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Abstract

We discuss a stochastic-programming-based method for scheduling electric power gener-
ation subject to uncertainty. Such uncertainty may arise from either imperfect forecasting or
moment-to-moment fluctuations, and on either the supply or the demand side. The method
gives a system of locational marginal prices which reflect the uncertainty, and these may be
used in a market settlement scheme in which payment is for energy only. We show that this
scheme is revenue-adequate in expectation.
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1 Introduction

In response to efforts to encourage more sustainable energy use and to discourage carbon emis-
sions, many electricity systems are seeing an increase in growth of generation from renewable
resources such as solar energy and wind. To varying degrees power generation from these sources
is intermittent and so it is difficult to predict in advance. This makes scheduling and dispatching
their electricity generation a challenging task.

In most industrialised countries, scheduling and dispatching electricity generation is carried
out by solving an optimal power flow model. When one attempts to solve this model in practice,
a difficulty arises since intermittent generators, as well as many consumers, cannot accurately
predict the quantity of power they will produce or consume in advance. A solution that accurately
represents reality can thus be computed only in real time, or in hindsight. On the other hand, some
types of power plant are so slow to change their output that they have no hope of implementing
the optimal solution to this model unless it is computed several hours (at least) beforehand.

To deal with this, much attention is paid to forecasting the intermittent sources of generation
and load accurately, so that a (near) optimal generation schedule can be computed in advance.
However, with high levels of uncertainty in such forecasts, such a pre-dispatch of generation is
likely to be less efficient than anticipated, because it must later make expensive (or at worst
physically impossible) adjustments to meet variations from the forecast.
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A related problem is that of variability. Each computed dispatch must correspond to some
interval of time (in practice usually between 5 and 60 minutes in duration). But intermittent
generators, as well as many consumers, will produce or consume a fluctuating quantity of power
during this period. Even if the forecasts for the period prove correct in some average sense,
there will still be departures from the forecast from moment to moment. These, too, may make
the computed dispatch less efficient than anticipated by the optimal power flow problem. An
exacerbating factor is that some power plants cannot change their output quickly enough to
respond to the fluctuations due to load or other, intermittent, generation.

A traditional way to deal with variability is by contracting a frequency-keeping station that
adjusts its output in real time to compensate. Such a solution is poorly integrated with the
optimal-power-flow calculation, but the resulting inefficiency may be tolerable provided fluctu-
ations are small in magnitude. Difficulties may arise, though, when the required adjustments
become larger than can be accommodated by a single flexible unit.

Uncertainties in scheduling and dispatch may even arise from transmission parameters. The
capacity (thermal limit) of an overhead transmission line depends on the temperature and velocity
of the ambient air, and so is also somewhat uncertain in advance. This situation can be dealt
with by adopting conservative capacity values, at some cost in system performance.

In this paper we explore an alternative scheduling and dispatch mechanism for intermittent
generation that is based on a stochastic programming model. Our approach resembles that of
[2, 3, 6, 8], all of which apply similar models to the problem of ensuring system security. Such
a model is formulated in [2, 3] and applied to some standard test problems, while [6] suggests a
computational technique. Some generator compensation (or settlement) schemes are considered
in [8]. Also of interest is the recent paper [4], which applies a similar viewpoint to the topic of
wind power integration.

We employ a model in which the contingencies represent forecast errors (e.g. in load, or in
wind generation), or fluctuations, rather than plant failures. Our objectives are thus primarily
economic, rather than security-related. This leads us to more explicitly consider how “flexibility”
can be offered in a market context, and the role of the dual variables. The subject of revenue
adequacy for such models (section 3 of the present paper) does not appear to have been considered
previously.

In a deregulated power system, the cost coefficients in the optimal power flow model arise
from offers (or bids) made by participants in a market. The dual variables in the model then give
locational marginal prices at which energy is traded by the participants. Our model also produces
such a nodal pricing scheme, which extends in a natural way to a market settlement mechanism
in which payment is for energy only.

Unpredictability and variability are sometimes interpreted as “missing market” problems. A
basic electricity market trades in only one commodity (energy), treated as an undifferentiated
good even though some of its sources (and uses) are predictable and constant while others are
unpredictable and fluctuating. A natural way to try to address the issue is by inventing a new
market in “firm capacity” or “regulation”, or something similar. Indeed, just such ancillary
markets exist in many real-world deregulated power systems. But having two completely separate
markets may create new opportunities for participants to engage in arbitrage or to exploit their
market power. The approach in this paper attempts to avoid such problems by tying the markets
together. Participants need not decide which market to trade in; that is, in effect, decided for
them by a system optimization.

The paper is organized as follows. The next section will introduce scheduling models, and
discuss pricing and settlement. Section 3 is devoted to the important topic of revenue adequacy,
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and includes a result showing that our settlement scheme is revenue adequate in expectation.
Section 4 contains illustrative numerical examples, and Section 5 some additional comments.

2 Statement of the market model.

2.1 The conventional dispatch model.

We begin by defining a standard dispatch (optimal power flow) problem, without regulation or
reserve. This will serve to introduce notation, and provide a starting point for the developments
in the rest of the paper.

As with other problems in this paper, the setting will be an electric power system comprising
a collection N of nodes (locations) connected by a collection L of transmission lines. Let τn(f)
denote the net power imported via the transmission system to node n ∈ N , when f = (f`)`∈L is
the vector of line flows. If the lines are lossless, then the τn are linear functions:

τn(f) =
∑

`:ν1(`)=n

f` −
∑

`:ν0(`)=n

f`,

where ν0(`), ν1(`) are the endpoints of `, and f` is taken to be positive in the direction from ν0(`)
to ν1(`).

If we wish to model line losses, then the τn are nonlinear. A physically plausible choice is a
quadratic loss ρ`f

2
` on each line:

τn(f) =
∑

`:ν1(`)=n

(f` −
1

2
ρ`f

2
` ) −

∑
`:ν0(`)=n

(f` +
1

2
ρ`f

2
` ).

Alternatively, the losses may be modelled as piecewise linear; this is convenient for computational
purposes. This paper will assume that the τn are concave functions with τn(0) = 0; this holds
under almost any reasonable loss model.

The capabilities of the transmission system are represented by the requirement f ∈ U . The
set U incorporates the maximum capacities of individual lines, loop flow constraints, and possibly
other constraints as well. The only assumptions we need regarding U are that it be a convex
compact set with 0 ∈ U .

In the standard dispatch problem, a system operator (SO) must consider a collection T of
offers to supply or consume electricity. Offer i ∈ T is for a tranche of quantity qi at a local node
ν(i); the SO must decide the quantity xi of this to accept. Both qi and xi are taken to be positive
in the sense of injecting power to the local node, so we must have

xi ∈ Ci :=
{

[0, qi], if qi ≥ 0 (supply-side offer)
[qi, 0], if qi ≤ 0 (demand-side bid) .

Offer i also has an associated ask or bid price pi; this is taken to be positive when the
corresponding cashflow is opposite in direction to the energy flow (which is usually the case).
Inelastic loads can be handled by setting pi =VOLL, the value of lost load.

The SO’s problem can then be stated as:

Problem P0:
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min
∑

i∈T pixi

s.t. τn(f) +
∑

i∈T (n) xi = 0 ∀n ∈ N [πn]

xi ∈ Ci ∀i ∈ T

f ∈ U

Here T (n) = {i : ν(i) = n}. This is an optimization problem in the variables x = (xi)i∈T and
f . The problem is convex (i.e. involves minimizing a convex function over a convex set) if the
transmission lines are lossless, but not if losses are modelled. The most important constraints are
those requiring energy balance at node n (τn(f)+

∑
i∈T (n) xi = 0). The dual variable πn associated

with such a constraint gives the marginal cost of creating a small power surplus at node n, and
is thus an appropriate price at which to trade power generated or consumed at n.

2.2 A stochastic dispatch model.

We now elaborate the problem of the previous section to include real-time regulation in the
presence of uncertainties in the offers.

Our new model will be a two-stage stochastic program. The first stage represents an initial
dispatch computed in advance, with only probabilistic estimates of some quantities available. This
could be thought of as a “day-ahead” dispatch, although the same ideas may apply to shorter
time scales. Inasmuch as this initial dispatch may be modified later, it could be described as
“non-physical”; however, it is important to have such a dispatch for planning purposes. As we
shall see later, it can also play a role in pricing and settlement.

The second stage represents “real time”, i.e. the actual dispatches over a short period. This
period is meant to coincide with the market trading period or perhaps a sub-interval thereof;
its duration might thus be somewhere between a minute and an hour. During this period some
quantities (loads and the output of wind farms) will take on realized values unknown at the first
stage; these quantities may also fluctuate during the period. Adapting to these changes will
require re-dispatch; we use the term “regulation” for differences between first-stage and second-
stage dispatches.

From the point of view of the first stage, quantities relating to the second stage are random
variables defined on some probability space (Ω,F ,P), which we assume to be finite.

The general form of the objective for such a problem should be

minimize c1 + E

[
1

θ

∫ θ

0
c2(t) dt

]
where c1 represents costs associated with the first stage, and c2(t) represents (random) instanta-
neous costs associated with regulation in the second-stage period [0, θ]. That is, decisions at the
first stage should be made with regard for their implications for the expected costs of regulation
in real-time.

Note that this expression involves averaging over both time (the integral) and the probability
space (the expectation). We can make the notation less cumbersome by defining V to be a
random variable distributed uniformly on [0, θ], independently of the other random variables in
the problem. Then the objective can be written

minimize c1 + E [c2(V )]

The conceptual purpose of this trick is that it enables us to think of the second stage as repre-
senting a single point in time. The associated random quantities can then be modelled as random
variables, rather than random functions of time.
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Again we have a collection T of offers. For each i ∈ T we require a solution (xi, Xi), where
the first-stage dispatch xi is a real number, and the second-stage dispatch Xi may be a random
variable. We must have

(xi, Xi(ω)) ∈ Ci(ω) ∀ω ∈ Ω,

where Ci is a random convex set which may take several different forms, depending on the kind
of offer involved. Some examples of different types of offers include:

• Completely inflexible generation: A fixed (firm) quantity qi of power is offered. First-stage
dispatched quantity is xi; this cannot be varied at the second stage.

xi ∈ [0, qi]

Xi(ω) = xi ∀ω ∈ Ω.

• Completely flexible generation: A firm quantity qi is offered. First-stage dispatched quantity
is xi; this may be varied at the second stage.

xi ∈ [0, qi]

Xi(ω) ∈ [0, qi] ∀ω ∈ Ω.

• Unpredictable or intermittent generation (e.g. wind farm): A generator with maximum
capacity qi offers a random quantity Si. First-stage dispatched quantity is xi; this may be
varied at the second stage.

xi ∈ [0, qi]

Xi(ω) ∈ [0, Si(ω)] ∀ω ∈ Ω.

• Demand-side bid: A quantity −qi ≥ 0 is bid for. First-stage dispatched quantity is xi; this
may be varied at the second stage. To the extent that Xi 6= qi, the bid goes unsatisfied.

xi ∈ [qi, 0]

Xi(ω) ∈ [qi, 0] ∀ω ∈ Ω.

• Unpredictable load: A random load of size Di ≥ 0. First-stage dispatched quantity is xi;
this may be varied at the second stage. To the extent that Xi 6= −Di, the load is shed.

xi ≤ 0

Xi(ω) ∈ [−Di(ω), 0] ∀ω ∈ Ω.

We will assume (0, 0) ∈ Ci(ω) to ensure feasibility.
Offer i has an associated ask or bid price pi, which applies to power dispatched at the first

stage. In addition, the participant making the offer also offers to, in real time,

• sell additional power (or sell back power) to the system at an asking price p+
i > pi, or

• buy back power (or buy additional power) from the system at a bid price p−i < pi,
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wherever this is permitted or required by the constraints Ci. For supply-side offers, the use of
p+

i and p−i effects an offer of regulation: the generator offers to help make real-time adjustments
in return for a price premium on the energy used (or in the case of down-regulation, not used).
This possibility should be attractive to the owner of (for example) dispatchable hydropower plant:
not only can stored water be converted to energy and sold, it may also earn regulation revenue
without being released.

Demand-side bidders may also offer regulation by using p+
i and p−i . For an inelastic load, we

should set pi =VOLL; the magnitudes of p+
i − pi and pi − p−i should not be important unless

load-shedding is a real possibility.
The strict inequality between p−i , pi, and p+

i is required to avoid degeneracy in the solution.
For example, if co-located consumers i and j had p−i = pi = p+

i = p−j = pj = p+
j then xi and

xj would not be individually determined (since dispatch may be re-allocated between them at no
cost), although xi + xj would be.

It is helpful in what follows to use (y)+ to denote max{y, 0} and (y)− to denote max{−y, 0}.
Observe that both of these are non-negative quantities.

The SO’s problem can then be stated as:

Problem P1:

min
∑

i∈T

(
pixi + E

[
p+

i (Xi − xi)+ − p−i (Xi − xi)−
])

s.t. τn(f) +
∑

i∈T (n) xi = 0 ∀n [πn]

τn(F )− τn(f) +
∑

i∈T (n)(Xi − xi) = 0 ∀n ∀ω ∈ Ω [P ({ω})λn(ω)]

(xi, Xi) ∈ Ci ∀i ∀ω ∈ Ω

f ∈ U

F ∈ U ∀ω ∈ Ω.

This is a stochastic optimization problem in the variables x, f , X, and F . The last two of
these represent dispatches and line flows at the second stage, and so are random variables. (We
have followed the usual notational convention for random variables of suppressing the dependence
on ω; thus Xi rather than Xi(ω).) With respect to these, it is important to realize that the SO’s
job is to choose the whole random variable (i.e. all of its possible values), rather than just a single
value. As with the standard dispatch problem, problem P1 is convex if the transmission lines are
lossless, but not if losses are modelled.

Note that the existence of a (primal) optimal solution to P1 is guaranteed, since we are
optimizing a continuous function over a non-empty compact set. (A feasible solution can be
obtained by setting all the variables to zero.) For the existence of the dual variables, an additional
condition may be required. In the lossless case, the problem will usually reduce to a linear program,
for which duals always exist. Otherwise, we assume

For all sufficiently small |ε|, P1 remains feasible if the zeros on the right-
hand-sides of its first two constraints are replaced by ε. (1)

That is, it is possible to deliver marginal additional power to any node, in any or all scenarios
– a condition likely to be satisfied in problems of practical interest. Condition (1) is a form of
constraint qualification (a Slater condition) which guarantees the existence of the dual variables
πn and λn (see [7]).

The reader may be wondering why the second-stage energy balance constraint of P1 was not
written in the apparently simpler way

τn(F ) +
∑

i∈T (n) Xi = 0 ∀n ∀ω ∈ Ω.
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This formulation of the primal problem would be equivalent to the one we have used. But the
dual variables would be different, and less convenient for our purposes (see section 2.3).

In the special case where p+
i − pi = pi − p−i = ri, say, the objective of P1 may also be written

min E

[∑
i∈T

(piXi + ri |Xi − xi|)
]
. (2)

This indicates that the initial dispatch xi can be thought of as a kind of forecast of the second-stage
dispatch Xi, in the sense that the SO’s objective penalizes deviations from it.

2.3 Nodal pricing with regulation.

Suppose that problem P1 is solved and an optimal solution (x∗, f∗, X∗, F ∗) obtained. The ques-
tion then arises as to what the market participants should pay or be paid for the power they have
consumed or provided.

A conventional energy-only power market (with dispatch as in section 2.1) already encompasses
the idea that the market price of electricity may vary with both location (in the network) and
time (of day). In a two-stage market (with dispatch as in 2.2), we need a further distinction
between the prices of electricity traded at the first stage and at the second stage.

The first-stage nodal price πn is the dual variable corresponding to a first-stage energy balance
constraint in P1. This can be interpreted as the marginal cost of serving a deterministic additional
load at node n which is present in the first stage and in every second-stage scenario. It is thus an
appropriate price at which to trade non-random (i.e. notified in advance) quantities of electricity
at node n.

The second-stage nodal price λn (or rather, λn(ω)) is the (probability-removed) dual variable
corresponding to a second-stage energy balance constraint in P1. This can be interpreted as the
marginal cost of serving an additional load at node n which is present at the second stage in
scenario ω only. This price is itself a random variable. It is an appropriate price at which to trade
random (i.e. not foreseen in advance) quantities of electricity in real time at node n.

The reader may object that λn is the wrong marginal cost to consider, as it allows the per-
turbation in load in scenario ω to be met by perturbing the first-stage variables x, f as well as
X(ω), F (ω). It could be argued that one should instead consider the real-time problem for the
particular ω:

Problem RT(ω)

min
∑

i∈T

(
p+

i (yi − x∗i )+ − p−i (yi − x∗i )−
)

s.t. τn(g) +
∑

i∈T (n) yi = 0 ∀n [πR
n (ω)]

(x∗i , yi) ∈ Ci(ω) ∀i
g ∈ U,

where x∗ is the already-determined optimal solution of P1. However, it can be shown ([8]) that
(λn(ω))n∈N are also dual-optimal for RT(ω), so it is valid to use them as second-stage prices
under this interpretation also. In the exceptional situation where P ({ω}) = 0 (see section 5),
λn(ω) is undefined by P1; for completeness, we then define λn(ω) = πR

n (ω), the dual variable in
RT(ω).

When we combine the effects of first- and second-stage trading, we see that an appropriate
sum to pay to the market participant responsible for offer i is

x∗i πν(i) + (X∗
i − x∗i )λν(i). (3)
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This can also be written
x∗i (πν(i) − λν(i)) + X∗

i λν(i),

which illustrates another way to view the two-stage market. The first stage may be viewed as
a market for hedges (contracts for differences); the second stage as a spot market in which all
power is ultimately traded. Note, though, that these are not two separate markets: they are
tightly linked, with the same set of offers driving both.

3 Revenue adequacy

An important requirement for a market settlement scheme is that it be revenue adequate. This
means that the payments that the SO must make to (or receive from) the participants do not
leave it in financial deficit. (It is permissible for the SO to run a surplus, as this in itself does not
preclude the operation of such a market.)

In this section, we present several revenue adequacy results for the stochastic programming
model and settlement scheme proposed above. We note, though, that the implication of revenue
adequacy in a practical setting relies on the fidelity of the model, a point to be discussed further
in section 5.

3.1 Revenue adequacy in expectation

In this subsection, we establish that the settlement scheme (3) is revenue adequate in expectation.
That is,

E

[∑
i

(
x∗i πν(i) + (X∗

i − x∗i )λν(i)

)]
≤ 0. (4)

This means that, if this type of market is used repeatedly over many trading periods, the SO will
not run a financial deficit over time. There may, however, be a deficit in an individual trading
period. In an actual implementation, the SO would need to maintain a financial reserve to buffer
fluctuations in the period-by-period surplus.

Since the energy-balance constraints of P1 are satisfied at optimality, (4) may also be written

E

[∑
n

(πnτn(f ∗) + λn(τn(F ∗)− τn(f ∗)))

]
≥ 0. (5)

In general, such revenue adequacy results require a convex optimization problem. Our problem
P1 is convex if the transmission lines are lossless (τn linear), but not otherwise. We therefore
distinguish two cases.

Theorem 1. If the functions τn in P1 are linear, then (5) holds.

Proof. Consider the following Lagrangian for problem P1:

L =
∑
i∈T

(
pixi + E

[
p+

i (Xi − xi)+ − p−i (Xi − xi)−
])

−
∑
n

πn

τn(f) +
∑

i∈T (n)

xi


−E

∑
n

λn

τn(F )− τn(f) +
∑

i∈T (n)

(Xi − xi)

 . (6)
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Since P1 is convex, L is minimized subject to the remaining constraints

(xi, Xi) ∈ Ci ∀i ∀ω ∈ Ω

f ∈ U

F ∈ U ∀ω ∈ Ω

at the optimum (x∗, f∗, X∗, F ∗) of P1. In particular, consideration of the terms in L involving f
or F gives that ∑

n

(πnτn(f) + E [λn(τn(F )− τn(f)))] (7)

is maximized over {(f, F ) : f ∈ U, F ∈ U ∀ω ∈ Ω} at (f ∗, F ∗). Since 0 ∈ U , the result follows.

To cover the case of lossy networks (τn nonlinear), we define a new problem.

Problem P2:

min
∑

i∈T

(
pixi + E

[
p+

i (Xi − xi)+ − p−i (Xi − xi)−
])

s.t. τn(f) +
∑

i∈T (n) xi − zn = 0 ∀n [πn]

τn(F )− τn(f) +
∑

i∈T (n)(Xi − xi)− Zn = 0 ∀n ∀ω ∈ Ω [P ({ω})λn(ω)]

(xi, Xi) ∈ Ci ∀i ∀ω ∈ Ω

f ∈ U

F ∈ U ∀ω ∈ Ω

zn ≥ 0 ∀n
Zn ≥ 0 ∀n∀ω ∈ Ω.

This introduces new variables z and Z which have the effect of allowing free disposal of power at
any node. If the τn are concave, then P2 is a convex problem. Of course, mathematical results
concerning P2 will have physical meaning only when its optimal solution (x∗, f∗, z∗, X∗, F ∗, Z∗)
is also an optimal solution of P1, i.e. has z∗ = 0 and Z∗ = 0. As it is rarely beneficial to waste
power, this will usually be the case.

Theorem 2. Suppose the functions τn in P1 are concave, the problem P2 satisfies condition (1),
and the (primal and dual) optimal solutions (x∗, f∗, X∗, F ∗) and (π, λ) of P1 are also optimal for
P2 (with z∗ = 0, Z∗ = 0). Then (5) holds.

Proof. Form a Lagrangian for P2 analogous to (6). Since P2 is convex, this Lagrangian is
minimized at (x∗, f∗, z∗ = 0, X∗, F ∗, Z∗ = 0) with respect to the remaining constraints. In
particular, the terms of the Lagrangian involving f or F are the same as in (7), and so the result
follows as before.

Remark. The Lagrangian used to prove Theorem 2 also contains the following terms in z, Z:

∑
n

πnzn + E

[∑
n

λnZn

]
.

Since this expression must be minimized over {(z, Z) : z ≥ 0, Z ≥ 0 ∀ω ∈ Ω} at (0, 0), we must
have πn ≥ 0 and λn ≥ 0 with probability 1. That is, revenue adequacy is obtained only if there
are no negative nodal prices. The conventional dispatch problem P0 also has this property; see,
for example, [5]. Consequently, the SO risks losing money in periods with negative nodal prices.
There is no easy way to bound such losses. However, it is empirically observed in real power
markets that this kind of loss is not large or frequent enough to be of practical concern.
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3.2 Revenue adequacy in individual scenarios

Although (3) is revenue adequate in expectation, there may be individual scenarios ω ∈ Ω for
which revenue is inadequate, i.e.∑

i

(
x∗i πν(i) + (X∗

i − x∗i )λν(i)

)
> 0,

or equivalently ∑
n

(πnτn(f ∗) + λn(τn(F ∗)− τn(f ∗))) < 0.

If such a scenario occurs, the SO will experience negative cashflow for the period. In this subsec-
tion, we describe some limitations on when this can occur.

We first observe that the second-stage cashflows, at least, are always revenue adequate.

Theorem 3. Suppose that either the hypotheses of Theorem 1 or the hypotheses of Theorem 2
hold. Then for each ω ∈ Ω, ∑

i

(X∗
i (ω)− x∗i )λν(i)(ω) ≤ 0,

or equivalently ∑
n

λn(ω)(τn(F ∗(ω))− τn(f ∗)) ≥ 0.

Proof. As remarked in section 2.3, the optimal solutions (X∗(ω), F ∗(ω)) and λ(ω) of P1 are also
optimal for RT(ω). In the lossless (τn linear) case, RT(ω) is convex. So the following Lagrangian
of RT(ω)

LR =
∑
i∈T

(
p+

i (yi − x∗i )+ − p−i (yi − x∗i )−
)
−

∑
n

λn(ω)

τn(g) +
∑

i∈T (n)

yi


is minimized subject to the remaining constraints (x∗i , yi) ∈ Ci(ω) ∀i, g ∈ U at y = X∗(ω),
g = F ∗(ω). In particular, ∑

n

λn(ω)τn(g)

is maximized over {g : g ∈ U} at F ∗(ω). Since f ∗ ∈ U , we obtain∑
n

λn(ω)τn(F ∗(ω)) ≥
∑
n

λn(ω)τn(f ∗),

from which the result follows.
In the case of a lossy network, RT(ω) can be made convex by the same “free disposal”

technique used to prove Theorem 2. The rest of the proof is then similar.

The first-stage part of the settlements need not be revenue adequate. That is, we may have∑
n

πnτn(f ∗) < 0.

For an example, see section 4.1.
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Figure 1: A two-node system with random loads.

Scenario probability D1 D2

ω1 0.6 2 6
ω2 0.4 7 1

Table 1: Scenarios for the two-node problem.

The next result shows that in some circumstances, we may have revenue adequacy at the first
stage (and hence overall, in every scenario).

Theorem 4. Suppose that the network is lossless, and that the optimal solution of P1 satisfies
F ∗ − f ∗ ∈ U ∀ω ∈ Ω. Then we have first-stage revenue adequacy, i.e.∑

n

πnτn(f ∗) ≥ 0.

Remark. Theorem 4 assures us of revenue adequacy for every ω provided the regulation adjust-
ments F ∗ − f ∗ are not so great as to constitute an infeasible flow pattern themselves. Thus, the
revenue-inadequate instances of P1 will lie among those in which some contingencies require very
large adjustments to the flows.

Proof. In the Lagrangian argument used in Theorem 1, we saw that∑
n

(πnτn(f ∗) + E [λn(τn(F ∗)− τn(f ∗)))] ≥
∑
n

(πnτn(f) + E [λn(τn(F )− τn(f)))]

whenever f ∈ U and F ∈ U ∀ω ∈ Ω. Take f = 0 and F = F ∗ − f ∗, and use the linearity of τn,
to obtain the result.

4 Examples

4.1 Two-node example

The example depicted in Figure 1 demonstrates the use of stochastic programming in dispatch.
It has two demand scenarios which, although they agree as to the total load, differ markedly
in the location of the load. The Thermal generation offer is completely inflexible (requiring
Xi(ω1) = Xi(ω2) = xi), while the Hydros are completely flexible (i.e. may be re-dispatched
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arbitrarily) and have made regulation offers. The line is lossless. The loads are treated as
inelastic, with pi =VOLL, p+

i = pi + ε, and p+
i = pi − ε. We have taken VOLL=$1000 and

ε =$0.001, although the values chosen (within reason) do not affect either the primal or dual
optimal solutions.

The reader may wish to examine a full presentation of Problem P1 for this example:

min 25x1 + 20x2 + 10x3

+
∑2

j=1 P (ωj)
[
27(X1(ωj)− x1)+ − 23(X1(ωj)− x1)− + 12(X3(ωj)− x3)+ − 8(X3(ωj)− x3)−

+ (V OLL)(X4(ωj) + X5(ωj)) + ε |X4(ωj)− x4|+ ε |X5(ωj)− x5|
]

s.t. −f + x1 + x2 + x4 = 0 [πA]

f + x3 + x5 = 0 [πB]

−F (ω) + f + X1(ω)− x1 + X4(ω)− x4 = 0 ω = ω1, ω2 [P ({ω})λA(ω)]

F (ω)− f + X3(ω)− x3 + X5(ω)− x5 = 0 ω = ω1, ω2 [P ({ω})λB(ω)]

0 ≤ xi ≤ 5 i = 1, 2, 3

xi ≤ 0 i = 4, 5

0 ≤ Xi(ω) ≤ 5 i = 1, 3 ω = ω1, ω2

X2(ω) = x2 ω = ω1, ω2

−2 ≤ X4(ω1) ≤ 0, −6 ≤ X5(ω1) ≤ 0

−7 ≤ X4(ω2) ≤ 0, −1 ≤ X5(ω2) ≤ 0

−3 ≤ f ≤ 3

−3 ≤ F (ω) ≤ 3 ω = ω1, ω2.

Here the participant indices i = 1, 2, 3, 4, 5 refer, respectively, to the Hydro 1, Thermal, and
Hydro 2 generators and the loads at A and B. The line flows f , F are positive from A to B. Note
that the objective terms relating to the loads have been written in the form suggested by (2).

The primal solution of this problem has x∗ = (0, 3, 5,−2,−6) and f ∗ = 1, indicating that the
system operator should prepare as if for scenario ω1. That is, 3 units from the Thermal and all 5
units of Hydro 2 should be initially dispatched. If ω2 occurs, lack of transmission capacity forces
a re-dispatch: X∗(ω2) = (1, 3, 4,−7,−1) and F ∗(ω2) = −3.

The first-stage dual solution is πA = 20, πB = 12.4. Note that these prices differ even though,
in the first-stage primal solution, the transmission line between them is not constrained. This is
different from the conventional dispatch problem (P0) in which (absent loop constraints) a price
difference across a line may occur only when the line is at capacity. Here the price difference
reflects a contingent transmission constraint that may come into play upon re-dispatch.

Note, too, that the price difference is in the opposite direction to that suggested by the initial
flow f ∗ = 1: the flow is from the more expensive node to the cheaper one. This is because the
contingent transmission constraint, if it occurs, will reverse the direction of flow (F ∗(ω2) = −3).
A consequence of this is that the market is not revenue-adequate with respect to the first-stage
payments alone. (The SO uses the prices πA, πB to buy 3 units from the Thermal and 5 units from
Hydro 2, and to sell 2 units at A and 6 units at B, creating a system deficit of $7.6.) If scenario
ω1 occurs, there will be no further payments at the second stage, and so revenue-inadequacy is
possible for the market overall.

However, if scenario ω2 occurs, there will be additional payments arising from the re-dispatch.
The second-stage duals are λA(ω1) = λB(ω1) = 46/3, λA(ω2) = 27, λB(ω2) = 8. In the event of
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Figure 2: A system with uncertain wind generation.
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Figure 3: Optimal dispatches.

ω2, the system operator uses the prices λA(ω2), λB(ω2) to buy 1 unit from Hydro 1, sell back 1
unit to Hydro 2, sell 5 additional units to the load at A, and buy back 5 units from the load at
B, creating a surplus of $76. The expectation of the system surplus for the market overall is thus
-7.6 + (0.4)(76) = 22.8 dollars, maintaining revenue adequacy in expectation. The reader may
wish to compare this result with Theorems 1, 3, and 4.

4.2 Six-node example

A more complicated example is depicted in Figure 2. Here we have five generators sharing a
loop network on which the only transmission constraint of significance is the maximum flow of
150 on the dashed line in the diagram. The six lines are assumed to be lossless, but with equal
reactances. This means that 5

6
of the power generated by Thermal 1 will flow to the load via

the limited-capacity line, while 1
6

flows via the other five lines. For Wind 1, the flows divide in
proportion (2

3
, 1

3
); for Thermal 2, (1

2
, 1

2
); for Wind 2, (1

3
, 2

3
). The Hydro has the most advantageous

position: only 1
6

of its power flows over the limited-capacity line, with the other 5
6

taking the more
direct route.
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As in the previous example, the Thermals are completely inflexible, while the Hydro is com-
pletely flexible and makes a regulation offer. The load is inelastic. The Wind farms have uncertain
production: for each wind farm, the output is equally likely to be 30, 50, 60, 70, or 90. The two
wind farms are independent, so there are 25 scenarios in total.

Note that the most accurate possible forecast for each wind farm’s output is 60; this is both
the median and the expected value, as the distribution is symmetric about that value. If these
forecasts are used to find a conventional optimal dispatch as in section 2.1, the result is that shown
in Figure 3(a). It consists largely of dispatching the cheapest generators first. The transmission
constraint binds, preventing full use of Thermal 1 and causing the clearing prices to differ among
the nodes in a so-called “spring-washer” pattern. This conventional solution is not very robust to
deviations from the forecast. If total wind power production should fall below the 120 forecast,
there are only 5 additional units of reasonably-priced hydropower available to make up the deficit;
anything beyond that will be dearly bought. On the other hand, if wind power availability exceeds
the forecast, it will be difficult to make use of the surplus (by reducing hydro generation) without
violating the transmission constraint. Even in the case where the wind farms collectively achieve
their forecast, there may be a problem if Wind 1 is above the forecast while Wind 2 is below
it (e.g. (W1, W2) = (70, 50)). A simple re-dispatch from Wind 2 to Wind 1 is prevented by the
transmission constraint, so this situation must be dealt with by spilling some wind and increasing
hydro output. (A re-dispatch from Wind 1 to Wind 2 would relieve the constraint, so could be
done without difficulty.)

Figure 3(b) shows the initial dispatch found from a stochastic program as in section 2.2, taking
all 25 possible wind scenarios into account. (The re-dispatches required in those scenarios are
not shown.) The differences from Figure 3(a) can be interpreted as attempts to increase the
robustness of the solution. The unused capacity in the cheaper hydro tranche has increased from
5 to 15, providing a larger cushion against wind shortfalls. The flow on the limited-capacity line
has reduced from 150 to 145, providing some much-needed flexibility to adjust dispatch between
the two wind farms, or to take advantage of additional wind that may arise.

Figure 3(b) also shows the nodal clearing prices. Although the transmission constraint is not
binding, it will become binding after re-dispatch in some scenarios. The prices anticipate this by
falling into a spring-washer pattern.

The structure of the Hydro generator’s offer plays an important role in this example. The
high price placed on the second tranche makes the SO less willing to dispatch the first tranche
(preferring to leave it as a kind of reserve), even though the second tranche is itself not used in
the initial dispatch. A similar situation would arise if the Hydro were to split off some of its first
tranche (say, 40 units) into a separate tranche with a low ask price. The conventional solution
is unaffected by this change. But in the SP solution, the SO increases the total (initial) hydro
dispatch to 50, to make it more likely that the cheap water will actually be used.

5 Further discussion

To set up a realistic version of P1 requires an ensemble forecast: a collection Ω of contingencies
with attached probabilities. Note that each ω ∈ Ω must describe a realization of the uncertain
parameters for the whole system. It would be much less useful if (for example) each wind farm
on the system had an ensemble forecast produced by its owner, as this would give no information
about correlations between wind farms. An exhaustive list of all the scenarios one might want
could thus be very long; however, it may be that relatively few of these scenarios are really
required for a good model. Of course, P1 with any number (more than one) of scenarios is likely
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to be an improvement over conventional dispatch.
We have assumed throughout that the number of second-stage scenarios is finite. This avoids

measurability and integrability considerations. More practically, finiteness of Ω allows our problem
to be solved by standard computational techniques. In principle, though, it would be straight-
forward to extend the formulation to general probability spaces. This would open up some new
possibilities for modelling contingencies, using continuous random variables. The results on rev-
enue adequacy, etc. in this paper should all have analagous versions for such a generalization,
since none of their proofs depend on finiteness of the sample space. However, the computational
difficulty of solving the resulting problems would be greatly increased.

Note the importance of attaching probabilities to scenarios. This makes them different from
the contingencies usually addressed by an n − 1 security standard, which occur so rarely that
it is not useful to consider their actual probabilities with any accuracy. The contingencies in
this paper – forecast errors and fluctuations – need not be rare, but may recur frequently. It is
thus appropriate to include them in an objective function via an expectation, as in the stochastic
programming approach.

It is nonetheless possible that some scenarios may have zero probabilities attached. To allow
for this, the stochastic programs in this paper have been formulated with constraints holding “for
all ω” rather than the more usual “with probability 1”. Such scenarios represent contingencies
(e.g. plant outages) which are so rare as to have negligible contribution to any expectation, but
for which the system must have adequate recourse if they occur. For example, constraints of the
“n− 1 security” type can be modelled this way.

In a practical implementation, the finite collection Ω of possible scenarios is inevitably a
modelling approximation to the real world. The real-time situation that actually arises is unlikely
to correspond exactly to any ω ∈ Ω. It will thus be necessary to determine real-time prices by
solving a real-time problem similar to RT(ω). Questions of revenue adequacy, etc. for the prices
so determined remain open.

In itself, this is hardly new: all models contain approximations. Even the simple conventional
dispatch model P0, for example, relies on modelling transmission line losses by one of the ap-
proximations discussed in section 2.1. In practice the line losses (and thus, generation) will be
slightly different from the model prediction, and this may occasionally lead to a technical revenue
inadequacy. The usefulness of such models relies on the empirical observation that, over time,
revenue surpluses easily outweigh any such deficits.

First-stage solutions to our model have some unfamiliar features, at least by comparison with
deterministic markets. In particular, prices may vary substantially by location even when the
network appears to be uncongested, due to the existence of congestion in some of the second-
stage scenarios. Among other things, this can create the illusion of arbitrage opportunities.
(Equivalently, individually rational participants might not want to follow the dispatch derived by
the SO.) In the two-node model of subsection 4.1, for example, it might appear that an arbitrageur
could profit from buying at B (at $12.4), selling at A (at $20), and utilizing the free transmission
capacity available from B to A. But to use the “free” transmission capacity in this way would lead
to a worse outcome in scenario ω2 at the second stage – meaning that the capacity is not really
free after all. In effect, the SO has reserved this capacity for a contingency. Similar effects are
often seen in conventional power markets when security-related constraints are included in the
optimal power flow problem. This may lead to lines having physical spare capacity, which would
be used by arbitrageurs if the SO allowed it, but which cannot be used without compromising
system security.

The form of regulation offer considered in this paper (via p+
i and p−i ) effectively sets a con-
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stant regulation margin. However, one might consider other possibilities. If one considered the
regulation margin to vary linearly in the additional energy used, this would lead to quadratic
terms in the objective of P1:

min E

[∑
i∈T

(
piXi + bi(Xi − xi)

2
)]

, (8)

(cf. (2)). Here bi > 0 are “regulation cost parameters” offered by the market participants. This
formulation is likely to have mathematical properties similar to those of P1. The computational
difficulties of this approach, however, may be greater.

Our model is a two-stage stochastic program; a possible generalization would see it replaced
by a multi-stage version. There is some practical justification for this. In a power system having
several different kinds of inflexible plant, with different lead times, it would be natural to make
the commitment decisions sequentially, rather than all at once in a single first stage. Such a
model would have different prices at each stage; uncertain participants, such as wind farms, could
expect to sell (or buy back) some energy at each stage as their forecast horizon grows shorter.
This is reminiscent of electricity futures trading. On the other hand, it is worth noting that real
power systems with multiple operational markets (e.g. NordPool, PJM) usually have only two
such markets – day-ahead and real-time. This suggests that a two-stage approximation may be
acceptable in practice.
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