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1 Computations for proposition 3.4

Ys cB - cA
In[1]:= Cs_ = ————,
- ZcB+1
(Ys + ZCA)
ps. = ———m;
ZcB+1
Yis =PsB - A;
EY cB-cA
" ZceB+1l
(EY+ZCcA)
© ZcB+1
a_ =fBi - A
CA=A +A;;
cB =nB;

S B 5
ui = FullSimplify [Zes [ps Yis - [0‘ Yis + E Yis 2y E (Yi,s - di )2]]],
s=1

in[11:= Ui = FullSimplify [ui]

B (Z (A +A)+Ys)
S Bi (Z (Ai +A) +Ys) (Z (A +A) +Ys) (7A" * 1nZB )
out[11]= Z o | -A ]* -
= 1+nZB; 1+nZB;
1 Bi (Z(Aj +A)+Ys) 2 1 (EY+Z (Ai +A)) B B (Z(Aj +A) +Ys))\2
e -5l + o
2 1+nZB; 2 1+nZB; 1+nZB;

S
in(12]:= EY = Zes Ys
s=1

S
out[12]= Z Ys 6s
s=1
FullSimplify [DLui, Ai, Ail]

(1+(-1+n)ZB) (2Z+B+ (-1+n)ZBB)
out[23)= -

(1+nZBj)?



2 Proposition 3.5

Proposition. The equilibrium pre-dispatch and spot production quantities of
the firms in the two settlement market are non-negative, i.e.

Yi,s >0 Vi, s.

Proof. To prove the proposition, we first show the equilibrium price intercept of
the supply function of generators (i.e. a; = %ﬁ) is less than the price intercept
of the demand function (i.e. Y and Y;). Then, we show this property entails
the non-negativity of equilibrium quantities.

Substituting A; and B; from proposition 3.4 into a; = %, and then taking
the derivative of a; with respect to Z, we achieve '

da;  26((n—22Z+2k+n(B+06+k)) (Y —a)
0z K(n+2)Z+ 5 —0+k)? ’

where, k = \/(n—2)2Z2+2nZ(B+6) + (8+0)2. Because n > 2, Z > 0,
6>0,>0,and o <Y, we have

aai
> 0.
0z — 0 (1)

On the other hand, taking the limit of a; as Z approaches infinity, we obtain

Zh_r)nOC a; = a. (2)

Equations (1) and (2) yield

a; < a.
This together with assumption o <Y ,Vs yields
a; <Y Vi, s. (3)
Using a; = %:, we can rewrite equation (3) as
BY,—A; >0 Vi, s. (4)

Also, using the value of B; from proposition 3.4, we can show B; > 0. Thus,
we can conclude

B>0 (5)
On the other hand, embedding p, into y; s from proposition 3.2, we obtain

_ BYs — A

Yis = ZB+1 VLS.



This together with equations (4) and (5) and assumption Z > 0 gives
Yi,s >0 Vl, S.

From propositions 3.1 and 3.2, we achieve ¢; = > 0syis. As 0, > 0, we
obtain

q >0 Vi

O

3 The optimal solution to ISOSP problem: proof
of proposition 4.4

Proposition. If (q,x,f,p) represents the solution of ISOSP, then we have

(Y + ZA)B;
% = 1178 A; (6)
Tis T TUUZR (™)
Y+ ZA
ro= 1+ ZB
Y+ZA Y,-Y
Ps =

1+2ZB "1+ ZR

Proof. The Lagrangian function of ISOSP can be represented as follows.

L = —f <_Q+ZQZ'>
S - n
+ Z 93 (ps <Q - Cs + Z zi,s)
s=1

i=1

7?2 (1, , 1 2
-Y,Cs + 5 + ; (Qdiﬂﬁi,s +a; (¢ + ®is) + §bi (¢ + i)

Taking derivative with respect to different variables yields to the following
equations.

dL

dT]i :_f+zS:98 (a; +bi (qi + 45)) (8)

dL
d$i7s

=0s(—ps+a;+bi (g +xis)+diz; 5) 9)



dL

o =0 (0 = Vs + 2C)) (10)
;% =f- gesps (11)
3755 — 0, <—Q +Cs - Zm) (12)
% =Q- Zi:qi (13)

The Lagrangian is evidently a convex function. Thus, for finding the solution
of the stochastic program, we should set all above derivatives to zero.
From (8)

f=a;+big+ Zpsxi,s~ (14)

S

From (9) and (14)
ps = f+ (bi +di)x;s, (15)

and from (11)

f = Zesps- (16)

Now (14), (15) and (16) result in the following conclusion, as it is also
concluded from lemma 4.1.

(14) and (17) lead to

f=a;+big;. (18)

Consequently, forward price is independent of the spot market and is re-
solved merely by contract quantities. Though, contract quantities are chosen
by considering different possible spot scenarios.

From (10),

ps:Y:e_ZCm (19)
from (12),

Os - Q + Z 3'51'753 (20)

and from (13),



Q= ZQi (21)

can be concluded.
(17) and (20) lead to

> 0.6, =Q. (22)
(16), (19) and (22) make the f(jllowing conclusion.
f=Y—-2Q (23)
Now from (18) and (23) we can conclude
quzlggiﬁi (24)

In consequence, from (21) and summation of ¢; from (24) over all firms and
by using the transformation (A4;, B;, R;), we obtain

Q=(Y—ZQ)B - A.

Therefore,
YB-A
=177 (25)
Now the following inference can be resulted from (24) and (25).
(Y + ZA)B;
=5 — 4 2
"1+ zB (26)
Now let us find z; 5. (15), (19) and (20) give
f + (bz + di)xi,s = Ys - ZQ - szi,s'
By adding (23) to this equation following equation is resulted.
Yo-Y -2 2,
i = 2 @0

bi +d;
Now by getting a summation from (27) and simplifying the resulted equation
we achieve

Z - _ (Y -Y)R
s = 1T ZR

By inserting this equation in (27), we obtain
(Y —Y)R;

Tis =11 ZR (28)



and from (23) and (25), first stage price can be extracted.

Y+ZA
f=—= (29)
1+7ZB
One observation about this equation is that contract price is independent of
R, in other words, it is independent of deviating cost in the spot market.

(25), (28) and (29) determine spot price for each scenario.

_Y4ZA VoY
Ps =977B "T11ZR

4 The equilibrium of the stochastic settlement
market: proof of proposition 4.8

Proposition. The unique symmetric equilibrium quantities of the stochastic
settlement market are as follows.

_a=Y+ B (-ZY(n—-2)-2n—1)a)+ Y+ Z(n—1)(Zna+Y3)B;)
@i = Bi(Zn+ 1)+ B+Y(n—1)(Zn+ B)B;)

(31)

Zn—2)+pB+d5+ \/ZQ(n—Z)Q+2Zn(ﬂ+5)+(5+6)2_i}
2 B;
(32)

d; = max{0, —

Proof. As we assumed fixed quantity for all B;, we have
To find a symmetric equilibrium, we can use
A*i = (n — ].)A“
and
R_i = (n - 1)R7

By putting these equations in the best response functions (from theorem
4.7) and solving the resulted equations with respect to A; and R;, following
equilibrium equations is resulted.

a—Y+B(-Z(Yn-2)—2n—1)a)+ Y+ Z(n—1)(Zna+YS)B;)

A= Zn+1)+B+Y(n—1)(Zn+B)B;




2

—Z(n—2)+B+686+ \/Z2(n—2)2—|—2Zn(ﬁ+6)+(ﬁ—|—5)2}

R; = min{B;,

Let us see why equation (32) implies a true equilibrium quantity. Let R; =
2 If R; < B;, it satisfies the best re-

—Z(n=2)+B+5+1/Z2(n—2)2+2Zn(B+5)+(6+6)2
sponse function for R;. When R; > B;, we need to show - e +;i§((2:11))](3ﬁ 5F, >
B;. It means when the other generators j have chosen R; = B;, the best re-
sponse for the firm ¢ is also to choose R; = B;. Note that B; is a fixed quantity
chosen by the ISO, Thus, B; = B;.

Define f(z) = Z+ﬂ+gi§((2:ll))'fﬂ+5)$ — x. We can easily show that f(z) is a
concave function for z > 0:

F ) = - 273(n —1)%(B+9)
(Z+B+0+Z(n—1)(B+0)z)
Also f(0) = 57575 > 0 and f(R;) = 0. Thus for 0 < B; < Ry, and by

considering concavity of f(x),

5 <0

f(Bi) > 0.

Therefore,

Z+B+o+Z(n—1)(B+6B; — "
O

5 Stochastic settlement yields non-negative equi-
libria: proof of theorem 4.9

Theorem. If (q*,x*) represents the equilibrium of the stochastic settlement
market, following equations always hold.

Vi,s: g +x7 >0

Vi:igi >0
Proof. From (26) and (28), the following equation can be resulted.

Y + ZA)B; Y —Y)R;
=g tar, = Y FZAB s — V)R
' 1+7ZB (1+ZR)
It is obvious that if y; s is non-negative for the scenario that has the lowest
Y, it is non-negative for the other scenarios as well. Thus, we prove this only



for the scenario s’ for which we have Y, <Y, for all s. If we assume having at
least two different scenarios with positive probabilities, we have

Yy <Y. (33)

Let us first define R; = 2 , as we de-
—Z(n=2)+B+6+1/2%(n—2)%+2Zn(B+5)+(5+6)?

fined in the proof of proposition 4.8. Now consider y;’s, = ming s ¥i,s. Obviously

if we prove that y;ys, is non-negative, we have also proven the non-negativity of
Yi,s- Yi,s can be divided to two separate functions of a and 4, such that

if Ri < B, :
2(Zn+ﬁ+5+\/Z2(n72)2+22n(5+5)+(ﬂ+5)2)(YfYS)

ey ) VRO 2Z(B0) T (502 (Z(n+2)+B+5+/Z2(n—2) +22n(B+0)+(F10)2)
s

Otherwise :

0

dyisr 1+ZBi(n—1)

do — Z(n+1)+ B+ ZBi(n—1)(Zn+B)

The parameters Z, 3, and § are non-negative. Thus, from (33), we can
conclude

dyi,s
T >0,
dyi,s
da <0
Consequently, § = 0 and a = Yy minimize y; . Note that we have assumed
in this chapter, that y-intercept of cost function («) is less than y-intercept of
the demand scenarios (Yy/). Thus, we prove that y;’s, =y (0 =0,a =Yy)
gets non-negative values.

When § =0, at 3 = %%’ we have R; = B;. By applying the fact

that R; is a decreasing function of 3, we can conclude,

m_{% g<p
R, B3>0

and

y = 1+ZB 1+ZB)
i,8" T

(Y+ZA)B; A+ (Ys—Y)R; 3 ZB

/ {(Y"FZA)Bi — A+ (}G—Y)Bi B < B
1+ZB

(1+ZR)
We can also show that equation y;ys, = 0 only holds at § = B In addition,
y;,s/ is a continuous function. These mean y;s, is either entirely positive or

entirely negative in each of [0, ,5’] or [/3’, o0). Firstly, we prove that it is positive

in [0, A].



dy.
We see that gA < 0. On the other hand,

dA; _ (Y —a)(1+ Z(n—1)B:)’ (1 + ZnBy) _

B (Zn+1)+6+ Z(n—1)(Zn+B)B;)* ~

’

~ dy, dy, . s .
Therefore, for 3 < (3, d’—bs' = d;{f' dd’%’ is not positive. It means y; ,» is a non-

increasing function of § in this interval. Considering the fact that y;’ o (B) =0,
we can conclude

yig >0 if B <. (34)

Right derivative of y;’s, at (3 also has a positive value of
Z2(Y —Y,)Bi(n—1)(1+Z(n—1)B;)(1+ZnB;)?
V22 (n—=2)242ZnB+62(Z (n+1)+6+ZB;(—f+2n(Zn+B)+Z(n—1)n(Zn+B) B;))?’
If we add this to the facts that y;ys,(T) =0 and y;ys, is either entirely non-

negative or entirely non-positive for § > B, we can conclude that

Vi > 0if > (35)
(34) and (35) can be gathered to conclude

Yi s = 0.

Therefore,

Yi,s = qr + x;s > 0

We know from Lemma 4.1 that z7 ; is non-positive for at least one-scenario.
Thus,

g >0

10



6 Equilibrium of the stochastic settlement mech-
anism with non-negativity constraints: theo-
rem 4.11

6.1 SP clearing problem with non-negativity constraints

The SP clearing problem with non-negativity constraints is

ISOSP :

n

S
b d; Z
minz = ) 0, (Z [ai<qz—+xi,s>+2<qz-+wz-,s>2+Qwis —(Yscs—zcs?))
s=1

i=1
Q+Y @~ Ci=0 Vse{l,...,S}
A
g +zis>0 Vise{l,...,S}

ISOSP is a convex optimization problem as the objective function of ISOSP
is a convex function, and its constraints are linear. Therefore, solving the KKT
conditions of this problem is equivalent to solving ISOSP.

6.1.1 KKT of ISOSP
To find the KKT conditions we can use the Lagrangian function
S

S b d;
L= Z (95 <Z <ai (Tis +qi) + 5 (zis + )% + 2%275)

s=1 i=1

ZC? &
_<Cs}/s_ 2 >+ps (Q+;xl7b_cs>>
—> e (@i +qz->> ~f (Zqi - Q) :
i=1 1=1

To produce the building blocks of the KKT condition, we can use the partial
derivations of L with respect to the decision variables.

11



dL 5 s
T% = _f - ;ei,s + (ai + bql) + b; esxi,s
dL
= —€js + 05 (=ps + a; +bg; + (b +di)zi,s)
dl‘@s
dL
= S ZCS - sz 93
g, — (st )
dL
o ) T 95 s
=1 Es: p

dL -
dps = 95 <Cs - (Q + ;xi,s>>

dL -
d*fZQ—;Qi

ab .
dei,s = —q; i,8
Thus, KKT of this problem can be represented as
s s
— = st (ai+bg) +bY Oais=0 Vie{l,...n} [C]]
s=1 s=1
Q=> a (C2]
i=1
Cy = <Q+me> Vse{l,...,S}  [C3]
=1
ps = (Ys — ZCs) Vs e {l,...,S} [C4]
s
f=> 0.ps [C5]
s=1
€i,s =0, (—ps—|—ai—|—bqi—|—(b+di)zi,s) Vi € {1,...,Tl} [06]
Vse{l,...,S}
€is(qi+xis)=0 Vie{l,...,n} [C7]
Vse{l,...,S}
eis >0 Vie{l,...,n} [C8]
Vs e {1,...,S}
g +zis>0 Vie{l,...,n} [C9]
Vs e {l,...,S}.

If we replace the value of f and e; 5 from [C5] and [C6] into [C1], constraint
[C1] can be replaced with 2;9:1 Osz;s = 0.

12



6.1.2 Firms’ optimisation problem

Problem WNN[j] represents the optimization problem solved by firm j to max-
imize its profit, subject to KKT conditions of ISO’s optimization problem.

WNN[j]:
s
max u; = Z 0 (ps(qj +x55)—
s=1
B; 5.
(%‘ (g5 +250) + 5 (@ +255) " + 21%,52>>
S
st Y Buwie =0 Vie{l,...,n} [C1]
s=1
Q= Z(h [C2]
i=1
C, = <Q+sz> Vse{1,...,5} [C3]
i=1
ps = (Ys — ZC) Vse{l,...,8} [C4]
5
f= Zasps [05]
s=1
€i.s =0, (—ps+ai+bqi+(b+di)xi,s) Vi € {1,...,71} [06]
Vs e {1,...,S}
eiﬁs(qi—kxiys) =0 Vi € {1,...,n} [C?]
Vs e {l,...,S}
eis >0 Vie{l,...,n} [C8§]
Vse{l,...,S}
¢ +xis >0 Vie{l,...,n} [C9]
Vs e{l,...,S}

To make the optimization problem look simpler, we can replace the values
of Q, Cy, and f from [C2], [C3], and [C5] in the other equations. This simplifies

13



WNN to the following shape.

WNN[j]:
s
max u; = Y _ 0 (ps(qj +xjs)—
s=1
(aj (g5 +z5) + % (4 +2j,) % + (;”xj,f))
S
st > Oamie=0 Vie{l,...,n}
s=1
ps_Ys—Z<th+th,s> Vs € {1,...,5}
h=1 h=1
€is = —0s (—ps + a; + bg; + (b+ d;)x; ) Vie{l,...,n}
Vse{l,...,S}
eis(q+xis)=0 Vie{l,...,n}
Vse{l,...,S}
€is >0 Vie{l,...,n}
Vse{l,...,S}
qi+Tis >0 Vie{l,...,n}
Vse{l,...,S}

With a similar process, the optimization problem of firm j in a stochastic market
clearing mechanism without non-negativity constraints can be found as

WONNTj]:

s
max u; = Zé’s (ps(qj +xj6)—
s=1
3 S5
(aj (5 +258) + 5 (g5 +255) 2+ 5]%‘752
s
s.t. Zﬂsxiys =0 Vie{l,...,n}
s=1
pSZYS—Z<ZQh+Z$h,S> Vse{l,...,S}
h=1 h=1
€i,s =0, (—ps+ai+bqi+(b+di)xi,s) Vi € {1,...,77,}
61"5:0 ViE{l,...,’n}
Vs e{l,...,S}.

Also, we introduce a relaxation to WNN, which we use later in proofs of
our theorems. We eliminate constraint [C7]: e;5(¢; + z;5) = 0, and limit

14



the constraint [C9]: Vi,q; + ;s > 0 to the optimizer generator j to obtain a
relaxation problem

RWNN:
s
max u; = Y0, <Ps(Qj +2j5) =
s=1
(Oéj (5 + ) + 5 (g5 +56) 2+ 53%',52
s
st > Ouwie =0 Vie{l,...,n}  [C1]
s=1
pS:Y;—Z<th—|—th7$> Vse{l,...,S} [C4]
h=1 h=1
s
F=Y 0.ps [C5]
s=1
eis =05 (—ps +a; +bg; + (b+di)zis) Vie{l,...,n} [C6]
Vse{l,...,S}
eis >0 Vie{l,...,n} [C8]
gj +2s>0 Vse{l,...,S5} [C12]

Now, we prove three lemmas which help us to demonstrate the final theorem.

Lemma 6.1. If for every i # j(j is the optimizer generator), a; and d; has
the same value, then the constraint e; s > 0 (for every i # j) in RWNN can be
replaced with e; s = 0 without reducing the optimal value of RWNN.

Proof. We prove the lemma by contradiction. Assume there exist a point v =
(aj,dj,q,x,p,e) with at least one e; o > 0 (i # j) and higher objective value
than any feasible solution with e = 0.

Consider ' = (a},d},q',x', p’, €’) defined as follows.

15



/ 4qi i=J (36)
q; = ZXnti Xw Chow o
qi Z(n71)+bb 2w €, i j

Y= Z( Ty Twhw—Tng 52 .
Tis + T~ (hZ¢(Jnfl)+b+di)(b’f¢;i)9 i F ]

’ 1 L
a; = max {Z(ZZ% (Z(n1)+b_ Z(nl)+b+di)

h#j w
Zh;ﬁj 5
= ; 38
T Zm-nrbrd )ty (38)
d; =d; (39)

Firstly, we show this is a feasible solution.

ZS esxi,s i= ]
S i 0 2T T enw—, 0 Ty ),
2 Ostis + b1d, - (Z(n—1)F5+d,)(6+d;) i#]

Extra simplifications yields to
Vi) feai =0 (40)
S

After substituting the value of g;, from (36) into 3_,_; ¢, and slightly sim-
plifying the resulted equation, we get

Zqzzzqh,M (41)

Zn—1
Wt b (n—1)+b

The same analysis on equation (37) gives us the following equation.

S ah=> anet Doty Do e — Loty B (42)
WEi b Z(n=1)+b+d;

pl, can be obtained combining equations [C4], (41), and (42).

L —pe— 7| — Zh;éj > w Chow N Zh# S Chw — Zh# eg:»

. 1
:ps+z<ZZeh,w(Z(n1)+b_z(n1)+b+di> (43)

h#j w

D oht eg,;s
Zn—1)+b+d;

16



Considering the fact that e; 5, Z, b, and d; have non-negative values,
p/s > Ps (44)

From (36), (37), (43), and [C6], e; s can be obtained as follows.

€i,s + 0s(—pl + ps + a — a;) i=j
€i,s + 05 ( -7 Zh;&j > w Ehyw (Z(n—11)+b - Z(n—l%-‘rb-l—di) i#J
! — e
R B R = IR
PSSR 1975 s O >>

This simplifies to

y _fG.z0 i
. 0 i F ]

Thus, the constraint [C8] is also satisfied. As ¢; = ¢, 2 ; = 75, and v is a
feasible solution, constraints [C12] are also fulfilled.

In sum, v/ is a feasible solution.

On the other hand, a comparison between the ug and u; demonstrates that
V' gives a better objective:

“ —Uuj = 29 (g5 + @js)-

With ¢; + z; s > 0, as concluded from [C12], and p, — ps > 0 as resolved in
(44)

/
Uj > U
This contradicts the initial assumption, which proves the lemma. O

Lemma 6.2. RWNN can be simplified to the following optimization problem.

17



RWNN:

max u; = fq; + Z 0s( zjs

_<Oéjqj—|—ﬁjz ﬁ]‘f' JZ@S JS>

S
> 0w =0 Vie {l,...
s=1

pszYs—Z<th+th,s> Vs e {l,...
h=1 h=1

S
f= Z 0sps
s=1

eis =05 (—ps +a; +bg; + (b+d;)z; ) Vie{l,...

Vs e {l,...
€s >0 Vie{l,...
¢ + 255 >0 Vs e {l,...

n} o [C1]

Sy (G4
[C]

n} o [C6]

S}

oy [0

S} [C12]

Proof. The first part of the objective function is the optimizer’s income, which

is equal to

S

S S
Zosps(%' + fj,s) = Zesps(b' + Zospsxj,s
s=1
*quJrZG fx]g+29 Fxjs
—fq]+Zt9 asjs—|—th9sz

s=1

=fq; +Ze 1‘37

18
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The rest of the objective function can also be simplified similarly, as follows.

s
A 5.
Generating Cost = Z 0s (aj (gj +z5s)+ % (gj +zj5) L 2ij752>

s=1

B
:Oéjqj‘i’?‘jjz JZGS ]s
+ (o + B545) ZGSIj,s
s=1
Bi o, Bi+di
=ajq; + *j 2 % Z sz s° From [C1]
s=1

O

Lemma 6.3. If for every i # j(j is the optimizer generator), a; and d; has
the same value, then the optimal solution to WONN is at least as good as the
optimal value to RWNN.

Proof. To prove the lemma, we find the optimal solution to RWNN, while we

ignore the non-negativity constraint q; + x;s > 0. Thus, this point gives an

objective value as good as (possibly better than) the optimal point. Then we

show this point is a feasible solution to WONN, which proves the lemma.
From lemma 6.2 we have

€is = 05 (Y; + Z (Z dn + Z zh,s) +a; + bQZ + (b + di)xi,s> .

h=1 h=1

To simplify the equations we use some transformations. Let R; = Grdn d 3

and A; = 4. Also, let A and R denote ) ;_; Ay, and >, _; Ry, respectively.
Then, constraint [C6] looks like

5205< Y"‘Z(ZQh"_ths) xzs+b(A+QZ)>' (45)

A summation over different scenarios gives

s
Z eiw=—-Y+Z Z g+ (Ai+q)b (46)
w=1

From lemma 6.1, the constraints e; s = 0 for every ¢ # j and s can be
replaced with e; ; > 0 in RWNN. On the other hand, from the assumption we
know that A; has a fixed value for every i # j. As a result, equation (46) is
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used to show that g; must have a fixed value for every i # j. Thus, equation
(46) can be re-written as

0=-Y+Z((n—1)q+q;)+ (Ai+q)b (47)

With a similar argument, we can show that x; , also has the same value for
every i # j. Equation (45), thus, can be represented as

1
0=0, (—YS +Z((n—1D¢i+q; +(n—Daxjs +x5) + Ewi’s +b(4; + qz)>
(48)

Solving equations (47) and (48), we find the values of ¢; and z; , as functions
of g; and xj .

b+ (n-1)Z (49)
= Ri(Y_Ys‘f'ij,s)
b 1+ (n—1)ZR;

From (49) we can also calculate the values of f and ps — f as functions of ¢,
and x; ;.

WY+ (n—-1)ZA; — Zq)

f_
b+(n—-1)Z (50)
Y Yy,
Ps = T (= 1) ZR,

Inserting these values into the utility function from lemma 6.2 simplifies the
utility function to

W — b(Y“r(n—l)ZAz—Zq])_a_&q 4
! b+ (n—1)Z DR
S
—Y—I—Y;—Zl‘j,s ﬁj—F(Sj ‘ ‘
+;95<1+(n—1)2m g s ) Tis

As Z, oy, 35, and R; have non-negative values, u; is a concave function of
g; and x;. Therefore, ignoring the rest of the constraints, the optimal value of
g; and z; s can be found using first order conditions.

First order conditions for ¢; and ;. gives
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. Y4+ (n—1bZA;, — (b+ (n—1)Z)c,
%= W7+ b+ (n—1)2Z)B;
. Y,-Y
Y95 27+ (14 (n— D)ZR;) (B; + ;)
Now we need to show that we can always find A; and R;, so that this value

is a feasible solution to WONN and yields e; ; = 0. To do so, we first calculate
G = 2, €jw for all s. From (45), (46), and (51)

(51)

(52)

S
- = B2 (= Vs + )

(YY) (14 R (Z+48; +0;) + (n—DZR; (-1 + R; (B; +;)))
N R;(14 (n—1)ZR;) (2Z + (1 + (n—1)ZR;) (B; + 6;))
(53)

It is always possible to choose R; as follows to ensure that eg’f —> w€iw =0.
Note that this does not change either of production quantities or prices. This
value of R; is

o 1+ (n—-1)ZR;
T Z4+(1+(n—-1)ZR,;) (Bj +65)

We can also choose A; so that ), e; ., = 0 without changing any production
quantity and thus any prices. From (46) and (49)

s
Zej,w =—Y+Z((n—1)q+q;) +b(An+qn)
w=1 (54)
(n—1)Z (Y —bA;) +bZg;
b+(n—1)Z

=—Y +b(4;+¢)+

Solving Y~ ej. = 0 for A; gives

A =

=Y (b+(n—2)Z)+(b+(n—1)2Z) ((b+nZ)a; +Y ;)
b+ (n—1)2)(2bZ + (b+ (n—1)2)B;)
—(n—1)ZA; b+ (n—2)Z) — (b+ (n —1)Z)B;)
b+(n—1)2)20Z+ b+ (n—1)2)0;)

S
Z €jw =0

=1
These A; and R; ensures ws =Vs:ej, =0

— > ¢w =0
w=1
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Thus, constraints [C6] and [C8] are met in WONN and RWNN.

From (51) we derive ) _6,x;, = 0. We can use the fact that > _6.2;, =0
to show that for ¢ # j also > _6.x; s = 0 (in equation (49)). So, this optimal
point is feasible in [C1].

In sum, the constructed point is feasible to WONN, and gives an objective
value at least as good as RWNN. O

Now, we can use the above lemmas to prove a theorem that shows using
the equilibrium of the simplifies game without the non-negativity constraints
instead of the equilibrium of the original game is justifiable.

Theorem. The equilibrium of the symmetric SFSP game without the non-
negativity constraints in ISO’s problem is also the equilibrium of SFSP game
with the non-negativity constraints.

Proof. To prove the theorem, we should show that if all generators offer the
equilibrium values of a; and d; none of them are willing to deviate from it.
Equivalently, if in WNN a; and d; are equal to the equilibrium of the SFSP
game without the non-negativity constraints for all 7 # j, then optimal a; and
d; are also equal to equilibrium values of this game.

The equilibrium of SFSP without non-negativity constraints is equal to the
optimal value of WONN when every non-optimizer generator has offered the
equilibrium values of the game. Thus, we prove that the optimal value of WONN
is also optimal to WINN.

Firstly, lemma 6.3 states that if the optimal solution to WONN is feasible
to RWNN, then, it is also the optimal solution to RWNN. In our problem, from
theorem 4.9 we know that the optimal solution to WONN holds both ¢; > 0
and g; + z; s > 0. The other constraints of RWNN are shared between these
two models. Thus, it is feasible and optimal in RWNN.

On the other hand, every feasible solution to WNN is feasible in RWNN. So,
if this solution (which is the optimal solution to RWNN) is feasible to WNN,
then it is also optimal to WNN. From the theorem 4.9, we know that ¢; > 0 and
gi+xz; s > 0 for all 4, as it is the equilibrium of the game without non-negativity
constraints. This means this point is feasible in [C8] and [C9]. On the other
hand, we know that e; ; = 0 for all 4, as it is the optimal solution to WONN.
This shows it also holds [C7]. The other constraints are common and thus met.
In sum, This point is feasible and therefore optimal to WINN.

Thus, no generator is willing to deviate from this point unilaterally, and this
is the equilibrium of WNN. O
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7 Stochastic settlement outperforms the conven-
tional settlement: proof of proposition 5.1

Proposition. When the parameter b; is chosen less than the threshold value of
b, where

- ~Zn—2)+B+6+/Z2(n—2)2+2Zn(B+0) + (B +0)2
2 Y

social welfare in the stochastic settlement market is higher than that in the two-
settlement market.

Proof. To prove the proposition, we show when b; = b, we can conclude SW5° =
SWT5. Then, we demonstrate SW5 is a decreasing function of b;, and therefore,
SWSS > SWTS, when b; < b.

When b; = l;, it is easy to show that equilibrium quantities are identical in
the stochastic settlement and two settlement markets. (equations (31), (?7),

(*7))

BZ»SS — B;FS
AiSS _ A;FS
RZ'SS _ B'LSS

Under this situation we can show that y; s and ¢; formulae (from propositions
?7?, 72, and ?77?) simplifies to

YB; — A;
ss _ TS _ i i
qz - Qz 1+ZB

Y:B; — A;
SS _ TS _ s 1
y@s - yz,s 1+ZB

Therefore social welfare of these models (equation ?7?) are the same providing
b; =b.
Note that we can rewrite social welfare formula (?7) as

S n 7 n 2 n )
SW = Zes Ys (Z yi,s) - 5 <Z yi,s> - Z <ayi,s + gyi,s2 + 2$i782>
s=1 =1 i=1

i=1

Note that z; ; is independent of b, and therefore,

AW 1 dW dy;,
_ _@ Z

db; dy;.s dB;

On the other hand, we show (in the technical companion [?]) that
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dyis (Y —a)(n—1)22 -0
dB;  (Z+nZ+B+(n—-1)Z(nZ+pB)B;)2 ~
Note that according to our assumptions Vs, o < Y;. Also, this derivative is
a fixed number independent of ¢ and s. Thus,

dW 1 dy; s
db; b2 dB; Z

dyz s

On the other hand,

aw

s =0;(Ys—a—(Zn+ B)yis) -

Hence,

Zdy =Y -—a—(Zn+0)

_ bZ(Y — «) >0
Zn—1)(nZ+p)+b((n+1)Z+p) —

In sum, we can conclude that,
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8 Computations of firms and equilibrium values
for the SP mechanism

Best response curves
From propositions 3.1 and 3.2, we have

EYcB-cA
0= ———
1+ZcB
(EY + Z cA) B;
qq = ———— -A;
(1 +2ZcB)
(Ys -EY) Ry
Xj s = —————
1+ZcR
Yi ,s_ = 9di+Xis
EY+ZcA
fz ——
1+ZcB
Y, - EY
Ps =f+
- 1+ZcR

S-1
6s =1- Zes
s=1

cA=A; +A_;
cB=B; +B_;
cR =R; +R_;

s B ]
u;_ = Simplify[f q; + Z 6s [ps Xi,s — [a (qi +xi,s) + E (qi +xi,s)2 + ; xi,sz]]] ;

s=1

s
welfare = Zes

z ) B, 6
Ys (nYI,s) - E (nYI,s) -n (0‘ Yi,s + ;Y1,s + ;xl,s ]],

s=1
S s-1
FullSimplify [D[ui, Ri, A:], {EY == Zes Y., 65 =1- Zes}]
s=1 s=1
0
S-1

S
FullSimplify [D[ui, Ri, B;il, {EY == Yle. Y., 65 =
s=1

[
[

1
™M
»
—
—

0
Therefore, u;(4;, Bi, R;) = gi(4;, B)) + hi(R;).

FullSimplify[D[u;, A;, A;]]

(1+Z2B.y) (2Z2+B+ZBB_3)

(L+Z (B; +By))?



FullSimplify[Solve[D[ui, A1 =0, Ay, {Ey == ies Y., 65 =1- Sies}]
s=1 s=1

(o

(1+ZB.3) (-EY+a-ZA;+ZaB.i) + (Za+EY (Z+B3) +Z (Za+EYB)B.s +ZA_; (Z+B+ZBB,1))B1}

(L+ZB.y) (2Z2+B+ZBB_;)

(L+2B_;) (-EY+a-ZA_;+ZaB_;) + (Za+EY (Z+B) +Z (Za+EYB)B_.; +ZA_; (Z+B+ZBB_;)) B;

i =

(l+Z2B.;) (2Z+B+ZBB_;)

(1+2B.;) (-EY+a-ZA ;+Z2aB.;)+ (Za+EY (Z+B) +Z (Za+EYB) B +ZA; (Z+B+ZBB.;)) By

(1+2B.i) (2Z+B+2ZBB_;)
FullSimplify[D[ui, Bi]]

0

The fact that derivative of u; with respect to B; is zero means u;(4;"(B;), Bi, R;) and g;(4;"(B;), B;) is independant of B;.

Therefore, g;(4;"(B;), B;) is a constant dependant on the cost and demand parameters.

S s-1
FullSimplify [D[ui, Ri], {EY == >0, ¥,, 65 =1- Zes}]
s=1 s=1

(-1+(Z2+B+6) Ry +ZRy (-1+ (B+06) Ry)) (EY2-35 , v20,)

(1+2 (R; +Ry))°
The expression (-1 + (2+B+8) Ry +ZR_; (-1 + (B+8) R;)) is a linear increasing function of R;. Thus, it is negative
bellow its zero and is positive after its zero. The denominator (1 + 2z (R_; +R;)) > is positive, and (EY2 -6 Ysz) is

du, g positive before its zero and is negative after this point. Thus, it is a

negative (because of Jensen's inequality). In sum, -

quasi-concave function of R;.

S S-1
FullSimplify[Solve[D[ui, Ri] =0, Ry], {EY == >10.¥,, 65 =1- Zes}]
s=1 s=1

1+ZR.;

{{Rl% Z+B+6+ 72 (B+6)Ri}}

R; must be less than B;, and u; is a quasi-concave function of R;. Therefore, the optimal R; is

1+ZR_;

Ri=Min[Bi, ]
Z+B+S65+2Z (B+6) R

Finding a symmetric equilibrium

FullSimplify[Solve[{A; ==
((1+2B_;) (-EY+a-ZA_;+ZaB_;) + (Za+EY (Z+B)+Z (Za+EYB)B_;+2ZA_; (Z+B+ZBB_;))
Bi) /((1+2B.;) (2Z+B+ZBB.3)), Az == (n-1)A;}, {A;, A;}]]

(1+ZB.i) (-EY+a+ZaB.;) + (Za+EY (Z+3) +Z (Za+EY[3) B_;) B;

A; -
{{ (L+ZB.3y) (Z+nZ+B+ZBB.i)-(-1+n)Z (Z+B+ZLBB.;i) B;

(-1+n) (-(L+2Z2B.3) (-EY+a+ZaB.;) - (Za+EY (Z+B) +Z (Za+EY[3) B_.;) Bi) }}

-(1+2Z2B.i) (Z+nZ+PB+ZPBBy)+(-1+n)Z (Z+B+ZBB_;) B;



n-=.
1+ZR_;

FullSimplify[Solve[{Ri == R; == (n-1) Ri}/ {R:, R—i}]]

Z+B+6+2 (B+6) Ry

2

(f-- ,

(-2 +n) Z—B—5+\/(—2+n)2Z2+2nZ (B+0) + (B+6)2

- (-2+n) Z+/3+5+\/(—2+n)2Z2+2nZ (B+6) + (B+6)°2
R » - ,
27 (B+6) }

2
{Ri_) ’
~(-2+n) Z+B+6+\/(—2+n)2Z2+2nZ (B+6) + (B+6)2

(-2 +n) Z—B—6+\/(—2+n)2Z2+2nZ (B+6) + (B+68)2

R,i 4 }}
27 (B+6)
. . . S 2
The expression - z is negative. However, R; =
(-2+n) Z—BfmJ (-2+n)? 22421 2 (B+6) + (B+8) 2 —(=2+n) Z+ﬁ+6+\/(—2+n)2 2242 n Z (B+6)+(B+6)?
is positive and acceptable. As we show in the paper, the equilibrium R; is Mln[B,«, ]

—(=2+n) Z+ﬁ+6+\/ (=2+n)* Z*+2 n Z (B+6)+(B+6)*



9 The LINGO model used to find the equilib-
rium of the two settlement mechanism with
asymmetric firms

!The two settlement model with asymmetric generators and non-negativity constraints.;
MODEL:

DATA:
NumProblems= QOLE ('TS1.x1ls', 'GENERATORS!K16');
ENDDATA

!The similar parameters to the parameters defined in the original paper have a similar
definition.

The rest of parameters are defined as comments.;

SETS:

GENERATORS : b , alpha , beta , delta , g, a ,d, a fixed,b fixed,d fixed, Opt,
optimizer, profit,lambda;

|

***3 fixed, b fixed, d fixed: The offered parametters of the generators in the last run.
***opt: If the current decision of the optimizing generator is similar (with a precision)
to its decision in the last run, it is 1, otherwise it is =zero.

***optimizer: in each round it is one for the optimizing generator and zero for the
others.

***Lambda: The dual variable of the non-negativity constraint g {i}>=0.

SCENARIOS : Y, theta, transCoef, p, C;

GEN_SCEN (GENERATORS, SCENARIOS): x, e, boundary ;

|

***e: The dual variable of the non-negativity consttraint g i+x {i,s}>=0.

***poundary: A binary variable to linearize the orthogonality constraint e {i,s} (g _{i}+x
{i,s})=0.

OPTIMIZERS (GENERATORS) ;
I

The set of the optimizer generator in each step of the dynamic process.

FIXEDGENS (GENERATORS) | #NOT# QIN( OPTIMIZERS, &l1) ;

!All non-optimizer generators;

ROWS /1..100/:alp,bet,del,op,a f,b f,d f ,tet,coe,Y f,Z f,walpha ,wbeta ,wdelta
,woptimizer ,wa fixed ,wb_ fixed,wd fixed ,wb ,wa ,wd ,wg ,wxl ,wx2
ywprofit,wf,wpl,wp2,wwelfare,wrep,wstl,wst2,wtet,wcoe,wY f,wZ f;

!Degined for the purpose of collecting result of different runs of the model, and
outputting the results.;

ENDSETS

! Here is the data.

The data is read from an Excel file.

DATA:

GENERATORS, OPTIMIZERS= @OLE( 'TSl.xls', 'GENERATORS', 'OPTIMIZERS')
SCENARIOS = @OLE('TS1l.x1ls', 'SCENARIOS'");

theta, transCoef, Y = @OLE('TS1l.xls', 'SCENSDATA');

7, MyBigM = QOLE('TSl.xls' , 'z' , 'MyBigM');
alp,bet,del,op,a f,b f,d £ = QOLE('TSl.xls', 'GENERATORS!D16:J116");
tet,coe,Y f,7Z2 f = QOLE('TSl.xls', 'GENERATORS!N16:Q0116");

precision =@OLE('TS1l.xls', 'GENERATORS!R18") ;
!A tolerance that determines the smallest value that we consider as a change in strategy.
In other words, if the change in a firm's strategy is less than this, we count that as a



no change in the strategy.;

maxRep=@OLE ('TS1.x1s', "GENERATORS!R19"'") ;
!Tf we do not find an equilibrium after "maxRep" steps, we stop searching for it.;

ENDDATA

SUBMODEL TS1:

!This is the optimization model solved by a firm to maximize profit, assuming that the
strategy set of all other firms are fixed. ;

@FOR (GENERATORS: (@FREE (a));

@FOR (SCENARIOS: QFREE (p)):;

@FOR (GEN SCEN: @FREE (x));

@FREE (f) ;

[obj] MAX = @sum (GENERATORS (i) : optimizer(i)* ( £ * g(i)+ @sum (SCENARIOS(s): (theta(s)~*
(p(s)* x(i,s)-(alpha(i) * (g(i)+x(i,s))+ beta(i)/2 * (g(i)+x(i,s))"2 + delta(i)/2 *x(i,s)"
2))) ) )

! The objective;

!The constraints include constraints of a generator on his offered supply function and KKT
consitions of the ISO s optimization problem;
@FOR (GENERATORS (1

-f+a(i )+b(|)* (|) lambday(i)=0;

q(i)*lambda(i)=0

’

@FOR(GEN_SCEN(i,s):
a(i)-p(s)-e(i,s)+b(i)*(a(i)+x(i,s))=0;
g(i) + x(i,s) >= 0;
[Const ebin] e (
[Const gxbin] q(
@BIN (boundary (i, s));

,8) <= boundary(i,s)*MyBigM;
)+x(i,s) <= (l-boundary(i,s))*MyBigM;

)

@FOR (SCENARIOS (S) :

[Const p demand] theta(s) * (p(s)+ Z* C(s)-Y(s)) = 0;

[Const C] theta (s) * (-cQ+C(s)-@sum (GENERATORS (i): x(i,s))) = 0;
)i

!Non-optimizing generators should offer their previous offered parameters;
@FOR (GENERATORS (k) |optimizer (k) #EQ# O

a(k)=a_fixed(k);

b(k)=b_ fixed (k)
)

- @suniSCENARIOS(s): theta(s)*Y(s))+f+cQ*Z 0;
cQ - @sum(GENERATORS (h): g(h))=

ENDSUBMODEL

!Calculations and procedure of the dynamic process to find an equilibrium for each of the
market settings.;

CALC:

@for (ROWS (k) :

walpha (k)=0;
wbeta (k)= O;
wdelta (k)=0
woptimizer (
wa_ fixed (k)
wb fixed (k)
wd fixed (k)
wb (k) =0;

wa (k) =0;

Or

Il 7?"

)=
Or
Or
0;

’



o Ne
Il

!Reading different market settings (i.e.
ind=@OLE ('TS1.x1s"',

case studies or examples).;
'GENERATORS!L16"'") ;

QWHILE (ind #LE# NumProblems:

eqg=0;
rep=0;
alpl=alp (2
alp2=alp (2
betl=bet (2
bet2=bet (2
dell=del (2
del2=del (2
opl=op (2* (
op2=0p (2* (
a fl=a f(2
a f2=a _f(2
b fl=b - £(2
(2
(2
(2
(2
(2
(2
(2
(2
(2
(2

tetl=tet
tet2=tet
coel=coe
coe2=coe
Y fl=Y £
Y f2= Y f
Z S fl= Z f

*
*
*
*
*
*
*
*
*
*
*
*
*

QOLE ('TS1.x1s'
@QOLE ('TS1l.x1s'

QOLE('TS1.x1s',
QOLE('TS1.x1s',

QOLE ('TS1l.x1ls'

ind-1)+
ind-1)+

-1)+1);
)+2) ;
)+1);

1nd—l)+2);
)+1);
)+2) ;
)I
2);
+1);
+2);
+1);
+2);
+1);
+2);
+1);
+2);
+1);
+2);
+1);
2);
1);

, '"GENERATORS!D2:32")=alpl,betl,dell,opl,a fl,b fl,d fl;
, '"GENERATORS!D3:33")=alp2,bet2,del2,op2,a f2,b f2,d f2;

'SCENARIOS!C2:E2")=tetl,coel,Y fl;
'SCENARIOS!C3:E3"')=tet2,coe2,Y f2;

, 'OtherParams!B2"')=72 fl;

@for ( GENERATORS (1) :

Opt (1) =

)i

! stl and st2 records the status of the optimization problems i.e.
global optimal solution or a local optima.

find a true equilibrium.;

st1=1000;
st2=1000;

@WHILE (eq #LE# 1 #AND# rep#LE#maxRep:

stl=st2;
alpha,
'"GENSDATA"') ;
theta,

transCoef, Y = QOLE('TS1l.x1ls',

beta, delta, optimizer, a fixed, b fixed,d fixed = QOLE (

'SCENSDATA") ;

whether it is found a
These are importnt to ensure that we actually



Z = @QOLE('TS1l.x1ls' , 'Z');
@SOLVE ( TS1);
@for (GENERATORS (1) | optimizer (i) #EQ# 1
@ifc( a(i) #GE# a fixed(i)-precision #AND# a(i) #LE# a fixed(i)+precision
#AND# b (i) #GE# b fixed(i)-precision #AND# Db (i) #LE# b fixed(i)+precision:
Opt (i)=1;
@else
Opt (1)=0;
)
a fixed(i) = a(i);
b fixed(i) = b(i);
)
@for (GENERATORS (1) :
@ifc( optimizer (i) #EQ# 1:
optimizer (1)=0;
@else
optimizer (i)=1;
)
)
st2=Q@STATUS () ;
eq = @sum(GENERATORS (i): Opt(i));
@OLE( 'TS1l.x1ls' '"GENSDATA') = alpha, beta, delta, optimizer, a fixed, b fixed,
d fixed;
rep=rept+l;
@for (GENERATORS (1) :
profit(i) = £ * g(i)+ @sum (SCENARIOS( ): (theta(s)*(p(s)* x(i,s)-(alpha(i
(g(i)+x(i,s))+ beta(i)/2 * (g(i)+x(i,s))"2 + delta(i)/2 *x(i,s)"2))) )

)

!Intermediate output;

’

’

welfare = @sum (SCENARIOS (s): theta(s)*(Y(s)*C(s)-Z2/2*C(s)”2-Q@sum (GENERATORS (i) :
alpha (i) *(g(i)+x(i,s))+beta (i) /2* (g(i)+x(i,s)) 2+delta(i)/2*x(i,s)"2)));
@OLE( 'TS1l.x1ls', 'GENERATORS!L2:N3') = a, d, qg;
@OLE( 'TSl.xls', 'GENERATORS!02:03') = @writefor (GEN SCEN(i,s)|s #EQ# 1: x(i,s));
@OLE( 'TSl.xls', 'GENERATORS!P2:P3') = @writefor (GEN SCEN(i,s)|s #EQ# 2: x(i,s));
@OLE( 'TS1l.x1ls', 'GENERATORS!Q2:03') =profit;
@QOLE( 'TS1l.x1ls', 'GENERATORS!R2:R2') = f;
@QOLE( 'TSl.xls', 'GENERATORS!S2:T2') = p;
QOLE( 'TS1l.x1ls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'TS1l.x1ls', 'GENERATORS!V2:V2') = rep;
@OLE( 'TS1l.x1ls', 'GENERATORS!W2:W2') = stl;
@OLE( 'TS1l.x1ls', 'GENERATORS!X2:X2') = st2;
@OLE( 'TS1l.xls', 'GENERATORS!Y2:Y2') = Qwrite ('WNN');
)
'Final output;
welfare = @sum(SCENARIOS(s): theta(s)* (Y (s)*C(s)-Z2/2*C(s)"2-@sum (GENERATORS (i) : alpha (
(g(i)+x(i,s))+beta(i) /2% (g(i)+x(i,s))"2+delta(i)/2*x(i,s)"2)));
@OLE( 'TSl.xls', 'GENERATORS!L2:N3') = a, b, g;
@OLE( 'TSl.xls', 'GENERATORS!02:03') = @writefor (GEN SCEN(i,s)|s #EQ# 1: x(i,s));
@OLE( 'TSl.x1ls', 'GENERATORS!PZ:P3 ) = @writefor(GEN7$CEN(i,s)IS #EQ# 2: x(i,s8));
@OLE( 'TS1l.x1ls', 'GENERATORS!Q2:Q3') = profit;
@QOLE( 'TSl.xls', 'GENERATORS!RZ:RZ ) = £
@OLE( 'TS1l.x1ls', 'GENERATORS!S2:T2') = p;
@QOLE( 'TS1l.x1ls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'TS1.x1ls', 'GENERATORS!V2:V2') = rep;
@QOLE( 'TS1l.x1ls', 'GENERATORS!W2:W2') = stl;
QOLE( 'TS1l.xls', 'GENERATORS!X2:X2') = st2;
@QOLE( 'TSl.x1ls', 'GENERATORS!YZ:Y2') = @write ('WNN') ;
i=1;
walpha (2* (ind-1) +i)=alpha (i) ;

wbeta (2* (ind-1) +1i)=beta (i) ;

wdelta (2* (ind-1)+i)=delta (i) ;
woptimizer (2* (ind-1) +1i)
wa fixed(2* (ind-1)+i)=a f

=optimizer (i) ;
(2* (ind-1)+1);

)

i)*

*



wb_ fixed(2* (ind-1)
wd fixed (2% (lnd 1)
(2* (ind-1) +i) =
b(2* (ind-1)+i)=
(2* (ind-1)+i) =
g(2* (ind-1)+1i)=
wx1l (2* (ind-1)+1) =
wx2 (2* (ind-1)+i) =
wprof1t(2*(1nd 1)
f(2* (ind-1)+1)=£;
wp1(2*(ind—1)+i)=p(1);
wp2 (2* (ind-1)+i)=p (2) ;
wwelfare (2* (ind-1) +i)=welfare;

wrep(Z*(ind—l) ') =rep;

wstl (2* (ind-1)+1i)=stl;

wst2 (2* (ind-1)+1i)=st2;

wtet (2* (ind-1)+i)=theta (i) ;

wcoe (2* (ind-1)+1i)=transCoef (1) ;
wY f£(2*(ind-1)+i)=Y(1);
wZz_f£(2*(ind-1)+1i)=2;

walpha (2* (ind-1)+i)=alpha (i),

wbeta (2* (ind-1) +1i)=beta (i) ;

wdelta (2* (ind-1) +i)=delta (i) ;

woptimizer (2* (ind-1)+i)=optimizer (i

wa_ fixed(2* (ind-1)+i)=a_ £ (2* (ind-1)

wb fixed(2* (ind-1)+i)=b_f(2* (ind-1)
)

wd_ fixed(2* (ind-1)+i)=d £ (2* (ind-1 )
(2* (ind-1)+1i)=a (1) ;

wb (2% (ind-1)+1i)=b (1) ;
(2% (ind-1)+1)=d (1) ;

wq (2* (ind-1)+i)=g (1) ;

wxl(2*(ind—l)+i)=x(i,l);

wx2 (2* (ind-1)+i)=x(i,2);

wprofit (2* (ind-1)+i)=profit(i);
f(2* (ind-1)+1i)=£f;

wpl (2* (ind-1)+i)=p (1)

wp2 (2* (ind-1) +i)=p (2)

)

’
’

wwelfare (2* (ind-1)+i)=welfare;
wrep(2*(ind—1) i)=rep;

wstl (2* (ind-1)+i)=stl;

wst2 (2* (ind-1) +i)=st2;

wtet (2* (ind-1)+i)=theta (i) ;
wcoe (2* (ind-1) +i)=transCoef (1) ;
wY £(2*(ind-1)+i)=Y(1i);
wZ_f(2*(ind-1)+1i)=2%;

ind=ind+1;

@OLE( 'TsSl.xls', 'OUT WNN!B2:E101') = wtet,wcoe,wY f,wZ f;

@OLE( 'TsSl.xls', 'OUT WNN!G2:AA101') = walpha ,wbeta ,wdelta ,woptimizer ,wa fixed

,wb fixed,wd fixed ,wa ,wb ,wd ,wg ,wxl ,wx2 ,wprofit,wf,wpl,wp2,wwelfare,wrep,wstl,wst2;
)i

ENDCALC
@WARN ('LINGO Finished', 1#GE#0) ;
END



10 The LINGO model used to find the equilib-
rium of the stochastic settlement mechanism
with asymmetric firms

!The stochastic settlement model with asymmetric generators and non-negativity
constraints.;

MODEL:

DATA:

NumProblems= QOLE ('SFSP.x1ls', 'GENERATORS!K16"'):;

ENDDATA

!The similar parameters to the parameters defined in the original paper have a similar
definition.

The rest of parameters are defined as comments.;

SETS:

GENERATORS : b , alpha , beta , delta , g, a , d, a fixed, d fixed, Opt, optimizer,
profit;
|

***3 fixed, b fixed, d fixed: The offered parametters of the generators in the last run.
***opt: If the current decision of the optimizing generator is similar (with a precision)
to its decision in the last run, it is 1, otherwise it 1is =zero.

***optimizer: in each round it is one for the optimizing generator and zero for the

others.
* * %

SCENARIOS : Y, theta, transCoef, p, C;

GEN_SCEN (GENERATORS, SCENARIOS): x, e, boundary ;

|

***e: The dual variable of the non-negativity consttraint g i+x {i,s}>=0.

***poundary: A binary variable to linearize the orthogonality constraint e {i,s} (g {i}+x_
{i,s})=0.

OPTIMIZERS (GENERATORS) ;
I

The set of the optimizer generator in each step of the dynamic process.

FIXEDGENS (GENERATORS) | #NOT# QIN( OPTIMIZERS, &l1) ;

!A1ll non-optimizer generators;

ROWS /1..100/:alp,bet,del,op,a f,b f,d f ,tet,coe,Y f,Z f,walpha ,wbeta ,wdelta
,woptimizer ,wa fixed ,wb_ fixed,wd fixed ,wb ,wa ,wd ,wg ,wxl ,wx2
;wprofit,wf,wpl,wp2,wwelfare,wrep,wstl,wst2,wtet,wcoe,wY f,wZ f;

!Degined for the purpose of collecting result of different runs of the model, and
outputting the results.;

ENDSETS

! Here is the data.
The data is read from an Excel file.

DATA:

GENERATORS, OPTIMIZERS= @OLE( 'SFSP.xls', 'GENERATORS','OPTIMIZERS');

SCENARIOS = @OLE ('SFSP.xls', 'SCENARIOS');

theta, transCoef, Y = @OLE('SFSP.xls', 'SCENSDATA');

Z, MyBigM = QOLE ('SFSP.xls' , 'Z' , 'MyBigM');

alp,bet,del,op,a £f,b f,d £ = QOLE ('SFSP.x1s', 'GENERATORS!D16:J116");

tet,coe,Y f,7Z f = QOLE('SFSP.xls', 'GENERATORS!N16:0Q116");

precision =@OLE ('SFSP.xls', 'GENERATORS!R18") ;

!A tolerance that determines the smallest value that we consider as a change in strategy.
In other words, if the change in a firm's strategy is less than this, we count that as a



no change in the strategy.;

maxRep=@OLE ('SFSP.x1s', 'GENERATORS!R19") ;
!Tf we do not find an equilibrium after "maxRep" steps, we stop searching for it.;

ENDDATA

SUBMODEL SFSP:

!This is the optimization model solved by a firm to maximize profit, assuming that the
strategy set of all other firms are fixed. ;

@FOR (GENERATORS: (@FREE (a));

@FOR (SCENARIOS: QFREE (p)):;

@FOR (GEN SCEN: @FREE (x));

@FREE (f) ;

[obj] MAX = @sum (GENERATORS (i): optimizer(i)* ( (@sum (SCENARIOS(s): (theta(s)*p(s))) * g

(1) + @sum (SCENARIOS (s): (theta(s)*(p(s)* transCoef( )*x(i,1)-(alpha(i) * (g(i)+x(i,s))+
))

i
beta (i) /2 * (g(i)+transCoef (s)*x(i,1))"2 + delta(i)/2 *transCoef (s)"2*x(i,1)"2)
I The objective;

) D))

!The constraints include constraints of a generator on his offered supply function and KKT
consitions of the ISO's optimization problem;
@FOR (GENERATORS (1) :
[Const f] -f + @sum ( SCENARIOS(s): (-e(i,s)+b(i)*theta(s)*x(i,s))) + a(i) + b(i)*g(i) =
0;

x(i,2)=transCoef (2)*x(1i,1);
)

@FOR (GEN_SCEN (i, s) :

[Const p] -e(i,s) +theta(s)* (-p(s)+a(i)+b(i)*g(i)+(b(i)+d(i)) *transCoef(s)*x(i,1)) = 0;
g(i) + x(i,s) >= 0;

[Const _ebin] e(i,s) <= boundary(i,s)*MyBigM;

[Const gxbin] g(i)+x(i,s) <= (l-boundary(i,s)) *MyBigM;

@BIN (boundary (i, s));
)i

@FOR (SCENARIOS (S) :

[Const p demand] theta(s) * (p(s)+ Z* C(s)-Y(s)) = 0;
[Const C] theta(s) * (-cQ+C(s) -@sum (GENERATORS (i) : x (i
)i

!Non-optimizing generators should offer their previous offered parameters;
@FOR (GENERATORS (k) |optimizer (k) #EQ# O

a(k)=a_ fixed(k);

d(k)=d fixed(k);
)

f - @sum (SCENARIOS(s): (theta(s)*p(s))) = 0;
cQ - @sum (GENERATORS (h): g(h)) = 0;
ENDSUBMODEL

!Calculations and procedure of the dynamic process to find an equilibrium for each of the
market settings.;

CALC:

@for (ROWS (k) :

walpha (k) O;
wbeta (k) =
wdelta (k)
woptimizer
wa_ fixed(k
wb fixed(k
wd fixed(k
wb (k) =0;
wa (k)=0;

||C>|I

0;
(k
)=
)=
)

)=
0;
0;
0;



P
Il
o
~

'Reading different market settings (i.e. case studies or examples).;
ind=Q@OLE ('SFSP.x1s', "GENERATORS!L16") ;
QWHILE (ind #LE# NumProblems:

eqg=0;

rep=0;

alpl=alp(2* (ind-1)+1);
alp2=alp(2* (ind-1)+2);
betl=bet (2* (ind-1)+1);
bet2=bet (2* (ind-1)+2);
dell=del (2* (ind-1)+1);
del2=del (2* (ind-1)+2) ;
opl=op (2* (ind-1)+1) ;
op2=0p (2* (ind-1) +2) ;
a fl=a f(2*(ind-1)+1);
a f2=a _£(2*(ind-1)+2);
b fl=b  £(2* (ind-1)+1);
b f2=b  £(2*(ind-1)+2);
d fl=d _f(2*(ind-1)+1);
d f2=d f(2*(ind-1)+2);
tetl=tet (2* (ind-1)+1);
tet2=tet (2* (ind-1)+2);
coel=coe (2* (ind-1)+1);
coe2=coe (2* (ind-1)+2) ;
Y fl1=Y f(2* (ind-1)+1);
Y f2=Y £(2*(ind-1)+2);
Z T fl=2 _£(2* (ind-1)+1);

@OLE ('SFSP.xls', 'GENERATORS!D2:j2"')=alpl,betl,dell,opl,a fl,b fl1,d f1;
@OLE ('SFSP.xls', 'GENERATORS!D3:j3"')=alp2,bet2,del2,0p2,a f2,b £f2,d £2;

@OLE ('SFSP.x1ls', 'SCENARIOS!C2:E2'")=tetl,coel,Y fl;
@OLE('SFSP.XIS','SCENARIOS!C3:E3')=tet2,cer,Y_f2;

@OLE ('SFSP.x1ls', 'OtherParams!B2')=7Z f1;

@for ( GENERATORS (i) :
Opt (1)=0;
)i

! stl and st2 records the status of the optimization problems i.e. whether it is found a
global optimal solution or a local optima. These are importnt to ensure that we actually
find a true equilibrium.;

st1=1000;

st2=1000;

@WHILE (eq #LE# 1 #AND# rep#LE#maxRep:
stl=st2;
alpha, beta, delta, optimizer, a fixed, b, d fixed = QOLE( 'SFSP.xls', 'GENSDATA');



@ifc( a(i) #GE# a fixed(i)-precision #AND# a(i)
#AND# d (i) #GE# d fixed(i)-precision #AND# d(i)
Opt (i)=1;
@else
Opt (1)=0;
)
a fixed(i) = a(i);
d fixed(i) = d(i);
)i
@for (GENERATORS (1) :
@ifc( optimizer (i) #EQ# 1:
optimizer (i)=0;
@else
optimizer (i)=1;
)
);
st2=@STATUS () ;
eq = @sum (GENERATORS (i) : Opt(i));
@OLE( 'SFSP.xls', 'GENSDATA')
rep=rep+l;
@for (GENERATORS (1) :
profit(i) = £ * g(i)+ @sum (SCENARIOS(s): (theta(s)
(q(i)+x(i,s))+ beta(i)/2 * (g(i)+x(i,s))"2 + delta(i)/2 *x(i,s)"

theta,
7 =
@SOLVE (

@for (GENERATORS (1) |

)7

transCoef,
@OLE ('SFSP.x1s'
SFSP) ;

'Z')

!Intermediate output;

welfare =

@sum (SCENARIOS (s) :

’

optimizer (i)

#EQ# 1

Y = QOLE('SFSP.xls', 'SCENSDATA') ;

*
2

(
)

p
)

#LE# a fixed(1i)+precision
#LE# d fixed(i)+precision:

= alpha, beta, delta, optimizer, a fixed, b,d fixed ;

(s)* x(i,s)-(alpha (i)

)

)

’

@OLE( 'SFSP.xls', 'GENERATORS!L2:N3') = a, d, qg;
@OLE( 'SFSP.xls', 'GENERATORS!02:03') = @writefor (GEN SCEN(i,s)|s #EQ# 1:
@OLE( 'SFSP.xls', 'GENERATORS!P2:P3') = @writefor(GEN_SCEN(i,S)IS #EQ# 2:
@QOLE ( 'SFSP.xls', 'GENERATORS!Q2:Q3') =profit;
QOLE( 'SFSP.xls', 'GENERATORS!R2:R2') = f;
QOLE( 'SFSP.xls', 'GENERATORS!S2:T2') = p;
@OLE ( 'SFSP.x1ls', 'GENERATORS!U2:U2') = welfare;
@OLE( 'SFSP.xls', 'GENERATORS!V2:V2') = rep;
@OLE( 'SFSP.xls', 'GENERATORS!W2:W2') = stl;
@OLE( 'SFSP.xls', 'GENERATORS!X2:X2') = st2;
@OLE( 'SFSP.xls', 'GENERATORS!Y2:Y2') = @Qwrite ('WNN');
)
'Final output;
welfare = @sum (SCENARIOS (s): theta(s)*(Y(s)*C(s)-2/2*C(s)”"2-Q@sum (GENERATORS (1) :
(q(i)+x(i,s))+beta (i) /2* (g(i)+x(i,s)) "2+delta(i)/2*x(i,s8)"2)));
@OLE( 'SFSP.xls', 'GENERATORS!L2:N3') = a, d, g;
@OLE( 'SFSP.xls', 'GENERATORS!02:03') = @writefor(GENisCEN(i,s)IS #EQ# 1: x(i,s)
@OLE( 'SFSP.xls', 'GENERATORS!P2:P3') = @writefor(GENisCEN(i,s)IS #EQ# 2: x(i,s)
@OLE( 'SFSP.xls', 'GENERATORS!Q2:Q3') =profit;
@OLE( 'SFSP.xls', 'GENERATORS!R2:R2') = f;
@OLE( 'SFSP.x1ls', 'GENERATORS!S2:T2') = p;
@OLE( 'SFSP.xls', 'GENERATORS!U2:U2') = welfare;
@OLE ( 'SFSP.xls', 'GENERATORS!V2:V2') = rep;
QOLE( 'SFSP.xls', 'GENERATORS!W2:W2') = stl;
QOLE( 'SFSP.xls', 'GENERATORS!X2:X2') = st2;
QOLE( 'SFSP.xls', 'GENERATORS!Y2:Y2') = @write ('WNN');
i=1;

walpha (2* (ind-1)+i)=alpha (i) ;
wbeta (2* (ind-1) +i) =beta (i) ;

wdelta (2* (ind-1) +i)=delta (i) ;
woptimizer (2* (ind-1)+1i)=optimizer (i) ;

theta (s)* (Y (s)*C(s)-Z/2*C(s)"2-@sum (GENERATORS (1) :
alpha (i) *(g(i)+x (i, s))+beta (i) /2* (g(i)+x(i,s)) 2+delta(i)/2*x(i,s)"2)));

alpha (i) *

*



wa_ fixed(2* (ind-1)+i)
wb fixed(2* (ind-1)+i)
wdﬁfixed(Z*(lnd 1)+1)

a f(2*(ind-1)+1i);
b f(2*(lnd 1)+1);
d f(2* (ind-1)+1);

(2* (ind-1)+1i)=a (1) ;
(2* (ind-1)+1i)=b (1) ;
(2* (ind-1)+1i)=d (1) ;
g(2* (ind-1)+1 ) qg(i);
wxl (2* (ind-1) +1i) x( 1)
wx2 (2* (ind-1)+i)=x(i,2);
wprofit (2* (ind-1) +1) profit(i);

wf (2* (ind-1)+1i)=f;

wpl (2* (ind-1)+i)=p (1) ;

wp2 (2* (ind-1)+i)=p (2) ;
wwelfare (2* (ind-1)+i)=welfare;

wrep(Z*(ind—l) ') =rep;

wstl (2* (ind-1)+1i)=stl;

wst2 (2* (ind-1)+1i)=st2;

wtet (2* (ind-1)+1i)=theta (i) ;

wcoe (2* (ind-1)+1i)=transCoef (1) ;
wY f£(2*(ind-1)+i)=Y(1);

wZ_ f(2*(ind-1)+1i)=2;

walpha (2* (ind-1) +i)=alpha (i) ;
wbeta (2* (ind-1) +i) =beta (i) ;
wdelta (2* (ind-1) +i)=delta (i) ;
woptimizer (2* (ind-1)+i)=optimizer (i
wa_ fixed(2* (ind-1)+i)=a £ (2* (ind-1)
wb fixed(2* (ind-1)+i)=b_f(2* (ind-1)
wd_fixed(2* (ind-1)+i)=d £ (2* (ind-1)
(2* (ind-1)+i)= )
b(2* (ind-1)+1i)= ;
(2* (ind-1)+i) =
wq (2% (ind-1) +1i )
wxl (2* (ind-1) +1)
wx2 (2* (ind-1)+1) =
wprofit (2* (ind-1)+
f(2* (ind-1)+1i)=£f;
wpl (2* (ind-1)+i)=p (1) ;
wp2 (2* (ind-1) +i)=p (2) ;
)

a(i
b (1
d (i
a
=X 1);

2);

i)
i)
i)
(1
x (1
i) profit(i);

wwelfare (2* (ind-1)+1i)=welfare;
wrep(2*(ind—1) i)=rep;

wstl (2* (ind-1)+i)=stl;

wst2 (2* (ind-1)+1i)=st2;

wtet (2* (ind-1)+i)=theta (i) ;
wcoe (2* (ind-1) +i)=transCoef (1) ;
wY f£(2*(ind-1)+i)=Y(1);

wZ_ f£(2*(ind-1)+1i)=2;

ind=ind+1;

@OLE( 'SFSP.xls', 'OUT WNN!B2:E101') = wtet,wcoe,wY f,wZ f;

@OLE( 'SFSP.xls', 'OUT WNN!G2:AA101') = walpha ,wbeta ,wdelta ,woptimizer ,wa fixed
,wb_fixed,wd fixed ,wa ,wb ,wd ,wq ,wxl ,wx2 ,wprofit,wf,wpl,wp2,wwelfare,wrep,wstl,wst2;

)

ENDCALC
@WARN ('LINGO Finished', 1#GE#0);
END
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