the decisions made in the retail market, and is merely a (uncertain) constant term in the profit

function. Therefore, all firms entering the retail market act symmetrically, even though some may

own profitable generation. In a risk neutral setting, the expected value of this wholesale profit can

be separated from the retail profit, so it plays no part in the optimization problem. On the surface

this may seem peculiar, but optimizing expected profits cannot distinguish between opportunity

costs and actual costs, so all firms have the same incentives. We illustrate this by way of an example

in the next section.

Also note that as the number of firms in the market increases, the equilibrium retail prices tend

toward demand-weighted average wholesale prices (since we have a competitive wholesale market,

these prices are based on generation costs). This can be observed from the following limit

lim
n→∞

pf = lim
|E|→∞

[
1

b (|E|− 1)
+
Eω [cωXω]

Eω [Xω]

]
=
Eω [cωXω]

Eω [Xω]
.

Lemma 2. The optimal solution (both primal and dual) to Pf (p−f ) is equivalent to solution to the

following convex mathematical program, for θ ∈ [0,1).
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Π̂f (p−f ) = max
∑
ω∈Ω

ρπωf − θ
α

∑
ω∈Ω

ρ
[
(1−α)wωf +αvωf

]
s.t. πωf = ηf + vωf −wωf

[
λωf
]
∀ω ∈Ω

πωf ≤
∑
n∈N

[
Xω
n

∑
i∈En∩{f}

(pni− cωn) φ̂ni

]
+P ω

f

[
µωf
]
∀ω ∈Ω

φ̂nf = 1
|En|

[
1 + b

∑
i∈En\{f}

(pni− pnf )

]
[νnf ] ∀n∈N

wωf , v
ω
f ≥ 0 ∀ω ∈Ω.

Proof: First, observe that the mathematical program presented in the statement of the lemma

is a convex relaxation of Pf (p−f ). The only non-linearity in the formulation is in the inequality

constraining the profit, and, with a simple substitution for φ̂ this can be seen to be a convex

quadratic.

Now we will present the KKT conditions of the above problem.

πωf = ηf + vωf −wωf ∀ω ∈Ω,

0≤ µωf ⊥
∑
n∈N

Xω
n

∑
i∈En∩{f}

(pni− cωn) φ̂ni

+P ω
f −πωf ≥ 0 ∀ω ∈Ω,

φ̂nf =
1

|En|

1 + b
∑

i∈En\{f}

(pni− pnf )

 ∀n∈N
−ρ+λωf +µωf = 0 ∀ω ∈Ω,

−
∑
ω∈Ω

λωf = 0

−
∑
ω∈Ω

Xωφ̂nfµ
ω
f + b

|En| − 1

|En|
νnf = 0 ∀n∈N

νnf −
∑
ω∈Ω

Xω
n

∑
i∈En∩{f}

(pni− cωn)µωf

= 0 ∀n∈N

0≤ vωf ⊥ θρ−λωf ≥ 0 ∀ω ∈Ω,

0≤wωf ⊥ θ
1−α
α

ρ+λωf ≥ 0 ∀ω ∈Ω.

To prove the statement of the lemma we will simply show that µωf is strictly positive at the

optimal solution, and hence from the orthogonality constraint the inequality constraint must be

binding. Hence, since this problem is a relaxation of the actual problem the optimal solutions must

coincide. Consider the following two constraints from the KKT conditions, above:

θρ−λωf ≥ 0, ∀ω ∈Ω,
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−ρ+λωf +µωf , ∀ω ∈Ω.

Eliminating λωf gives:

(θ− 1)ρ+µωf ≥ 0.

Since ρ is strictly positive and (θ− 1) is strictly negative, µωf must be strictly positive. This ensures

that the profit inequality constraint is binding and thus the optimal solution for Pf (p−f ) is identical

to the relaxation.

The following lemmas demonstrate that under certain conditions the equilibrium for ĜE is also

an equilibrium for GE , and vice versa. In order to show this we first must prove that the demand

model D yields continuous concave market shares. Then we can show that if there is no incentive

to deviate from an equilibrium for one demand function, nor is there incentive to deviate for the

other demand function.

Lemma 3. Suppose that we have a vector of retail prices p, and for a firm f ∈ Ē, under demand

model D, we obtain φf = 0. If firm f is removed from Ē, then φj remains unchanged for all j ∈

Ē\{f}.

Proof: First, we know that the demand of firm f is 0, i.e. φf = 0, therefore

1∣∣Ē∣∣
1− b

∑
i∈Ē\{f}

(pf − pi)

= 0

⇔
∑

i∈Ē\{f}

(pf − pi) =
1

b

⇔
∣∣Ē − 1

∣∣pf − ∑
i∈Ē\{f}

pi =
1

b

⇔
∑

i∈Ē\{f}

pi =
(∣∣Ē∣∣− 1

)
pf −

1

b
(7)

⇔
∑
i∈Ē

pi =
∣∣Ē∣∣pf − 1

b
(8)

Without loss of generality we will consider the demand of firm j ∈ E\{f}, at the point where

firm f is removed from the market. With firm f in the market, we have:

φj =
1∣∣Ē∣∣
1− b

∑
i∈Ē\{j}

(pj − pi)

 ,
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which can be rewritten as:

φj =
1∣∣Ē∣∣
[

1− b

(∣∣Ē∣∣pj −∑
i∈Ē

pi

)]
.

Substituting equation (8) into the above expression gives:

φj =−b (pj − pf ) .

Whereas, without firm f in the market, we have:

φj =
1∣∣Ē∣∣− 1

1− b
∑

i∈Ē\{j∪f}

(pj − pi)

 ,
which can be rewritten as:

φj =
1∣∣Ē∣∣− 1

1− b

(∣∣Ē∣∣− 1
)
pj −

∑
i∈Ē\{f}

pi

 .
Substituting equation (7) into the above expression gives:

φj =−b (pj − pf ) .

Therefore, if a firm in Ē has zero market share then removing that firm from the market does not

affect the market shares of the other firms.

Lemma 4. Suppose we have an arbitrary, but fixed vector of retail prices p, then under demand

model D, φf is a concave function of pf , for φf > 0.

Proof: First note from lemma 3, the market-share of all firms j, φj, from D must be continuous

functions of pf , for each firm f ∈ E .

Starting from any vector p such that φf > 0 for all f ∈ E , observe from the equation defining the

retailers’ market-share under demand model D (repeated below) that decreasing pf will cause the

demand of all firms, j in Ē\ {f} to decrease:

φj =
1∣∣Ē∣∣
1− b

∑
i∈Ē\{j}

(pj − pi)

 .
The derivative with respect to pf is:

∂φj
∂pf

=
b∣∣Ē∣∣ ,
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which is positive, hence a decrease in pf causes a decrease in φj for all j ∈ E\{f}.

Thus, decreasing pf will lead to fewer firms in the market, since, under demand model D, once

xj becomes negative, firm j will be removed from Ē .

Hence we can now examine the shape of φf as a function of pf . First, for a fixed Ē we will

compute the derivative of φf with respect to pf :

∂φf
∂pf

=−b
∣∣Ē∣∣− 1∣∣Ē∣∣ . (9)

Note that this is negative, therefore, while the number of firms in the market is unchanged, φf

is a decreasing function of pf . However, from above we know that as pf is decreased the number of

firms in set Ē monotonically decreases. From equation (9), we can see that the gradient increases

(becomes less negative) as
∣∣Ē∣∣ decreases, hence φf is a concave function over this range of pf .

Lemma 5. Consider the modified risk-adjusted profit maximization problem for firm f , P̃f (p−f , ε),

below (where ε is a vector with components εn):

Π̃f (p−f , ε) = max
∑
ω∈Ω

ρπωf − θ
α

∑
ω∈Ω

ρ
[
(1−α)wωf +αvωf

]
s.t. πωf = ηf + vωf −wωf

[
λωf
]
∀ω ∈Ω

πωf ≤
∑
n∈N

[
Xω
n

∑
i∈En∩{f}

(pni− cωn) φ̂ni

]
+P ω

f

[
µωf
]
∀ω ∈Ω

φ̂nf = 1
|En|

[
1 + b

∑
i∈En\{f}

(pni− pnf )

]
− εn [νnf ] ∀n∈N

wωf , v
ω
f ≥ 0 ∀ω ∈Ω

φ̂nf ≥ 0 ∀n∈N .

Suppose we have some p−f such that φnf > 0, ∀f ∈ En, ∀n at the optimal solution to Pf (p−f ). Then

given a vector ε≥ 0, we have Π̃f (p−f , ε)≤Πf (p−f ).

Proof: We will prove this in two parts: first we will show that Πf (p−f ) = Π̃f (p−f ,0); and then

that Π̃f (p−f , ε)≤ Π̃f (p−f ,0), for all ε≥ 0.

Note that there are three differences between Pf (p−f ) and P̃f (p−f , ε):

• the second constraint is now an inequality;

• ε appears in the third constraint; and

• a non-negativity constraint on φ̂nf has been added.
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Since at the optimal solution to Pf (p−f ) we have (from the statement of the lemma) that φ̂nf > 0,

the addition of the non-negativity constraint does not change the optimal solution. Moreover, the

third constraint in Pf (p−f ) and P̃f (p−f ,0) are identical since ε= 0. The final concern is whether

changing the second constraint to an inequality may lead to a different optimal solution. Through

the KKT conditions15 we will show that the second constraint is always binding at the optimal

solution to P̃f (p−f ,0) and thus that solution must be the same as the optimal solution to Pf (p−f ).

We present the KKT conditions below:

πωf = ηf + vωf −wωf ∀ω ∈Ω (10)

0≤ µωf ⊥
∑
n∈N

Xω
n

∑
i∈En∩{f}

(pni− cωn) φ̂ni

+P ω
f −πωf ≥ 0 ∀ω ∈Ω (11)

φ̂nf =
1

|En|

1 + b
∑

i∈En\{f}

(pni− pnf )

− εn ∀n∈N (12)

−ρ+λωf +µωf = 0 ∀ω ∈Ω (13)

−
∑
ω∈Ω

λωf = 0 (14)

0≤ vωf ⊥ θρ−λωf ≥ 0 ∀ω ∈Ω (15)

0≤wωf ⊥ θ
1−α
α

ρ+λωf ≥ 0 ∀ω ∈Ω (16)

−
∑
ω∈Ω

Xωφ̂nfµ
ω
f + b

|En| − 1

|En|
νnf = 0 ∀n∈N (17)

0≤ φ̂nf ⊥ νnf −
∑
ω∈Ω

Xω
n

∑
i∈En∩{f}

(pni− cωn)µωf

≥ 0 ∀n∈N . (18)

First, consider right-hand inequalities of constraints (15) and (16). These can be rearranged to

give the following upper and lower bounds on λωf :

−θ1−α
α

ρ≤ λωf ≤ θρ.

From above and equation (13), we can therefore find bounds on µωf :

ρ (1− θ)≤ µωf ≤ ρ
(

1 + θ
1−α
α

)
.

15 Since the above mathematical program is convex, the KKT conditions are both necessary and sufficient for opti-
mality.
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Since θ < 1, we can see that µωf > 0, ∀ω ∈ Ω. From the orthogonality condition (11) we therefore

must have the second constraint binding at the optimal solution. Hence, since the optimal solutions

are identical we must have

Πf (p−f ) = Π̃f (p−f ,0) .

Now let us turn our attention to the second part of the lemma. We wish to prove, for any ε≥ 0,

that Π̃f (p−f , ε)≤ Π̃f (p−f ,0)

From the result above that µωf > 0 and equation (17) we can deduce the sign of νnf :

νnf =

≥0︷ ︸︸ ︷
|En|

b (|En| − 1)
φnf

≥0︷ ︸︸ ︷∑
ω∈Ω

Xωµωf ,

thus, so long as φnf ≥ 0, we have νnf ≥ 0. This means that the rate of change of the optimal value

function with respect to any component of ε is negative. Moreover, this is true for any ε≥ 0, hence

we must have Π̃ (p−f , ε)≤ Π̃ (p−f ,0).

Combining this result with the one from the first part of the proof, we have:

Π̃f (p−f , ε)≤Πf (p−f ) , ∀ε≥ 0,

as required.

Note that lemma 5 implies that any decrease in the (individual) nodal market-share (while

keeping the prices fixed) will yield a lower profit compared to the optimal profit given the vector

of current prices.

Lemma 6. Given an arbitrary but fixed set of entrants E (En for each node n∈N ), any equilibrium,

ψ, for ĜE that has positive demand for all firms is also an equilibrium for GE .

Proof: First recall that ψ is an equilibrium for ĜE if and only if no firm has incentive to deviate.

We now consider the strategy set ψ under game GE . For ψ to not be an equilibrium to GE , this

means at least one firm has incentive to deviate from ψ. Clearly this deviation (to strategy ψ̂) must

result in φnf = 0 under game GE and φnf < 0 under game ĜE for at least one firm f and node n.

We will analyse the following two cases:
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1. either f , the deviating firm, causes negative demand (under ĜE) for itself (and possibly other

firms),

2. or, firm f ’s deviation causes another firm to have negative demand (under ĜE).

We will show that both cases lead to a contradiction. Under case 1, ψ̂ leads to a nodal market-share

of 0 under GE . Such a strategy gives a retail profit of 0 at node n for all scenarios. The total risk-

adjusted profit in GE would be the same if the firm were to choose a price, pnf , such that φnf = 0

in ĜE ; since this was a feasible choice for the firm in ĜE , this can not be a profitable deviation.

To show a contradiction for case 2, we must first understand the nature of a firm’s market-share as

a function of its retail price under GE . Recall from lemma 4 that, in GE , firm f ’s market-share at any

node n as a function of its retail price is concave (so long as φnf > 0), and observe from equation (2)

that the market share in D̂ is a linear function of prices. Moreover, when φni > 0, ∀i∈ En, ∀n∈N ,

the market share from both GE and ĜE are identical. Therefore, for a given retail price, pnf , the

market share for firm f computed from D must be less than or equal to the market share from D̂.

Thus, suppose we compute the optimal solution to firm f ’s best response problem, assuming

demand model D and this gave optimal prices, p∗nf , and retail market-shares of φ∗nf . Now set

ε∗n = φ̂nf
(
p∗nf
)
− φ∗nf (which must be non-negative due the concavity of φnf ); it is clear that for

P̃ (p−f , ε
∗), p∗nf gives market-shares φnf

(
p∗nf
)
− ε∗n = φ∗nf (thus the deviation profit is equal to

Π̃ (p−f , ε
∗)). However, from lemma 5 we know that Π̃ (p−f , ε

∗) ≤ Π(p−f ). Thus there can be no

profitable deviation.

The two possible deviation cases, considered above, have been shown to not give incentive for

the deviation. Hence, since there are no other possible deviation strategies, ψ is an equilibrium for

GE .

Lemma 7. Any equilibrium, ψ, to the game GE which has positive demand for all firms is also an

equilibrium to the game ĜE .

Proof: First observe that in the game ĜE , each firm has a convex optimization problem. More-

over, note that demand models D and D̂ yield identical retail demands where φ > 0. Hence any
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interior global optimal for a firm’s profit maximization under demand model D must also be the

global optimal under D̂. Since the equilibrium, ψ, for the game GE is such that φnf > 0 for all firms

and nodes, and each firm is at a global optimal strategy, such a point must be a equilibrium for

the game ĜE .

Theorem 2. If there exists no equilibrium for the game ĜE with φ̂nf > 0 for all firms f at all nodes

n, then there exists no equilibrium for the game GE with φnf > 0. Thus, if an equilibrium exists

for GE , then there must be at least one firm which receives no demand, and hence would have been

better off not entering the retail market in the first stage (assuming a positive cost of entry).

Proof: From lemma 7 we know that any equilibrium for GE with φnf > 0 is also an equilibrium

for ĜE , thus if no such equilibrium exists for ĜE then the same is true for GE . Therefore, if an

equilibrium for GE does exist, at least one firm will receive a market share of 0 at some node n. In

this case, with a positive cost of entry, any such firm would be able to improve its total profit by

exiting the retail market at node n.

The above lemmas and theorem show that if we compute an equilibrium for ĜE with positive

demand for all firms and nodes then this is a valid equilibrium for GE . Conversely, if we find that

there is some firm with a negative market share at a node, then some firm would achieve a higher

payoff by not entering the market in the first stage (meaning that this sub-game would not be on

the equilibrium path).

Appendix

Conditional value at risk as a mean–risk measure

From Shapiro et al. (2009), the following function of the random variable Z gives the weighted

mean deviation from any given quantile α

rα [z] = min
η
{ϕ (η) :=E [max{(1−α) (η− z) , α (z− η)}]} .

To see that the optimal η does in fact correspond to the β-quantile, we first take left and right

derivatives of the above function with respect to η:

ϕ′ (η)+ = Pr [z ≤ η]× (1−α)−Pr [z > η]×α≥ 0,
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ϕ′ (η)− = Pr [z < η]× (1−α)−Pr [z ≥ η]×α≤ 0.

Observe that at the optimal η the left derivative must be non-increasing and the right derivative

must be non-decreasing.16 We can then rearrange the above inequalities to find:

Pr [z < η]≤ α≤Pr [z ≤ η] ,

which confirms that the optimal η is the α-quantile.
Hence if F (z) is the cumulative distribution function and f(z) is the probability density function

corresponding to the random variable z, then

rα [z] =

∫ F−1(α)

F−1(0)

(1−α)
(
F−1 (α)− z

)
f (z)dZ+

∫ F−1(1)

F−1(α)

α
(
z−F−1 (α)

)
f (z)dZ

=

∫ F−1(1)

F−1(α)

αzf (z)dz−
∫ F−1(α)

F−1(0)

(1−α)zf (z)dz+(1−α)F−1 (α)

∫ F−1(α)

F−1(0)

f (z)dz−αF−1 (α)

∫ F−1(1)

F−1(α)

f (z)dz

=

∫ F−1(1)

F−1(α)

αzf (Z)dz−
∫ F−1(α)

F−1(0)

(1−α)zf (Z)dz

= (1−α)α
(
Ez|z≥F−1(α) [z]−Ez|z≤F−1(α) [z]

)
.

Moreover, note that the expectation of z can be written as:

E [z] = αEz|z≤F−1(α) [z] + (1−α)Ez|z≥F−1(α) [z] .

Finally, we find that

E [z]−
1

α
rα [z] = αEz|z≤F−1(α) [z] + (1−α)Ez|z≥F−1(α) [z]− (1−α)

(
Ez|z≥F−1(α) [Z]−EZ|Z≤F−1(α) [z]

)
= αEz|z≤F−1(α) [z] + (1−α)Ez|z≤F−1(α) [z]

= Ez|z≤F−1(α) [z] =−CVaRα (z) .

This can be incorporated into a mean-risk optimization problem with a parameter α ∈ [0,1] con-

trolling the weightings on risk versus mean return.

(1− θ)E[z]− θCVaRα (z) = (1− θ)E[z] + θ

(
E [z]− 1

α
rα [z]

)
= E[z]− θ

α
rα [z] .
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